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Abstract. Model repositories based on the Eclipse Modeling Framework
(EMF) play a central role in the model-driven development of complex
software-intensive systems by offering means to persist and manipulate
models obtained from heterogeneous languages and tools. Complex EMF
models can be assembled by interconnecting model fragments by hard
links, i.e. regular references, where the target end points to external re-
sources using storage-specific URIs. This approach, in certain application
scenarios, may prove to be a too rigid and error prone way of interlinking
models. As a flexible alternative, we propose to combine derived features
of EMF models with advanced incremental model queries as means for
soft interlinking of model elements residing in different model resources.
These soft links can be calculated on-demand with graceful handling for
temporarily unresolved references. In the background, the interlinks are
maintained efficiently and flexibly by using incremental model queries as
provided by the EMF-IncQuery framework.

1 Introduction

The Eclipse Modeling Framework (EMF) [1] serves as the underlying model
management infrastructure for various industrial development tools, especially
in the avionics and automotive domain. These domains necessitate the handling
of large models with potentially millions of model elements. For maintainability
and scalability reasons, such EMF models are not persisted in a single XMI doc-
ument, but stored as an interconnected network of model fragments where each
fragment stores a certain part of the entire system model. In other application
scenarios, complete EMF models are used which are complemented with external
traceability models to explicitly persist traceability links between requirements
models, design models, analysis models or source code, for instance. In both
scenarios, EMF models are frequently manipulated by several development or
verification tools in complex toolchains operated by different design teams.
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Unfortunately, the interconnection of complex EMF-based system models im-
poses several technical problems due to the identification strategies of model
elements in the EMF infrastructure. When serializing a model, a model element
is either identified by a unique identifier generated by EMF, or by a relative path
of containment hierarchy in the given EMF resource. These techniques are used
when interconnecting models using associations (EReferences) e.g. for internal
traceability purposes: the target end of the association points to an object resided
in a different model resource. Such interconnections are also used in external
traceability scenarios where inter-model links are introduced from traceability
metamodel elements to existing metamodels which cannot be altered.

These scenarios demonstrate various shortcomings of the core EMF technol-
ogy. First, (1) interconnected EMF model fragments with circular dependen-
cies including only regular references cannot be serialized. Furthermore, without
truly intelligent multi-resource transaction management, (2) local changes in a
model fragment may introduce broken links unless all dependent model frag-
ments are manipulated together in working memory. Such broken links require
tool-specific resolutions — with a worst case scenario of fixing the links manu-
ally by the designer using text editors (and not the modeling tool). Finally, (3)
all traceability links captured by associations are explicitly persisted every time
even if traceability links could be derived from existing unique identifiers.

In the paper, we provide an approach1 for the soft interconnection of EMF
models based on derived features and incremental model queries. Derived features
are attributes and relations of the model calculated at runtime, and their values
are often not stored explicitly. When using derived relations, the corresponding
links only exist after the models are loaded. Therefore, model fragments can be
(de)serialized in arbitrary order issuing warnings about broken links when cer-
tain resources are unavailable or not loaded. In order to provide an efficient and
flexible handling of such soft links, we use the incremental model query frame-
work EMF-IncQuery as a technical foundation. As a result, it is sufficient to
identify a model element by a query instead of local or global identifiers, and
less amount of information needs to be persisted for traceability purposes. Fur-
thermore, the underlying model query technique provides excellent performance
with little memory overhead [2] for managing inter-model links2.

The rest of the paper is structured as follows. First, we illustrate intercon-
nected EMF models in Section 2 on an industrial case study and propose derived
features for managing soft interconnections. Then we propose model queries as
specification means for derived features, and thus for soft links (Section 3). An
incremental maintenance technique for soft links is described in Section 4. In
Section 5 the application of soft interconnections is described for traceability
modeling. Finally, related approaches and tools are described in Section 6 and
Section 7 concludes our paper.

1 Fully implemented and documented at http://viatra.inf.mit.bme.hu/incquery/
new/examples/query-driven-soft-links

2 The paper does not include performance specific contributions to EMF-IncQuery,
more details are available at http://viatra.inf.mit.bme.hu/performance

http://viatra.inf.mit.bme.hu/incquery/new/examples/query-driven-soft-links
http://viatra.inf.mit.bme.hu/incquery/new/examples/query-driven-soft-links
http://viatra.inf.mit.bme.hu/performance
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2 Soft Interconnection of EMF Models: An Overview

2.1 Case Study: Modeling and Managing Business Processes

Our approach will be demonstrated on an business modeling case study inspired
by a project carried out together with an industrial partner. While the actual
metamodels (shown in Figure 1) are significantly simplified here due to space
restrictions, they still demonstrate many practical industrial problems of inter-
connecting EMF models. In the case study, semi-automatic workflows (captured
as a process model) contain both automated and manual tasks. Architectural-
level deployment decisions are captured by a separate system architecture model
comprising of jobs and data resources referring to tasks in the business process
model. Finally, the instances of the processes managed by operators are captured
in an operation model containing a checklist for each process with task entries
assigned for each operator.

Fig. 1. The metamodels of the case study
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Business process metamodel Business processes (process package) are defined
by a fragment of the standard XPDL [3] metamodel. The ProcessElement top-
level type defines id (unique identifiers) and name attributes for each element.
A Process includes Activities that are either Tasks (atomic workflow steps) or
Gateways (e.g. fork-join, decision, loops), while the control flow of the process
is represented by the next and previous relations between activities. Based upon
their kind attribute, tasks can be service (for automated execution through API
calls), manual (where the operator initiates some job) and user (when the task
itself is performed by an operator or other assigned personnel).

System architecture metamodel The system architecture metamodel (system
package) defines a top-level ResourceElement that defines a name for each ele-
ment. This simplified architecture includes Systems (representing larger compo-
nents), Data elements that represent application data (e.g. configuration, input
or output files) that can be read or written during the execution of tasks in the
processes and Jobs (e.g. scripts or one-shot programs) that run on Systems. We
assume that each system must have a unique name and each job contained in
the same system must have different names. Otherwise, names are not globally
unique in this domain.

Operation metamodel The operation metamodel (operation package) is used
for representing Checklists followed by operators when performing the manual
tasks in processes. The top-level OperationElement adds a name and a unique
identifier for each model element. Each Checklist is related to a Process, and
includes a number of entries and a menu. The menu contains MenuItems that
have textual descriptions and a location, where the operator can access it. The
entries are ChecklistEntry elements, each corresponding to one task, an arbitrary
number of jobs, and optionally to a MenuItem. Finally, each entry can con-
tain further information (e.g. historical statistics or requirements) stored by a
RuntimeInformation element using a content map.

Inter-model connections These metamodels and thus the corresponding model
instances heavily depend upon each other (see Figure 1). The following logical in-
terconnections are present in our example: (1) a Job (from system) can be linked
to a Task (in process); (2) a Process is a referenced from Checklist; (3) a Checklis-
tEntry links to both to a process Task and a system Job; (4) a RuntimeInformation
(from operation) can be attached to a Job.

Many industrial tools (including the TIBCO Business Studio [4] used in our
industrial project for capturing XPDL models and the AUTOSAR standard [5])
store identifiers of external (inter-model) elements using (a list of) simple string
(or integer) attributes. In contrast, EMF uses EReferences (corresponding to
lazily initialized inter-object pointers) to interconnect different models (or model
fragments), which are resolved during the first traversal. For the current paper,
they are referred to as hard links, as all such cross-model references are explicitly
stored in a serialized model. In order to implement such standards over the
EMF infrastructure, the main challenge is to provide a transparent reference
maintenance mechanism that maps the textual identifiers to in-memory pointers
and also allows their modification.
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2.2 Soft Links for EMF Models by Query-Based Derived References

In the paper, we propose a soft linking technique for interconnecting EMF models
by combining derived features and incremental model queries. The term "query-
based soft links" refer to the fact that (1) certain model interconnections only
exist at runtime but they are not maintained explicitly in instance models, but
(2) the interconnected model elements can be accessed and navigated in a type-
safe way along derived features. Furthermore, (3) our query based technique
allows to define complex, n-ary interconnections of several model elements, and
(4) to identify model elements dynamically based upon query results (instead of
static unique IDs).

Derived features in EMF models represent computed information which can
be calculated from other model elements. Essentially, we distinguish between
derived attributes, which provide a data store for a(n instance of a) class and
derived references, which represent “virtual” interconnections between model el-
ement instances (represented graphically by the derived stereotype in Figure 1).
Derived features for soft links will be defined by using a declarative, high-level
graph-based query language (Section 3) and evaluated truly incrementally (Sec-
tion 4) as offered by the advanced model query framework EMF-IncQuery [6].
Our soft interconnection technique offers the following advantages:

– Handling circular dependencies: Circular dependencies between EMF
models can be handled easily with soft links. For instance, metamodels sys-
tem and operation are mutually dependent on each other along references
jobs and info, which can materialize in a circular dependency on the model
level preventing serialization using auto-generated regular EMF methods. As
soft links are not serialized, this problem no longer occurs.

– Graceful management of broken links. When EMF models are manip-
ulated by multiple tools, inter-model links can be easily broken, which result
in runtime exceptions when the corresponding model element is attempted
to be accessed along a broken link. Soft links provide graceful behavior in
case of broken links by issuing warnings in case of unresolved elements.

– Improved persistence. Whenever a model interconnection can be calcu-
lated by a query, this does not necessarily have to be explicitly persisted
into traceability models. As result, the load time of complex interconnected
models can be reduced.

– High performance. Due to the incremental caching mechanism of EMF-
IncQuery [2], derived features can be reevaluated very efficiently even in
case of complex definitions (e.g. transitive closures [7]). As a result, the
maintenance of soft links will be efficient with low memory overhead even
for large models with complex traceability structures.

3 Definition of Soft Links as Model Queries

In order to support the runtime management of soft interconnections between
models using derived features of EMF models, the graph pattern based model
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query language of EMF-IncQuery is used as the specification language for
derived features. Therefore a brief introduction to this query language is pro-
vided first, followed by a detailed description on how this general purpose query
language is adapted to specify the derived features for soft interconnections.

3.1 Model Queries by Graph Patterns: An Overview

Graph patterns [8] are an expressive formalism used for various purposes in
model-driven development, such as defining declarative model transformation
rules, capturing general-purpose model queries including model validation con-
straints, or defining the behavioral semantics of dynamic domain-specific lan-
guages. A graph pattern (GP) represents conditions (or constraints) that have
to be fulfilled by a part of the instance model. A basic graph pattern consists
of structural constraints prescribing the existence of nodes and edges of a given
type, as well as expressions to define attribute constraints. A negative application
condition (NAC) defines cases when the original pattern is not valid (even if all
other constraints are met), in the form of a negative sub-pattern. A match of
a graph pattern is a group of model elements that have the exact same config-
uration as the pattern, satisfying all the constraints (except for NACs, which
must not be satisfied). The complete query language of the EMF-IncQuery
framework is described in [9], while several examples will be given below.

3.2 Soft Links as Model Queries

Sample Soft Link First, we demonstrate on an example how the graph pattern
EntryJobCorrespondence(CLE,Job) (Figure 2) can be used to express the soft links
captured by the derived EReference jobs (connecting ChecklistEntry and Job in
Figure 1), that is, to identify those jobs that correspond to a task execution as
part of the checklist entry.

1 // ChecklistEntry.jobs link
2 pattern EntryJobCorrespondence
3 (CLE , Job) = {
4 Job.name(Job,JobName );
5 System.name(System,SysName );
6 Job.runsOn(Job,System );
7 ChecklistEntry.jobPaths
8 (CLE ,JobPath );
9 check(JobPath ==

10 SysName +’/’+JobName );}

Fig. 2. Model query to define EntryJobCorrespondence in graphical and textual syntax

This model query formulated as a graph pattern has two parameters: CLE
and Job, denoting the source and the target end of the soft link. The query
defines the designated set of jobs by checking the names of the given job element
Job and the system S it runs on (nJ and nS, respectively) and the path p stored
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in the entry. Model queries for the other soft links captured by derived features
defined in the metamodel are defined similarly in Listing 1.1 and Listing 1.2.

1 // Job.tasks link
2 pattern JobTaskCorrespondence
3 (Job,Task) =
4 {
5 Task.id(Task ,TaskId );
6 Job.taskIds
7 (Job,TaskId );
8 }
9 // Data.readingTasks link

10 pattern DataTaskReadCorrespondence
11 (Data ,Task) = {
12 Task.id(Task ,TaskId );
13 Data.readingTaskIds
14 (Data ,TaskId );}
15 // Data.writingTasks link
16 pattern DataTaskWriteCorrespondence
17 (Data ,Task) = {
18 Task.id(Task ,TaskId );
19 Data.writingTaskIds
20 (Data ,TaskId );}

Listing 1.1. Resource-Process map-
ping

1 // Job.info link
2 pattern JobInfoCorrespondence
3 (Job ,Info) = {
4 ChecklistEntry.info(CLE ,Info);
5 RuntimeInformation.id
6 (Info ,InfoId );
7 find EntryJobCorrespondence
8 (CLE , Job);}
9 // ChecklistEntry.task link

10 pattern EntryTaskCorrespondence
11 (CLE , Task) = {
12 Task.id(Task , TaskId );
13 ChecklistEntry.taskId
14 (CLE ,TaskId );}
15 // Checklist.process link
16 pattern ListProcessCorrespondence
17 (Checklist , Process ) = {
18 Process .id(Process ,ProcessId);
19 Checklist.processId
20 (Checklist ,ProcessId);}

Listing 1.2. Checklist entry mapping

The query language also supports the following language constructs:

– check(JobPath == SysName + ’/’ + JobName) checks that the model element
bound to variable JobPath is equal to the concatenated value of SysName
and JobName (note that the evaluation will use String.equals to compare
the value of EStrings).

– Using the find keyword, graph patterns are allowed to reuse other graph pat-
terns. Therefore, if a soft link is defined as a model query by a corresponding
graph pattern, this definition can be reused in other queries, and thus, in
other soft links (along derived features).

The soft links defined as model queries using the graph pattern based language
of EMF-IncQuery in the case study have two parameters, the first parameter
denotes the source (i.e. the container EClass) while the second parameter denotes
the target of the soft link. However, in the actual query language, this rule can
also be satisfied by using pattern annotations for multi-parameter queries that
explicitly specify which of the parameters is the context and which one will
correspond to the target (or value). Furthermore, the adherence to this rule is
checked at editing time by a built-in query language validator in the EMF-
IncQuery tooling [6].

4 From Incremental Query Evaluation to Soft Links

In this section, we outline how the soft links can be managed using the effi-
cient querying features of the EMF-IncQuery framework. Our approach can
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be integrated to notification based applications (like EMF) in a deep and trans-
parent way by mapping model changes to the values of derived features using
incremental evaluation.

4.1 Incremental Evaluation of Queries: an Overview

The key to efficient evaluation and change notification for derived features is
the incremental graph pattern matching infrastructure of the EMF-IncQuery
framework (first introduced in [10]), see the internal architecture in Figure 3.

The input for the incremental graph pattern matching process is the EMF
instance model and its Notification API where callback functions can be reg-
istered to instance model elements that receive notification objects (e.g. ADD,
REMOVE, SET etc.) when an elementary manipulation operation is carried out.

Fig. 3. The EMF-IncQuery architecture

Based on a query specification,
EMF-IncQuery constructs a RETE
rule network [10] that processes the
contents of the instance model to pro-
duce the query result at its output
node. Query results are then post-
processed by auto-generated query
components to provide a type-safe ac-
cess layer for easy integration into
applications. This RETE network re-
mains in operation as long as the
query is needed: it continues to receive
elementary change notifications and
propagates them to produce query
result deltas through its delta mon-
itor facility, which are used to in-
crementally update the query result.
These deltas can also be processed ex-
ternally, which is a key feature for
the integration of derived features
(Section 4.2).

By this approach, the query results (i.e. the match sets of graph patterns)
are continuously maintained as an in-memory cache, and can be instantaneously
retrieved. Even though this imposes a slight performance overhead on model
manipulation, and a memory cost proportional to the cache size (approx. the
size of match sets), EMF-IncQuery can evaluate very complex queries over
large instance models very efficiently. These special performance characteristics,
reported in [2], allow EMF-IncQuery-based derived features to be evaluated
instantly in most cases, regardless of the complexity of the query or the size of
the instance model.
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4.2 Integration Architecture

To support soft links captured as derived features, the outputs of the EMF-
IncQuery engine need to be integrated into the EMF model access layer at two
points: (1) query results are provided in the getter functions of derived features,
and (2) query result deltas are processed to generate EMF Notification objects
that are passed through the standard EMF API so that application code can
process them transparently. The overall architecture of our approach is shown
in Figure 4.

Fig. 4. Overview of the integration architecture, adopted from [11]

The application accesses both the model and the query results through the
standard EMF model access layer – hence, no modification of application source
code is necessary. In the background, as a novel feature, soft link handlers are
attached to the EMF model objects that integrate the generated query compo-
nents (pattern matchers). This approach follows the official EMF guidelines of
implementing derived features and does not require more effort to integrate than
ad-hoc Java code, or OCL expression evaluators. Note that these handlers can
be used for managing regular derived features as well.

When an EMF application intends to read a soft link (B1), the current value is
provided by the corresponding handler (B2) by simply retrieving the value from
the cache of the related query. When the application modifies the EMF model
(A1), this change is propagated to the generated query components of EMF-
IncQuery along notifications (A2), which may update the delta monitors of the
handlers (A3). Changes of soft links and derived features may in turn trigger
further changes in the results sets of other derived features (A4).

Illustrative Example. Figure 5 illustrates a detailed elaboration EMF-IncQuery
handlers, which process elementary model manipulation notifications to update,
and generate notifications for derived features. The figure corresponds to a case
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where the user assigns a new Job to a ChecklistEntry through the Editor which
is essentially a cle.getJobPaths().add(jobPath) method call on the Model. Dur-
ing the add method, the ChecklistEntry EObject sends an ADD notification to
the Notification Manager, which will notify the EMF-IncQuery Query Engine
about the model modification. The Query Engine updates the match sets of each
query and registers the match events in the Deltamonitor. Once its finished with
updating the RETE network, it invokes the callback method of each IncqueryFea-
tureHandler. Each handler has a Deltamonitor from which it retrieves the new and
lost match events since the last callback to processes them. During the process-
ing, the handler may send notifications of its own (e.g. the value set of the info
soft link of job is updated) that is propagated to listeners. Anytime the soft link
value is retrieved from the model (e.g. job.getInfo()), it accesses the handler for
the current value of the derived feature, which is returned instantly.

Fig. 5. Elaboration of the execution

Summary. In summary, the combined pattern matching and notification process-
ing ensures that EMF-IncQuery-based soft links (and derived features) behave
exactly as reeegular features of EMF instance models. This behavior ensures that
user interfaces, model validators etc. can safely depend on soft interconnections
built on soft links, without on-demand querying.

5 Applications in Traceability Modeling

The approach proposed in this paper can be interpreted in an external trace-
ability modeling context. Figure 6 illustrates a typical architecture applied to
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Fig. 6. External traceability modeling scenario

the examples of Section 2.1, where interconnections between three distinct mod-
els (belonging to the process, system and operation domains, respectively) are
augmented with explicit (external) traceability models T .

In such a scenario, trace models T in EMF typically conform to a custom trace-
ability metamodel that may describe simple binary (source-target) relationships
with the help of association classes that use explicit unidirectional references to
point to elements of the host models. In more complex cases, T may also include
ternary (or hyper-) edges that interrelate multiple elements (e.g. three element
types from all three domains, as in Figure 6).

5.1 Traceability-Specific Challenges

While this commonly used approach has an obvious advantage over internal
traceability/correspondence links (as used in our previous examples), namely
that the external models do not require the modification of the host metamodels,
it also involves a number of frequently encountered problems as mentioned in
Section 2.2:

– Fragility: Cross-resource hard EReferences are fragile, they may break when
a host model is manipulated without the traceability model being loaded
simultaneously. Additionally, in some scenarios, such as when using file-based
EMF resources, traceability links may even break during external operations
(e.g. when the files are moved within the workspace [12]).

– Identification of target elements : to work around the fragility issue, trace-
ability modeling solutions may use IDs or fully qualified naming schemas
(as presented in our previous examples) to store cross-references, even for
external traceability models. However, such identifying attributes need to
be present in the host models, and also necessitates an auxiliary mechanism
that ensures consistency rules (such as uniqueness) within the host domains.
If these prerequisites are not met, then additional, auxiliary techniques have
to be used (such as ECore annotations, or genmodel modifications to add ID
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maintenance capabilities to EMF domains, as used e.g. by EMFStore [13]
and CDO [14]).

– Persistence scalability issues: in complex system modeling scenarios, the
amount of EReferences can grow to be the dominant factor in storing the
entire model space, in terms of both in-memory and serialized persistence
overhead [2]. Hence, the performance of all model management-related op-
erations (e.g. serialization) may be severely negatively affected as the size
of the model resources grow, especially when taking the fragility issue into
consideration (i.e. that traceability models with hard EReferences need to
be loaded and manipulated together with host model fragments).

5.2 Traceability Management with Soft Links and Queries

The traceability architecture (components with black outline in Figure 6) can be
augmented or even replaced with model-integrated soft links (symbolized by red
outlined empty ovals) and traceability queries that can be accessed through the
EMF-IncQuery API (oval with dashed fill). Both techniques share incremental,
on-the-fly evaluation as their background.

Soft Links in a Traceability Context. From the traceability perspective, the
most important advantages of soft links are that they are (logically) bidirectional
references that are maintained on-the-fly. Thus, given that host metamodels are
allowed to be augmented, such traceability links can be added without regard
for circular serialization dependencies, that is, it is entirely up to the language
designer to specify where such EReferences are going to reside, making trace link
navigation also starting from host model elements feasible.

Additionally, as soft links provide graceful behavior for broken traceability ref-
erences, erroneous trace records may be marked with warning markers, instead
of throwing exceptions or runtime errors. These markers can then be corrected
by e.g. a user-aided, on-demand resolution process, which may be further sup-
ported by helper queries that locate the most likely target host model element
(esp. in the case when non-ID keys are used to identify model elements, such as
EntryJobCorrespondence in Figure 2 – in this case, a helper query may enumerate
those elements whose local names are similar).

As EMF-IncQuery query results can be represented by derived features as
well as generic collections of EObjects, this feature may be used in a straightfor-
ward way to fine-tune which EReferences are going to be explicitly persisted and
which ones are going to be calculated on-demand, when the models are loaded
into memory. This gives the tool developer precise control over performance vs.
compliance considerations (i.e. when certain traceability information is required
to be stored persistently).

Finally, soft links behave exactly like normal EReferences (send notifications),
easing the integration with user interface components or on-the-fly validators.

Using Traceability Queries for N-ary Links. If host metamodels cannot
be modified, or hyperedges (multilinks, connecting three or more element types)
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are desired for traceability modeling, the architecture of Figure 6 can be aug-
mented with generic queries. Such a case is illustrated by Figure 7. In this case,
a ChecklistEntry is connected to Tasks and, consecutively, to Data elements to
represent the traceability information between data elements that are read by a
given check list element. Such a ternary relationship (with * multiplicities) may
be implemented by the DataReadByChecklistEntry pattern (shown on the left in
Figure 7).

1 pattern DataReadByChecklistEntry
2 (CLE , Task , Data) = {
3 find ChecklistEntryTaskCorrespondence
4 (CLE ,Task);
5 find DataTaskReadCorrespondence
6 (Data , Task);
7 }

Fig. 7. Ternary links with traceability queries

This approach shares the functional benefits of soft links, with the one excep-
tion that it is not integrated into the EMF model layer and as such, it is not
API-transparent to EMF-based tools. Instead, the query results can be accessed
through an additional API provided by EMF-IncQuery (illustrated on the
right in Figure 7). Here, the results of the DataReadByChecklistEntry pattern are
processed using a generated DataReadByChecklistEntryMatch data transfer class
and the IMatchProcessor<> visitor interface. Though not shown in Figure 7, the
EMF-IncQuery API also exposes the delta monitor facility (Section 4) that
allows to track the changes in the result of such a query.

Summary. Soft links and traceability queries can be used to overcome the chal-
lenges presented by traceability-specific applications by complementing external
traceability models and supporting incrementally maintained bidirectional links
between interconnected model elements.

6 Related Work

In this section we first give an overview of existing approaches and tools that deal
with interconnection between models, then we briefly describe other model query
techniques for EMF. Finally, we list approaches that rely on derived features and
therefore may take advantage of our incremental evaluation techniques.

Interconnecting EMF Models. In [15] correspondences between models are han-
dled by matching rules defined in the Epsilon Comparison Language, where the
application conditions (called guards) use queries similarly to our approach. Ad-
ditionally, Epsilon also manages model integrity between EMF models using the
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novel Concordance framework [12]. It is able to handle intermodel links when
models are moved/renamed and helps in correcting invalid models caused by
metamodel changes. Anwar [16] introduces a rule-driven approach for creating
merged views of multiple separate UML models and relies on a correspondence
metamodel and OCL expressions to support model merging and composition.
VirtualEMF [17] allows the composition of multiple EMF models into a virtual
model based on a composition metamodel, and provides both a model virtualiza-
tion API and a linking API to manage these models. The approach is also able
to add virtual links based on composition rules. In [18] an ATL-based method is
presented for automatically synchronizing source and target models of a given
transformation, based on the definition of the transformation.

Compared to them, the main distinctive features of our approach is (1) the
fully incremental evaluation of queries for model interconnections, and (2) flex-
ible support for query-based, computed soft links. It is a nice task for future
research to combine the benefits of our current approach with the benefits of
these existing solutions.

Model Query Approaches. OCL [19] is a standardized navigation-based query
language, applicable over a range of modeling formalisms. Taking advantage of
the expressive features and wide-spread adoption of OCL, the project Eclipse
OCL through its Essential OCL language provides a powerful query interface
that evaluates OCL expressions over EMF models. Additionally, it also supports
the definition of invariants and operations to enrich the Ecore metamodel using
either the Complete OCL [20] or the OCLinEcore [21] languages. Balsters [22]
presents an approach for defining database views in UML models as derived
classes using OCL. The derived classes in this case are the result set of queries,
which is similar to the match sets provided by EMF-IncQuery.

There are several technologies for providing declarative model queries over
EMF, e.g. EMF Model Query 2 [23] and EMF Search [24]. Other graph pattern
based techniques like [25,26] have been successfully applied in an EMF context.

Cabot et al. [27] present an algorithm for incremental runtime validation of
OCL constraints and uses promising optimizations, however, it works only on
boolean constraints. An interesting model validator over UML models [28] incre-
mentally re-evaluates constraint instances whenever they are affected, but relies
on environments that support the recording of read-only access to the model,
unlike EMF. Additionally, general-purpose model querying is not viable.

These approaches provide possible alternatives to implement model queries,
thus, they can potentially be used for providing soft links. However, many of
them lack incremental evaluation support or require significantly more integra-
tion effort to enable their use for soft links.

Application of Derived Features. The PROGRES language [29] allows the rule-
based programming of graph rewriting systems and uses derived attributes for
encoding dynamic semantics. ConceptBase.cc [30] is a database (DB) system
for metamodeling and method engineering and defines active rules that react
to events and can update the DB or call external routines, the latter could be
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applied in models as derived features representing data stored in the Concept-
Base.cc DB. Neither tool has adopted EMF up to our best knowledge.

In [31] Diskin describes a formal framework for model synchronization that
uses derived references for propagating changes between corresponding models.
A recent work by Diskin et al. [32] proposes a theoretical background for model
composition based on queries using Kleisli Categories, in their approach derived
features are used for representing features merged from different metamodels.
The conceptual basis is similar to our approach in using query-based derived
features, however, it offers algebraic specification, while our approach might
serve as an implementation for this generic theoretical framework.

The MOF 2.0 tool in [33] allows the definition of derived features using OCL.
It handles derived attributes and operations as custom code provided by the user
and redirects calls using reflection. The FUJABA [34] tool suite also supports
derived edges by path expressions. Both tools work in a non-incremental way.

JastEMF [35] is a semantics-integrated metamodeling approach for EMF. It
uses derived features as side-effect free operations (i.e. queries) and refers to
them as the static semantics of the model. Therefore, our query-based approach
could be integrated with JastEMF without any problems.

In a previous paper [11], we offer an algorithm for incremental evaluation of
derived features and present technical details on the integration of existing native
implementations. The current paper provides details on applying incremental
queries for soft interconnections by using derived features in EMF.

7 Conclusion

Interconnections between model fragments of complex EMF models are usually
represented as regular associations and persisted using storage-specific URIs.
This approach proves to be rigid and error-prone in some application scenarios.

We proposed to use derived features as a flexible alternative to provide soft
interlinking between model fragments, and demonstrated an approach for in-
cremental evaluation of soft links with the use of model queries on an indus-
trial case study. Our approach supports circular dependency between mod-
els, graceful handling for unresolved links and is implemented using EMF-
IncQuery, which provides efficient evaluation capabilities for incremental model
queries.

As a primary direction for future work, we plan to integrate traceability
queries into the EMF model layer by constructing derived classes whose in-
stances behave like EObjects but their lifecycles are managed by an underlying
incremental query. Such constructs could be used to create n-ary traceability
models that are automatically kept in-sync, retaining the graceful handling of
soft links.
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