
PARALLELIZATION OF INCREMENTAL PATTERN MATCHING
IN GRAPH TRANSFORMATION

Gábor BERGMANN
Advisor: Dániel VARRÓ

I. Introduction

Nowadays, desktop computers are often equipped with multi-core processors, and single-threaded ex-
ecution does not take advantage of this increased computational capacity. It is a great challange in the
industry to find algorithms that are scalable and capable of exploiting the power of modern computing
architectures. Model transformation is an application domain that could benefit greatly from paral-
lelizations (along with other improvements to efficiency), as processing large-scale models often suffer
from permormance issues.

Using a graph transformation [1] based approach for model transformations, there are even more
possibilities for the exploitation of parallelism. Besides model manipulation sequences, graph trans-
formations involve a graph searching phase, which is targeted at finding the matches of a graph pattern.
Nevertheless, graph transformation tools rarely exploit parallel execution.

Previous work revolved aroung improving pattern matching performance by employing an incre-
mental strategy [2] based on the RETE [3] algorithm. Incremental techniques store the occurrence set
of graph patterns so that they are always immediately available, and update these caches upon model
changes. RETE in particular stores the match set of subpatterns also. A RETE net consists of cache
nodes, each responsible for maintaining the match set of a subpattern, and update channels between
these nodes. Changes in the model or subpattern caches trigger messages flowing in these channels to
prompt the incremental update of the cache stored at the recipient node.

This paper examines ways in which RETE-based pattern matching could benefit from parallelism.

II. Concurrent pattern matching and model manipulation

transformation RETE

change notification

change notification

pattern query

Figure 1: Separate pat-
tern matcher thread with
concurrency and waiting

Contrary to previous work, the RETE net implementation used throughout
this paper relies on asynchronous message passing. Using asynchronous
messaging, the load on the main thread of the transformation can be re-
duced by executing the incremental pattern matcher (which consumes
change messages from the queue) in a separate thread. When the trans-
formation manipulates the model (see Fig. 1), it only has to send the new
update message to the message queue, and continue its operation. The
thread of the pattern matcher will execute the update propagation in the
background, ideally, without imposing a performance penalty on the trans-
formation thread. When the message queue becomes empty, the RETE net-
work has reached steady state; the pattern matcher thread then goes to sleep
and will not resume its operation until a new update message is posted.

When the transformation initiates pattern matching, it has to assure that
background update propagations have terminated and the matches stored
at the production nodes are up-to-date. If the network has not yet reached
its fixpoint, the model manipulation thread will have to sleep until that
happens.



Performance expectations. While the local search based pattern matchers operate with cheap model
changes and costly pattern queries, a sequential RETE-based matcher [2] relies upon a moderate over-
head on model change balanced by instant pattern queries. This novel concurrent incremental pattern
matching approach combines the advantages of the former two: it has cheap model manipulation costs,
and potentially instant pattern queries. Although the transformation might have to wait for the termi-
nation of the background pattern matcher thread, the worst case of this time loss is still comparable
with the update overhead of the original RETE approach.

III. Multi-threaded pattern matching with RETE

PRODUCTION
sourcePlace

INPUTINPUT
INPUT

JOIN JOIN

RETE container RETE container

thread thread

Figure 2: Multiple containers

The concurrent pattern matching approach can be im-
proved further by parallelizing the update propagation
phase. Here I present a simple solution. The basic idea is
to employ multiple pattern matcher threads to consume
update messages. The proposal splits the network into
separate RETE containers, each of which is responsi-
ble for matching a set of subpatterns. Each container
has its own distinct set of nodes, and a dedicated pattern
matcher thread consuming update messages of a dedi-
cated queue. Each container is responsible for forward-
ing messages to its nodes using the dedicated message
queue. Forwarding messages between two containers
is accomplished by enqueueing the message in the tar-
get container. Fig. 2 depicts a multi-threaded pattern
matcher illustrating how a RETE net can be split into
several containers for parallel execution.

Performance expectations. An ideal application scenario would be several parallel transformations
that are known to use different patterns; allowing straightforward splitting and parallelization of the
RETE net, with a low amount of inter-connectedness. By partitioning the patterns into relatively
independent containers, a multi-threaded RETE pattern matcher may achieve high performance.

IV. Conclusion

I have designed ways of parallelizing a RETE-based incremental graph pattern matcher and imple-
mented them as part of the VIATRA2 framework [4]. This approach supports large-scale model trans-
formation and complements the parallelization of transformation execution. Future work is required to
carefully measure performance in various problem classes, and to fine-tune the implementation.

References
[1] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, Eds., Handbook on Graph Grammars and Computing by

Graph Transformation, vol. 2: Applications, Languages and Tools, World Scientific, 1999.
[2] G. Bergmann, A. Ökrös, I. Ráth, D. Varró, and G. Varró, “Incremental pattern matching in the VIATRA model

transformation system,” in Graph and Model Transformation (GraMoT 2008), G. Karsai and G. Taentzer, Eds. ACM,
2008.

[3] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object pattern match problem,” Artificial Intelligence,
19(1):17–37, September 1982.

[4] D. Varró and A. Balogh, “The model transformation language of the VIATRA2 framework,” Sci. Comput. Program.,
68(3):214–234, 2007.


