Towards Supporting Dynamic Symbolic

Execution

via Multi-Domain Metrics

David Honfi, Zoltian Micskei
Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Budapest, Hungary
Email: {honfi,micskeiz}@mit.bme.hu

Abstract—A popular code-based test generation technique is
dynamic symbolic execution (DSE), which combines concrete
executions with symbolic ones. The current maturity of DSE led
to industrial usages. However, the complexity of software used in
industrial practice poses several challenges for DSE. The issues
caused by these are often hard to identify as they are mostly
indicated by only the lack of coverage. In this paper, we gather
and present metrics that can be used on top of our already
elaborated approach that visualizes symbolic executions trees.

I. INTRODUCTION

Today, testing is an inevitable task of software development.
Academic research also tackles the topic from various aspects.
As test development is a time-consuming task, it is beneficial
to introduce automation. Several approaches have been pro-
posed addressing this challenge, including ones automatically
generating tests from source code (white-box test generation).
One of these techniques is symbolic execution (SE).

Symbolic execution is a widely used technique originating
from the ’80s. It begins the execution on a given entry point in
the program. SE replaces the concrete variables with symbolic
ones and uses them to form path constraints on each known
execution path (path condition). Then, these constraints are
transformed to SMT problems, which can be solved using
special-purpose tools. The concrete values satisfying the path
constraints steer the program execution exactly to the path
corresponding to the given constraint.

Dynamic symbolic execution (DSE) enhances the original
technique by mixing it with concrete executions. DSE starts
a concrete execution from an arbitrary entry point with the
simplest concrete input values as possible, while symbolic
execution is performed in parallel. During the concrete ex-
ecution, SE collects the constraints on the given path. When
a path in an execution has finished, the DSE transforms (e.g.,
negates) the collected constraint system and then attempts to
obtain a solution by defining it as a Satisfiability Modulo
Theories (SMT) problem. If a solution is available, then a
new concrete execution is feasible with the new inputs. This
process continues until either no more feasible paths are
available or an execution boundary (e.g., time limit) is reached.

Both SE and DSE face several challenges in numerous
cases. This includes, for instance, the following [1].

e Constraint solver issues (CSI): There are typical issues
for constraint solvers such as formulas containing floating
point arithmetics due to the high precision representation,
or large path constraints with diverse types of variables.

e State space explosion (SSE): When dynamic symbolic ex-
ecution is unbounded, the algorithm may explore program
states that are out-of-scope or cause fruitless executions
(e.g., redundant paths). However, when a boundary is set,
it should be defined in a way that it does not hinder
exploring important states in the program.

e Object creation (OC): A common issue in complex
programs is that the objects passed as parameters must
be assembled through sequences of method calls or using
special factory methods. These are usually hard to guess
automatically for a symbolic execution engine, which
prevents the program exploration. In these cases, manual
intervention or specialized algorithms shall be used.

o Environment interactions (EI): Interactions with the envi-
ronment of the unit under analysis are commonly found in
complex software. These interactions are mostly calls to
databases, to network or to the file system. Furthermore,
there could be invocations to underlying frameworks.
Onmitting the handling of these calls may lead to undesired
behaviors (e.g., writing to file system or database).

These challenges often cause issues that result in not enough
tests being generated. However, identifying and localizing the
root causes of the occurring issues may require an excessive
amount of effort. The effort spent on the identification may
reduce the advantages gained from automation.

To alleviate the identification and localization process, we
have already presented an approach that visualizes the sym-
bolic execution [2]. This technique uses an internal repre-
sentation of the execution called symbolic execution tree and
visualizes it with a predefined semantics. The use case of the
visualization is twofold: it gives an overall overview of the ex-
ecution, and gives internal details at each symbolic state (e.g.,
path condition). In our visualization, we enriched the symbolic
execution tree nodes with various metadata: sequence number,
location, corresponding runs, path condition, constraint solver
calls, generated tests (for leaf nodes). An example code and the
corresponding symbolic execution tree is shown in Figure 1.

The attached metadata serves as the basis for identifying



public int SwitchBranching(int condition) {
var divisor = 0;
switch (condition) {
case 0: return 0;
case 1: return —1;
case 2: return —2;
default: return (condition / divider):
+
3} [condition == 11N

(a) The source of SwitchBranching.
Fig. 1. A simple method and the corresponding symbolic execution tree

extracted from SEViz. The green leaves indicate passing generated tests, while
the red leaf shows a test generated for the path, which raises an exception.

[condition == 21\

(b) The symbolic execution tree.

the issues of the test generation process. However, in a wider
focus area, there is a large number of other metrics that can
be attached to a symbolic execution tree. These metrics can
be obtained from related domains (e.g., source codes, graphs).
With the additional metrics attached, a symbolic execution tree
may be more capable of indicating root causes of challenging
issues. Moreover, the data obtained for the metrics can be used
for recommendations and predictions.

The goal of this paper is to gather from literature, present
and describe valuable metrics attached to symbolic execution
trees. The metrics we set out to present are obtained from var-
ious sources and domains to improve diversity. Furthermore,
another goal in the paper is to present the applicability of the
metrics on an artificial example.

The rest of the paper is organized as follows. In Section II
we present the collected metrics in detail including their
original domains. Section III shows examples on how to
support test generation and identify issues using the gathered
metrics. Section IV discusses the related work, while Sec-
tion V concludes our contributions.

II. METRIC SELECTION

Source. To gain an overview of what metrics can be at-
tached to a symbolic execution tree, we defined four categories
from related domains of dynamic symbolic execution-based
test generation. For each of the categories, we searched for
survey papers that collect the most important and widely-used
metrics in their domains. The domains we selected are source
code, dynamic symbolic execution, tests, and graphs.

Context. In this paper, we select and detail four most rel-
evant metrics for each category. Also, we provide indications
on which metric could be influenced by the issues stated
before and vice versa (denoted with the abbreviation of the
issue). Albeit the selected metrics could be used as standalone
indicators for issue prediction, our paper only focuses on using
them for extending symbolic execution trees to perform post-
analysis. We defined three locations, where a metric can be
attached to a symbolic execution tree. We indicate these next
to the name of the metric.

o Nodes (N): A node in a symbolic execution tree repre-
sents a program state. Each node is mapped to a given
location of the program (as a basic block).

o Paths (P): A path is a sequence of nodes in the SE tree
that represents a corresponding execution.

o Exploration (E): The exploration refers to the set of all
the paths that have been executed. Basically, this is the
whole symbolic execution tree.

Selection. We defined the selection criterion of the metrics
based on two dimensions: 1) challenges occurring in dynamic
symbolic execution and 2) locations where a metric can be
placed in a symbolic execution tree. Each of the examined
metrics was labeled with values from these dimensions. The
defined coverage criterion requires to cover all the combi-
nations of the locations-challenges dimensions with at least
one metric. The labeling was based on our experiences and
intuitions regarding with symbolic execution trees [2].

A. Static code-based metrics (SC)

The domain of source code can be viewed from various
aspects, e.g., abstract representations like abstract syntax trees
of control-flow graphs. We obtained the source code metrics
from two papers. One of them is a study conducted to extract
characteristics of 147 open-source Java projects [3], while the
other compares programmer opinions to complexity [4].

1) Lines of Code [E]J[SSE]: The LoC is a textual metric of
the source code measuring the number of lines. A very large
program with many modules interacting with each other could
lead to huge path constraints causing constraint solvers to fail.

2) Cyclomatic complexity [E][CSI, SSE]: CC is a metric
that indicates the number of linearly independent paths in the
source code. The number of these paths are derived from the
control-flow graph (CFG) of the program. Large CC could
indicate the presence of loops that would yield large path
conditions and search space. Both hinder constraint solvers.

3) Halstead’s difficulty [E][CSI, SSE]: The metric is some-
times called the error-proneness, which is regarding with the
number of unique operators and operands in the code. Both
the operators and operands are usually expanding the search
space that the DSE interpreter must explore.

4) Number of method calls [N, P, EJ[SSE, EI]: This metric
is an indicator how many calls are performed to any other
methods (e.g., to other classes, libraries, environment). The
larger the number of external method calls, the higher the
probability of environment accessing issues for DSE. Obvi-
ously, if there are other, additional methods to explore, the
search space also grows.

B. Dynamic symbolic execution metrics (SE)

In dynamic symbolic execution, one of the key concepts is
the path condition that is solved by constraint solvers on each
path [3]. Also, an important feature of the explored paths is
the variety of instructions found along each path [5].

1) Path condition length [N,P][CSI, OC]: Represents the
length of the constraint system collected on an execution path
(sum of variables and operators used). Note that this metric
does not care about the repeated use of the same variable,
constant or operator.

2) Number of variables in path condition [N,P][CSI]: The
metric measures the number of distinct variables in the path
condition. This represents how dependent is the outcome of
the execution path on the symbolic variables.



3) Number of constants in path condition [N,P][CSI, OC]:
The metric measures the number of distinct constants in the
path condition including all data types that support constants.
This denotes how restrictive is the program code in the given
path on the variables.

4) Path description vector [P][SSE, EI]: An executed
path can be represented as a sequence of interpreted basic
blocks. Each basic block contains a given number of low-level
instructions, which can be represented using an occurrence
vector with a fixed length (based on the number of possible
instruction types on the given platform). Then, for each path, a
feature matrix can be assembled using the occurrence vectors
obtained along the path. This matrix represents the covered
program features on the given path [5].

C. Generated test metrics (GT)

At each leaf node of the symbolic execution tree, a test
case can be derived that executes the corresponding path,
which ends in that node. When a test case is produced, the
characteristics of the test (regarding with the inputs, actions
and expectations) may give overview of the given path about
what is performed along [6], [7].

1) Number of assertions [P][SSE, OC, EI]: This metric
tells how many assertions are found in the given generated
tests. If there are too many, then the test may be too specific,
which could cause false positive outcomes and could lead to
Assertion Roulette [8]. On the contrary, if there are few asser-
tions, then it could mean that the test case is too permissive and
may omit to check important behaviors. This issue is usually
caused by a problem in the DSE engine about what observed
behaviors to check.

2) Number of different types of assertions [P][SSE, OC,
El]: It measures the variety of assertions in a generated
test. It may indicate that the single test case is checking
multiple behaviors. However, a high number for this metric
may indicate that the test is too specific. This is usually caused
by an issue on observing the behavior of the program.

3) Lines of test code [P][OC]: The length of the test code
is usually a good indicator of its complexity. Too long tests
may hinder easy understanding, or it could contain unwanted
setups or assertions. Long tests may also indicate that the
dynamic symbolic execution engine was only able to setup
the test environment in an unusual or unnecessary way.

4) Number of constants in test code [P][CSI, SSE]:
The metric measures the number of constant values that the
dynamic symbolic execution engine was able to generate into
the code. If there is a value, it means that the algorithm was
able to discover and parse it from a given basic code block. A
large number of constants in the code usually yields wrongly
handled unbounded loops in the program.

D. Generic graph metrics (GG)

It is typical to apply general metrics for a wide variety
of graphs across several domains. This is the case for soft-
ware engineering as well [9]. The most common abstract
representation of a program is its control-flow graph that is

by definition contains the possible execution paths between
the basic code blocks in the program. However, to our best
knowledge, there is no study, which maps these general graph
metrics to symbolic execution trees.

1) Average branching factor [E][CSI, SSE, OC]: Let graph
G Dbe the symbolic execution tree with a set of vertices V(G).
We define the branching factor d (v) for each node v € V(G)
as its number of outgoing edges. The overall metric for the
whole tree is an average calculated as \V(ilG)l * ;G) dy(v).

veE

If a symbolic execution tree has a low branching factor, it
could reveal that the constraint solver faced issues during the
solution of complicated path conditions. High branching factor
could indicate the presence of unbounded loops.

2) Height of tree [EJ[SSE]: The height of a tree is given by
the length of the longest path selected out of all possible paths
from the root to a leaf. A suspiciously deep symbolic execution
tree may indicate that the dynamic symbolic execution engine
was not able to appropriately handle bounds of execution.

3) Number of leaves [EJ[SSE]: The number of leaves in
a tree provides a way to determine its width. As a leaf node
represents the end of an execution path, we use this metric to
decide how many tests could have been generated. The metric
should be used in strong cooperation with others (e.g., test
outcomes, branching factor).

4) Diameter of the tree [E]J[SSE]: To determine the di-
ameter of a symbolic execution tree, we temporarily remove
the directions of edges and calculate the longest path available
among all of the node pairs. From the longest paths between all
of the node pairs, we select longest one to indicate the diameter
of the whole tree. If the diameter of a symbolic execution tree
is unusually large, it may yield that search space is too huge
for the engine and must be handled properly.

In Table I we summarize the coverage of the metrics on
both of the defined dimensions. It can be seen that although
the coverage criterion has been fulfilled, yet there are some
fields, which have a smaller amount of associated metrics (e.g.,
object creation issue identification on node level).

TABLE I
SUMMARIZING TABLE OF METRIC COVERAGE OF THE TWO DIMENSIONS
DEFINED (LOCATION-CHALLENGE).

CSI SSE oC EI
N SE-1, SE-2, SC-4 SE-1, SE-3 SC-4
SE-3
P SE-1, SE-2, SC-4, SE-4, SE-1, SE-3, SC-4, SE-4,
SE-3, GT-4 GT-1, GT-2, GT-1, GT-2, GT-1, GT-2
GT-4 GT-3
E SC-2, SC-3, SC-1, SC-2, GG-1 SC-4
GG-1 SC-3, SC-4,
GG-1, GG-2,
GG-3, GG-4

III. AN EXAMPLE USE OF THE METRICS

We present how the metrics could indicate issues through an
example. In this simple program, the identification of an object



a1 B | public bool Foo(B b) {
+Foo(B) :bool -state:int if (b == null) return false:
+Instance():B i == B
B if (b. GetState () 5) return true;
't

return false;

+GetState():in

(a) Class diagram of the example. (b) Example method for analysis.

Fig. 2. The example program architecture and code with classes A and B.

creation issue (OC) will be demonstrated via the attached
metrics. Consider the example class layout shown in Figure 2a.
Class A contains the current method under test Foo that has an
argument of type B. Class B has a private default constructor
and a method (Instance) that obtains an instance of this
class. We executed dynamic symbolic execution on method
Foo using Microsoft Pex, a state-of-the-art DSE-based test
generator [10]. The outcome visualized in SEViz is shown
in Figure 3a. We identified the number of constants in the
path condition (II-B3), the lines of test code (II-C3) and the
branching factor (II-D1) as a unique indicator set of the OC.
Figure 3b shows the symbolic execution tree after the
OC issue has been resolved using a manual factory method.
The branching factor of the tree previously was 1, while it
increased to 1.66 with using the factory. Furthermore, the
generated test code length was 5 LoC in the first case,
which increased to 6.33 in the second case. The number of
constants in the path condition also confirms the issue: in the
first case, there is only one constant used in the only path
(null), while in the extended case, there are other constants
as well (e.g., state == 5). Only null constants in the path
conditions throughout the tree usually indicate that there is a
problem with creating objects for the given variable. In this
example, this hypothesis was supported by two facts: the low
branching factor of the tree and test cases with short length.
The identification of the root cause is fairly simple using the
path condition variables, therefore can be automated: one shall
examine, which variables were only constrained to null. T

\
\
b= (B)null 88 state 1= 5 [\ N

b 1= (B)null && state == 5 [\

b == (B)null I\

(a) SE tree with OC issue present.(b) SE tree after resolved OC issue.

Fig. 3. SE trees for the example with the OC issue present and resolved.

IV. RELATED WORK

A related technique is Covana [11] that aims to identify
OC and EI issues. Covana monitors DSE and collects problem
candidates that are examined using data dependence analysis.
While this approach is based on runtime monitoring, our ap-
proach uses only metrics attached to previously produced sym-
bolic execution trees. SED is a symbolic execution debugger

that visualizes symbolic execution trees with metadata [12].
The main difference between their approach is that they use it
for debugging, while our approach aims at identifying issues
of DSE-based test generation. Baldoni et al. survey symbolic
execution techniques along with identifying their challenges
[1]. They also consider possible solutions to these problems.
Our technique may be extended with advising solutions to
identified issues. Eler et al. analyzed characteristics of Java
programs influencing the performance of symbolic execution
[3]. We used some of their defined metrics to attach them to the
nodes of the generated symbolic execution trees (representing
a program state and location).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we gathered and presented metrics from
various domains to alleviate the issues of dynamic symbolic
execution based on previously extracted symbolic execution
trees. We selected 16 metrics from papers of 4 related domains
based on a predefined coverage criterion to enhance the prob-
lem identification process. The metrics have been presented
in detail along with two metadata for each of the metrics
indicating that 1) for which issue they can be used and 2)
where they can be attached in the symbolic execution tree.
We also presented an example issue, where the metrics have
perceivable changes caused by the presence of the given issue.

Our future work is twofold: 1) we plan to extend the set of
collected metrics in a more systematic way, 2) we elaborate
a technique providing automated identifications of DSE prob-
lems using the metrics attached to symbolic execution trees.

REFERENCES

[1]1 R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” CoRR, vol. abs/1610.00502,
2016. [Online]. Available: http://arxiv.org/abs/1610.00502

[2] D. Honfi, A. Voros, and Z. Micskei, “SEViz: A tool for visualizing
symbolic execution,” in /CST, April 2015, pp. 1-8.

[3] M. M. Eler, A. T. Endo, and V. H. Durelli, “An empirical study
to quantify the characteristics of Java programs that may influence
symbolic execution from a unit testing perspective,” Journal of Systems
and Software, vol. 121, pp. 281 — 297, 2016.

[4] B. Katzmarski and R. Koschke, “Program complexity metrics and
programmer opinions,” in 2012 20th IEEE International Conference on
Program Comprehension (ICPC), 2012, pp. 17-26.

[5] R. P. L. Buse and W. Weimer, “The road not taken: Estimating path
execution frequency statically,” in 31st IEEE International Conference
on Software Engineering, 2009, pp. 144-154.

[6] V. Garousi and M. Felderer, “Developing, verifying, and maintaining
high-quality automated test scripts,” IEEE Software, vol. 33, no. 3, pp.
68-75, 2016.

[71 D. Bowes, T. Hall, J. Petri¢, T. Shippey, and B. Turhan, “How good are
my tests?” in Proceedings of the 8th Workshop on Emerging Trends in
Software Metrics. 1EEE Press, 2017, pp. 9-14.

[8]1 G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2006.

[9] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos, “Graph-

based analysis and prediction for software evolution,” in ICSE. IEEE,

2012, pp. 419-429.

N. Tillmann and J. de Halleux, “Pex—white box test generation for .net,”

ser. TAP: Second International Conference, 2008, pp. 134-153.

X. Xiao, T. Xie, N. Tillmann, and J. De Halleux, “Precise identification

of problems for structural test generation,” in /CSE. IEEE, 2011, pp.

611-620.

R. Hihnle, M. Baum, R. Bubel, and M. Rothe, “A visual interactive

debugger based on symbolic execution,” in ASE, 2010, pp. 143-146.

(10]

(11]

[12]


http://arxiv.org/abs/1610.00502

	Introduction
	Metric selection
	Static code-based metrics (SC)
	Lines of Code [E][SSE]
	Cyclomatic complexity [E][CSI, SSE]
	Halstead's difficulty [E][CSI, SSE]
	Number of method calls [N, P, E][SSE, EI]

	Dynamic symbolic execution metrics (SE)
	Path condition length [N,P][CSI, OC]
	Number of variables in path condition [N,P][CSI]
	Number of constants in path condition [N,P][CSI, OC]
	Path description vector [P][SSE, EI]

	Generated test metrics (GT)
	Number of assertions [P][SSE, OC, EI]
	Number of different types of assertions [P][SSE, OC, EI]
	Lines of test code [P][OC]
	Number of constants in test code [P][CSI, SSE]

	Generic graph metrics (GG)
	Average branching factor [E][CSI, SSE, OC]
	Height of tree [E][SSE]
	Number of leaves [E][SSE]
	Diameter of the tree [E][SSE]


	An example use of the metrics
	Related work
	Conclusions and future work
	References

