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I. Introduction

As model management platforms are gaining more and more industrial attraction, the importance of
techniques for processing large models is also increasing. A further challenge is coping efficiently (in
terms of computational performance and required manual effort) with the constantly evolving nature
of models. A model management platform can greatly support the declarative processing of models
with the following three features:

• efficiently evaluated declarative model queries,
• change-driven [1] reactive behaviour triggered by changes captured using model queries,
• and declaratively defined model manipulation operations.

Scenarios where such features offer great benefits include model transformation (especially live syn-
chronization [2]), code generation, domain specific behaviour simulation and model validation.

A leading industrial modeling ecosystem, the Eclipse Modeling Framework (EMF [3]), provides
different ways to query the contents of models. These approaches range from (1) the use of high-
level declarative constraint languages (like OCL [4]) to (2) a dedicated query language [5] resembling
SQL, or, in the most basic case, (3) manually programmed model traversal using the generic model
manipulation API of EMF. However, industrial experience shows scalability problems of complex
query evaluation over large EMF models, taken e.g. from the automotive domain, especially when
confronted with evolving models.

To address these issues in the context of EMF, a novel solution for model queries was developed in
cooperation with several colleagues. EMF-INCQUERY [6] automatically provides efficient incremen-
tal evaluation, without manual coding, to cope with the evolving nature of models. This paper presents
an overview of EMF-INCQUERY, then investigates the possibility of applying similar techniques to
provide declarative model manipulation and a triggering mechanism.

II. Background: EMF and GT

The Eclipse Modeling Framework (EMF [3]) provides automated code generation and tooling (e.g. no-
tification, persistence, editor) for Java representation of models. EMF models consist of an (acyclic)
containment hierarchy of model elements (EObjects) with crossreferences – some of which may only
be traversed by programs in one direction (unidirectional references). Additionally, each object has a
number of attributes (primitive data values).

EMF uses Ecore metamodels to describe the abstract syntax of a modeling language. The main
elements of Ecore are the following: EClass, EAttribute and EReference. EClasses define the types of
EObjects, enumerating EAttributes to specify attribute types of class instances and (unidirectional)
EReferences to define association types to other EObjects. Some EReferences additionally imply
containment.

Example: Figure 1(a) shows a simple example metamodel for a State Machine. The two EClasses
are “Machine” and “State”. Each Machine contains States through a containment EReference called
“states”, and one of them is marked by the “current” EReference to denote the current State of the
Machine. Possible transitions are indicated by “next” EReferences between States.



Figure 1: State Machine example

Graph patterns [7] constitute an expressive formalism used for various purposes in Model Driven
Development, such as defining declarative model transformation rules, defining the behavioral se-
mantics of dynamic domain specific languages, or capturing general purpose model queries including
model validation constraints. A graph pattern (GP) represents conditions (or constraints) that have to
be fulfilled by a part of the instance model. A basic graph pattern consists of structural constraints
prescribing the existence of nodes and edges of a given type (or subtypes, subject to polymorphism).
Some languages (e.g. VIATRA2 [7]) include a way to express negation, resulting in an expressive
power equivalent to first order logic [8]. Attribute constraints are also a typical feature. A match of
a graph pattern is a group of model elements that have the exact same configuration as the pattern,
satisfying all the constraints.

Graph patterns can form the basis of declarative model queries, where the pattern spacifies what
arrangement of elements is sought after, not how or where to find them. In an EMF context, each
node in the pattern represents an EObject (EMF instance object), and the type of the node identifies the
EClass of the object. This feature is useful to select only those model elements that conform to a certain
type. Furthermore, the pattern nodes are connected by directed edges, annotated by an EReference type
(or containment), to express how these elements reference each other. Finally, attribute constraints
filtering and comparing the attributes of these elements can also be added.

Example: Figure 1(b-d) show three simple graph patterns over graph models that conform to the
metamodel depicted in Figure 1(a). In particular, the pattern in Figure 1(b) identifies a Machine M
and two of its States S1 and S2, where S1 is the current state and S2 is one of the possbile successor
states. The pattern in Figure 1(c) is similar, but S2 is the current state and S1 is one of its predecessors.
Finally, the pattern in Figure 1(d) captures two different Machines M1 and M2, with states S1 and S2
respectively, where S2 is marked as a successor of S1.

Graph transformation (GT) [9] provides a high-level rule and pattern-based manipulation language
for graph models. Graph transformation rules can be specified by using a left-hand side (LHS) graph
pattern determining the applicability of the rule, and a right-hand side (RHS) graph pattern which
declaratively specifies the result model after rule application. Elements that are present only in (the
image of) the LHS are deleted, elements that are present only in the RHS are created, and other model
elements remain unchanged.

Example: The GT rule formed from Figure 1(b) as LHS and Figure 1(c) as RHS describes how the
state machine can advance its state. The LHS captures the current state and a successor state, which
are needed to fire the rule. When the rule is applied on a match of the LHS, it is substituted with the
image of the RHS, meaning that S2 is marked as the current state from that time on.

An important performance issue associated with large models is that they have to be reconsidered
again and again after each small change, causing a significant overhead. Incrementality is therefore a



valuable property of model processing mechanisms in the context of evolving models. In case of GT-
based approaches, most of the computational complexity is associated with graph pattern matching,
thus incremental pattern matching (INC) [10] is a promising way to address the performance problems.

INC techniques rely on a cache which stores the results of a query explicitly. The result set is readily
available from the cache at any time without additional search, and the cache is incrementally updated
whenever (elementary or transactional) changes are made to the model. As results are stored, they
can be retrieved in constant time, making query evaluation extremely fast. The trade-off is increased
memory consumption, and increased update costs (due to continuous cache updates).

III. EMF-INCQUERY

The aim of the EMF-INCQUERY approach is to bring the benefits of graph pattern based declarative
queries and incremental pattern matching to the EMF domain. The advantage of declarative query
specification is that it achieves (efficient) pattern matching without time-consuming, manual coding
effort associated to ad-hoc model traversal. While EMF-INCQUERY is not the only technology for
defining declarative queries over EMF [4, 5], its distinctive feature is incremental pattern matching.
Thanks to this matching technique, EMF-INCQUERY has special performance characteristics suitable
for scenarios such as on-the-fly well-formedness validation. See [6] for measurements revealing how
EMF-INCQUERY can be several orders of magnitude more efficient than other approaches.

Additionally, some shortcomings of EMF are mitigated by the capabilities of EMF-INCQUERY,
such as cheap enumeration of all instances of a certain type, regardless of where they are located in the
resource tree. Another such use is the fast navigation of EReferences in the reverse direction, without
having to augment the metamodel with an EOpposite (which is problematic if the metamodel is fixed,
or beyond the control of the developer).

EMF-INCQUERY provides an interface for each declared pattern for (i) retrieving all matches of the
pattern, or (ii) retrieving only a restricted set of matches, by binding (a-priori fixing) the value of one
or more pattern elements (parameters).

In both cases, the query can be considered instantaneous, since the set of matches of the queried pat-
terns (and certain subpatterns) are automatically cached, and remain available for immediate retrieval
throughout the lifetime of the EMF ResourceSet. Even when the EMF model is modified, these caches
are continuously and automatically kept up-to-date using the EMF Notification API. This maintenance
happens without additional coding, and works regardless how the model was modified (graphical edi-
tor, programmatic manipulation, loading a new EMF resource, etc.).

IV. Graph Triggers over EMF

EMF-INCQUERY is useful in itself to provide an expressive and efficiently evaluated query language.
However, the incrementality of the result set opens up the possibility of considering graph changes as
events. As proposed with co-authors in previous work [2] outside the context of EMF, changes of the
model graph, as captured on an arbitrary granularity defined by a graph pattern, can drive the execution
of Graph Triggers. There are two basic kinds of triggers: those that are activated by the appearance
of a match of a graph pattern, and those that are fired on a disappearance (a language for capturing
more precise conditions of trigger guards is proposed in [1]). A trigger is thus specified by this guard
condition and a reaction that can be defined by an arbitrary sequence of Java code.

Example: The graph pattern in Figure 1(d) identifies a violation of the well-formedness of the state
machine model, in which a “next” edge leads to a different Machine. By registering a Graph Trigger
that is activated on the appearance of this graph pattern and notifies the modeling expert of the mistake,
the domain-specific modeling environment can benefit from on-the-fly well-formedness checking.

To reflect the changes in the match set during a sequence of model manipulation, a device called delta



monitor continuously and incrementally maintains such a difference. This makes the implementation of
the trigger engine a matter of regularly checking the delta monitors and firing triggers when necessary.
The timing of this check must be chosen such that the incremental pattern matcher already reflects a
consistent state of the model. In case of EMF Transactions, the triggers are fired at the pre-commit
phase, so that they can modify the model.

The usefulness of such a service was demonstrated by applying it in multiple ways. As a demonstra-
tion of live transformation (pioneered in [2]) over EMF, triggers facilitated an on-the-fly bidirectional
synchronization between two views of the same model in two different modeling formalisms of the
SecureChange EU research project. A second likely usage, similar to the example given above, is
on-the-fly checking of structural well-formedness properties, as demonstrated in [6]. As a third usage,
change itself was used as a source of information (in addition to the current state of the model) in the
same SecureChange case study [1].

Finally, the possibility of declarative model manipulation over EMF was also investigated, although
the implementation on top of EMF-INCQUERY remains future work. The natural choice of formalism
to apply on EMF would be GT rules, investigated in e.g. [11]. The main challenge is the hierarchical
nature of the EMF Resources, implying that new elements can only be created in a container element,
and that element deletions cause the removal of the entire containment sub-tree, which can cause
inconsistency if e.g. the same GT rule connects a new edge to a deleted element. To address these
issues, [11] imposes some consistency restrictions on GT rules, and these conditions assume complete
knowledge of the Ecore metamodels, which may be unrealistic.

V. Conclusion

The proposed technology applies academically researched model transformation features (namely in-
cremental pattern matching and graph triggers) in the industrial platform of EMF; benefits manifest in
use cases including live model synchronization and structural well-formedness checking.
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