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ABSTRACT
View models are key concepts of domain-specific modeling
to provide task-specific focus (e.g., power or communica-
tion architecture of a system) to the designers by highlight-
ing only the relevant aspects of the system. View models
can be specified by unidirectional forward transformations
(frequently captured by graph queries), and automatically
maintained upon changes of the underlying source model us-
ing incremental transformation techniques. However, trac-
ing back complex changes from one or more abstract view
to the underlying source model is a challenging task, which,
in general, requires the simultaneous analysis of transforma-
tion specifications and well-formedness constraints to create
valid changes in the source model. In this paper we intro-
duce a novel delta-based backward transformation technique
using SAT solvers to synthetize valid and consistent change
candidates in the source model, where only forward trans-
formation rules are specified for the view models.

1. INTRODUCTION
View models are a key concept in domain-specific model-

ing tools to provide task-specific focus (e.g., power or com-
munication architecture of a system) to engineers by creat-
ing a model which highlights only some relevant aspects of
the system to help detect conceptual flaws. Typically multi-
ple view models are defined for a given an underlying source
model, which need to be refreshed automatically (or upon
user request) upon changes in the source model.
The derivation and maintenance of views has been ex-

tensively studied for a long time in database theory over
relational knowledge bases, while it has recently become a
popular research topic also in model-driven engineering [6,
10, 17]. In [6], we proposed a declarative approach to de-
fine view models by graph queries [29] where the view model
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can correspond to a different metamodel independently from
the source language. These queries are handled as unidirec-
tional (source-to-view) incremental model transformations
to automatically derive and efficiently maintain view mod-
els upon changes of the source model. This approach allows
complex chaining of dependent views where a view model
may act as a source model, which is beneficial in developing
complex tool chains [15].
However, such view models are read-only representations

derived by a unidirectional transformation, and they can-
not be changed directly. When a view model needs to be
changed, the engineer is forced to edit and manually check
the source model until the modified model corresponds to
the expected view model. Additionally, the effects of a
source change need to be observed in all other view models
to avoid unintentional changes and to prevent the violation
of structural well-formedness (WF) constraints. The fact
that changes in the view model cannot be directly propa-
gated back to a change in the source model hinders the use
of view models in an industrial case setting.
To tackle this problem, we propose a technique to auto-

matically calculate possible source model candidates for a
set of changes in different view models. First, the possibly
affected partition of the source model is identified by observ-
ing traceability links to restrict the impact of a view mod-
ification. Then the modified view models, the query-based
view specification and the well-formedness constraints of the
source model are transformed into logic formulae. By using
an iterative technique [27] over the Alloy Analyser [16], our
approach enumerates multiple (but not all) valid resolutions
of the source model corresponding to the changes of view
models and the constraints of the source model. As a result,
source elements unaffected by the target change may still
need to be added as a side effect to make the source model
consistent. We illustrate our technique on a healthcare ex-
ample. The current paper extends the conceptual overview
of [26] by presenting the technical contents in depth, and
providing a first performance evaluation.
Our method provides advanced support for a class of bidi-

rectional model transformations where each element in the
view is defined unidirectionally by a declarative query [6,
10]. Arbitrary changes of view models are supported and in-
crementally back-propagated without backward transforma-
tion rules. Our approach allows the engineer to select from
multiple source candidates or to restrict the scope of consid-
ered source changes. Moreover, changes from multiple view
models are merged into a consistent source model where the
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consistency criteria also includes the well-formedness con-
straints of the source language.
Next, Sec. 2 overviews the concepts of view models and

our past work on deriving view models by query-based unidi-
rectional transformations. Then our backward change prop-
agation approach (from view models to source models) is
presented in details in Sec. 3. An initial experimental eval-
uation is provided in Sec. 4. Related work is overviewed in
Sec. 5 while Sec. 6 concludes the paper.

2. VIEW MODELS
In a domain-specific modeling tool, the underlying do-

main model is presented to the engineers in different views.
These views are frequently represented as models themselves
(called view models and denoted by MV in the sequel),
which are populated from the underlying domain model
(called source model, MS). One source model may popu-
late multiple view models. In a general setting, view models
can be detached from the source model to such an extent
that they correspond to a different language, thus they need
to be compliant with a view metamodel MM V and satisfy
view-specific well-formedness constraints WFV .
A view model is derived from the source model by a uni-

directional forward transformation MV = fwd(MS). This
is a restricted class of model transformations where query-
based declarative techniques are especially suitable [10, 6].
Efficient live maintenance of a view model upon changes of
the source model can be carried out by incremental trans-
formation techniques [6, 11] even for multiple view mod-
els (MV i = fwdi(MS)) or chains of view models (MV =
fwd2(fwd1(MS))).
A forward transformation frequently creates and main-

tains a trace model T = Tobj ∪ Tfea between the source MS

and view MV models. An object trace Tobj is a relation
which connects activations of rules (queries) in the source
model MS to objects of the view model MV . Similarly, a
feature trace Tfea (i.e. reference or attribute trace) is a re-
lation which connects rule activations in the source model
MS to references in the view model MV .
While view models may immediately reflect live changes in

the source model, view models were immutable by the engi-
neers in our previous work [6], which restricts the use of view
models in an industrial setting. In the current paper, we
allow view models MV 1, . . . MV N to be changed directly to
M ′

V 1, . . . M ′
V n and present an approach for backward change

propagation for view models to an updated source model M ′
S

using logic solvers.

2.1 Motivating scenario
Our change propagation technique will be illustrated on

a case study of a remote health care system developed in
the Concerto project [1], which develops an environment
for pulse and blood pressure measurement controlled by a
smart phone, which is illustrated in the upper left part (1.)
of Fig. 1. Measurements of pulse and blood pressure is mea-
sured by the sensors of a mobile phone, which are executed
periodically triggered daily by the phone timer. The comple-
tion event of measurements triggers the processing of sen-
sor data: pressureDone and pulseDone. The result of the
measurement is collected in reports pulseReport and pressur-
eReport, and sent to the different hosts. In our case study,
the blood pressure is sent to the general practitioner (gp) of
the patient for logging, and signs of hearth failure is sent to

hospitals (modeled by emergency).
Two view models are derived from this source model in our

telecare example which are maintained as the source model
changes. The Dataflow view (2.A) shows which Hosts will
be notified about each InformationTypes, while Event layout
(2.B) describes event sequences represented by Activation
nodes with after references between them leading from an
Init node to a Finish node.
Let us now assume that changes are made in views il-

lustrated in 3.A and 3.B: 3.A represents a change where
dataflow from Pulse to Emergency is redirected to the Gen-
eral Practitioner (denoted by «del» and «new»). In 3.B, the
action dedicated to report the pulse is removed from the
view, but the remaining report waits for the completion of
both measurement (denoted similarly). Our technique will
allow to automatically generate valid and well-formed source
model candidates like (4.) that conforms to the current state
of the view model.

2.2 Definition of view models
In [6] we proposed to use declarative queries as derivation

rules to (i) specify new view model elements in the target
MV , and (ii) maintain a trace model between the source
MS and view MV models based on the matching queries
(patterns). A graph pattern describes structural conditions
on a model with a combination of path and type expressions
equivalent to first order logic predicate. A derivation rule
consists of a pattern predicate p and an action part where for
each activation m of predicate p, the action part is fired. An
activation m is a function that maps all parameters Params
of predicate p to a object o in the source model MS , m :
Params → OS .
To help navigation along traces, two (injective partial)

lookup functions are introduced: lookupV S(v) maps a view
object v to a predicate p with its activation m over the
source model and lookupSV (p(m)) maps an activation to a
view object when (p(m), v) ∈ T . The following actions are
used in derivation rules[6]:
• AddObj(class:Class) Activation m of precondition p
creates an entry (p(m), v) in the trace with a unique
view object v in the view model with the correspond-
ing type class, where v = lookupSV (p(m)). For each
activation m of precondition p, there exists a unique
v ∈ OV view object, where

MS |= p(m)⇔ T |= (p(m), v)⇔MV |= class(v)

• AddRef(ref: Ref , sp: src.pre, sm: src.match, tp: trg.pre,
tm: trg.match)
Activation m of precondition p creates an entry
(p(m), (vs, vt)) in the trace with a reference ref in the
view model from the source vs to the target vt, where
vs = lookupT (sp, sm)) and vt = lookupT (tp, tm)). For
each activation m of precondition p exists vs, vt ∈ OV :

MS |= p(m)⇔ T |= (p(m), (vs, vt))⇔MV |= ref(vs, vt)

• AddAtt(attr: Att, sp: src.pre, sm: src.match, val: value)
Activation m of precondition p creates an en-
try (p(m), (vs, val) in the trace by setting the at-
tribute attr of vs view object to val, where vs =
lookupT (sp, sm)). For each activation m of precon-
dition p exists vs ∈ OV :

MS |= p(m)⇔ T |= (p(m), (v, val))⇔MV |= attr(v, val)
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Figure 1: Motivating scenario on a healthcare example

As a result, we obtain a declarative formalism for defining
view models with execution semantics compliant with incre-
mental and live graph transformations [20]: when a new ac-
tivation of a forward rule is detected, the corresponding view
elements are created and when a previously existing activa-
tion of a forward rule disappears the related view elements
are removed. However, this is still a restricted subclass of
model transformations since (1) each rule creates exactly
one new element (object or reference) in the view model,
and (2) the transformation is monotonic in the sense that a
view element always depends on the existence of a match of
a positive pattern (i.e. we disregard from cases when a view
element is created when a pattern cannot be matched).
Example Queries used for defining the views of our mo-

tivating example are depicted in the top of Fig. 1. For the
Dataflow view, src query selects all the MeasurementType to
create InformationType instances in the view, while trg is re-
sponsible for creating Host instances from the Host objects in
the source model. The dataflow pattern has two parameters
and selects all the type and host pairs that are connected
to each other via a Measurement and a Report objects. The
action part of the rule will create an edge between an Infor-
mationType and a Host associated with the two parameters
upon a match appears for the pattern. Similarly, the after
pattern is responsible for setting the after edge between view
model objects. In case of (1.), the edge will go from an Init
object to an Activity, (2.) describes the connection between
two Activity, while (3.) activates when an Action (common
ancestor of Report and Measurement) is not triggered by any
EventFinishedTrigger. The init and finish queries create Init and

Finish objects in the view for each PeriodicTrigger objects in
the source model. Finally, the action query builds Activity
instances from all Action objects.

2.3 Characterization of query-based transfor-
mation of view models

S. Hidaka et al. [14] classifies bidirectional transforma-
tion approaches based on their features. According to it,
our previous work [6] is a syntactic approach for forward
functional transformation of MDE artifacts. View models
contain no complement information, hence they are regular
models without additional annotations. These models are
total targets as the full view model is specified by the consis-
tency relations. Definition of a view model is unidirectional,
however the expressiveness of definition is Turing incom-
plete. Forward propagation of the operation-based changes
are live, incremental and executed automatically that also
maintains explicit traces. However, that approach has in-
complete change support, thus only the modification of the
source model is supported.

3. BACKWARD CHANGE PROPAGATION
BY LOGIC SOLVERS

3.1 Overview of approach
We present a novel approach to back-propagate view

model changes into a consistent source model by using logic
solvers. An overview of our approach is depicted in Fig. 2
where target (view) models MV 1, MV 2, . . . are derived from a
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Figure 2: Overview of backward change propagation

source model (MS) based on the matches of the view defini-
tion queries (in the source model), and a traceability model T
is built and maintained during the forward transformation.
Now the engineer makes changes to the view models, which
leads to changed view models M ′

V 1, M ′
V 2, . . .. The goal of

our approach is to calculate (one or more) source model MS
′

which corresponds to the change, maintain T ′, and satisfy
additional constraints of the source model.
A change in the view model can be separated into two

partitions: the fixed model partition MF
V i denotes a partial

model which remains unchanged, while MO
V i is updated to

a new MN
V i (cross-references are included in MO

V i and MN
V i).

The change is propagated consequently to the trace model:
TO contains the invalidated trace links, TN symbolizes the
new links to be created and TF contains the remaining trace
links which are not affected by the change. Along the traces,
the change can be propagated back to the source model
by identifying unchanged, newly activated and deactivated
matches of queries in the source model. By analyzing the
impact of changing matches in TN , the source model can be
partitioned into three partial models: a fix part MS

F con-
tains the elements which cannot be changed, a changing part
MS

C contains the object which can be modified, and a obso-
lete part MS

O which objects can be deleted. The changing
trace TN declaratively specifies structural constraints on the
MS

C ∪MS
O model which have to be satisfied in order to

ensure the consistency of the forward transformation.
A possible solution M ′

S for the changed parts MS
C∪MS

Ni

has to (1) match the fixed part MF
V i, (2) the requirements

defined by the changed matches defined in TN , and (3) addi-
tional domain-specific WF (of the source model). All these
constraints are transformed into a first-order logic problem
to be solved by a logic (SAT/SMT) solver following [27].
The solver provides several (but not necessarily all) possi-
ble valid solutions for MS

C and it may create new object in
MS

Ni from which from the model developer may choose the
most appropriate one MS

Ni.
As a summary, our approach integrates two novel tech-

niques into an interactive workflow: an inverse impact anal-
ysis by change partitioning (Sec. 3.2) separates the affected
and unaffected parts of the source model, while partial model
generation creates candidate source models that correspond
to the new target views (Sec. 3.3) and source constraints.

3.2 Change partitioning
The rationale of change partitioning is as follows: (i) if a

view model element does not change, the associated traces
cannot be changed; (ii) otherwise, if the change of a source
object may induce a valid view model it has to be selected.
However (iii) unnecessary source changes should not hap-
pen. To ensure these conditions, an impact analysis of the

changes has to be conducted to identify the affected part of
source model which can be modified.

3.2.1 Affected parts of view model changes
Table 1 contains the calculation of affected parts in case

of modifying a view model MV . When a view object v is
removed, the affected parts are determined by its defining
pattern p and its activation m that is stored in the trace
model T . When a reference ref is removed from MV , the
affected part of the source vs and the target vt are returned.
When a new view element is created, then there are obvi-
ously no activations of forward rules.

3.2.2 Affected parts of pattern activations
A pattern predicate p with its activation m marks the

union of the bodies defined in Table 2. Each body consists
of several conditions const that may introduce additional
internal variables Paramsi. Hence, an activation of a body
is extended with mi all the possible bindings of internal
variables. The affected part of a body body is the union of
the affected parts of each constraints const.

3.2.3 Affected parts of source constraints
Affected parts of source constraints are defined in Ta-

ble 3. A class (class) condition returns the object that is
bound to its parameter along activation m. Similarly, at-
tribute(attr) and reference(ref) conditions (together feature
conditions feature(feat ) select respective parameters (x and
both x, y) from m. A path(feat1 . . . featn) condition can be
split into several feature(feat) to calculate its affected part.
For equal(=) and not equal(6=), the bound objects of param-
eters from both side of the operators are returned.
A pattern p may call another pattern p′ (find[p′] or tran-

sitively with find+[p′]) by mapping symbolic parameters
Paramsp′ of the called pattern to concrete values of the
caller. Thus given a binding : Paramsp′ → Paramsp, a match
m′ is composed from m by getting objects from the original
activation m, formally:

m′ ◦m ⇒ m′ : m(binding(var ′))→ OS , var ′ ∈ Params′p′

However, a negative application condition (neg find[p′])
is separated into two cases: if the sub predicate p′ does not
introduce any internal variable, the affected part returns
the referenced objects from the activation m. Otherwise,
we restrict the affected part to all the objects that has the
same type as the introduced internal variables have.

3.2.4 Categorization of affected source model ob-
jects

The affected objects of the source model can be catego-
rized into three groups:



−class(v)→affected(p(m)) : lookupV S(v) = p(m)
−ref(v1, v2)→affected(p(m)) : lookupT (v1, v2) = p(m)
−attr(v, val)→affected(p(m)) : lookupT (v1, v2) = p(m)

Table 1: Affected changes of view model
p(m) →

⋃
affected(bodyi, m)

body(m) →
⋃

affected(condi(m + mi))

Table 2: Affected activations
class[obj], (m)→{oobj |m(obj) = oobj}

attr[x, val], (m)→{ox|m(x) = ox}
ref[x, y], (m)→{ox, oy|m(x) = ox, m(y) = oy}

feat(m)→
{
affected(attr(m)) if feat is attr
affected(ref(m)) if feat is ref

feat1 . . . featn[x, y](m)→
⋃

affected(feati(m))
x = y, (m)
x 6= y, (m)→{ox, oy|m(x) = ox, m(y) = oy}

find[p′](m)→affected(p′(m′)), m′ ◦m

find+[p′](m)→
⋃

affected(p′(m′)), m′ ◦m

neg find[p′](m)→
{
{ox|m(x) = ox, }, if no inner var
{oi|oi.type ∈ inner types of p′}

Table 3: Affected changes of source constraints

• MS
F : neither changeable nor removable: It includes

all objects of MS which are not in the affected part of
the change from the view ∆view.

MS
F = MS − affected(∆view)

• MS
C : changeable but non-removable objects: It in-

cludes all objects in the affected part of the change
from the view ∆view which are responsible for the ex-
istence of other activations.

MS
C = affected(∆view)− {o|o referred by Tobj}

• MS
O : changeable and removable objects: All objects

in the affected part of the change from the view ∆view

which are not responsible for the existence of any other
activations.

MS
O = affected(∆view)−MS

C

Example. In our example of Fig. 1, the affected part for
the deletion of dataflow edge from the view model is cal-
culated as follows. The trace model TF stores that the
existence of dataflow edge is related to the dataflow pat-
tern where the activation binds pattern parameters emer-
gency:Host and pulse:MeasurementType to objects in the source
model MS . The affected part of the pattern includes all
objects related to the match {emergency,pulse}, and the
affected part of the constraints includes internal variables
{pulseReport, pulseMeasure}. However, pulseMeasure is also
responsible for an after edge in the other view model, thus
it can be changed but not allowed to be deleted from the
source model. At this stage, the user may manually move
objects between these categories (MS

F ,MS
C ,MS

O) to refine
his/her intention on source candidates.

MS
C = {pulseMeasure}

MS
O = {emergency, pulse, pulseReport}

MS
F = {rest of the objects}

3.3 Model Generation by Logic Solvers
Logic solver based model generation for a domain spe-

cific language is an actively researched area. Instance mod-
els can be created to provide models that satisfies required
properties, test cases or to create counterexamples for false
language properties [25], and incremental model generation
techniques [27, 23] are able to take advantage nearly finished
partial instance models.

3.3.1 Logic Representation of View Models
In general, solver-based model generation takes the logic

representation of the metamodel Meta to synthesize con-
forming instance models M with M |= Meta. Each class Ci

is represented by a predicate over the objects of the model
Ci ⊆ OM , each reference Ri is mapped to a relation over
pairs of objects Ri ⊆ OM ×OM , and attributes are modeled
by Ai ⊆ OM × Typei, where Typei is the domain of at-
tribute i. Additionally, Meta contains basic structural con-
straints of the metamodel as axioms (e.g. multiplicity and
containment hierarchy, see complete [25] for full details), so
the interpretation of relations represents structurally cor-
rect models. The logic problem can extended to include
well-formedness constraints WF [25] defined either as graph
patterns or OCL invariants to generate valid solutions.
A model query Pi with can be represented as a predicate

over objects of the target model Pi : OM × . . . × OM →
{true, false} which is evaluated to true only if some ob-
jects satisfy the translated query specification. A match
mi is represented as a tuple of objects: mi = (c1

i , . . . , cn
i ),

where cj
i ∈ OM . Pattern matches are controlled by two for-

mulae: (1) a pattern Pi has a match mi = (c1
i , . . . , cn

i ) if
and only if the constants satisfies the associated logic pred-
icate Pi(c1

i , . . . , cn
i ); (2) each match of a pattern has to be

unique: for all matches mi and mj there is at difference
∃x∈1..n(cx

i 6= cx
i ). Consistency with the view model is en-

sured by a formula set View, which controls the matches of
query predicates. Therefore, the generation of a valid and
consistent view model is specified as M |= Meta∧WF∧View.
Example. In the logic equivalent of our running example

the type, what and where references are modeled by relations
Rtype, Rwhat, Rwhere. The specification of dataflow(t,h) pat-
tern can be represented by the following predicate:

PDF(t, h)⇔ ∃i1, i2[Rtype(i1, t)∧Rwhat(i2, i1)∧Rwhere(i2, h)].

Here t and h has to be connected by a specific path of rela-
tions. In our example the changed dataflow model has two
matches: m1 = (c1

1, c2
1) and m2 = (c1

2, c2
2), where c2

1 = c2
2 (as

both types are forwarded to the general practitioner). With
the following axioms added to the logic problem it can be
ensured that there are exactly two matches of the pattern
(as defined by the dataflow view), and each match is unique:

∀h, t[PDF(t, h)⇔ (t = c1
1 ∧ h = c2

1) ∨ (t = c1
2 ∧ h = c2

2)]

(c1
1 = c1

2 ∨ c2
1 = c2

2)



3.3.2 Incremental Transformation of View Models
In case of view models, the affected part MS

C ∪ MS
O

typically remains proportional to the change, thus MS
F ex-

plicitly defines most of the generated models. Incremental
model generation techniques like [27] are able to take ad-
vantage of fully specified model fragments, and encode the
graph generation problem in a way that the problem is pro-
portional to the newly created fragment. In the following,
we give a brief description of the mapping technique.

• Objects: the object set is partitioned into three sub-
sets: MS

F is mapped to the fix objects OF , MS
C

stands for the changing objects and finally ON replaces
the objects which are removed MS

O. In general, predi-
cates dealing with MS

F are interpreted, thus the solver
already knows its truth evaluation.

• Classes: Each class predicate C is also separated into
three subsets: a fully interpreted CF defined over OF ,
a fully interpreted CC defined on the changing objects
OC , and the uninterpreted CN over ON . In summary,
the solver has to interpret only relations of CN .

• References: Reference predicates are also separated
to multiple smaller relations: ROO represents the in-
terpreted relation between fixed objects, RCC the ref-
erence between changing objects, and RNN represents
the reference between new objects. Additionally, un-
interpreted cross-references have to be added for ref-
erences connecting these regions: ROC , RON , RCO,
RCN , RNO, RNC . While only ROO is interpreted from
the nine new relations, it contains the most references.

• Attributes: Attribute predicates are also separated
into three partitions for OF , OC and ON .

• Model Queries and Matches: Model queries are
separated into multiple queries, each parameter can
be bound to OF , OC and ON . This might add sev-
eral relations to the logic problem, but the unchanged
matches are already interpreted. In the construction
of the constraint set V iew, the uniqueness of non-
interpreted matches needs to be ensured

Compared to solving the model generation problem as
a whole, our incremental approach enables the logic solver
to handle much fewer variables as a large fragment of the
model is already interpreted (prior to calling the solver).
The downside is that constraints become more complex as
they have to be separated into those groups above. However,
we expect that most predicates remain interpreted, which is
beneficial for the solver.

3.4 Properties of our approach
Our approach has the following properties (based on [14]):

1. Full operation support on views: View models can be
edited as regular models, while the technique ensures
consistency between source and view models.

2. Implicit backward consistency: View models derived
from a source model candidate M ′

S = fwdi(S′) are iso-
morphic to the view models V ′1 , . . . V ′n.

3. Delta-based and offline back-propagation: After mak-
ing changes on the target models, our approach gen-
erates source model candidates from a stable state of
the views and the changes in the traces. Upon a se-
quence of (possibly concurrent) view changes is ap-
plied it leads the view models to a new stable state.
Then the difference between the previous and cur-
rent state of the views can be propagated back even
if some changes are contradictory or inconsistent by
themselves.

4. Interactive execution: There might be several source
candidates for a view model change on which the solver
can iterate, starting from the smallest solution. The
developer or a selection strategy can select the most
suitable one from the sequence of valid solutions.

5. Well-formedness: S′ satisfies the well-formedness con-
straints of the source domain S′ |= WF .

6. Incrementality: A view change can affect only the af-
fected part of the source model. Additionally, if a
view model element is not changed, it should not be
changed by the effect of back propagation (even if the
result would create isomorphic). Thus all matches m
which T |= (p(m), v) and v ∈ M ′

V should remain in
T ′ |= (p(m), v).

7. Hippocraticness of unaffected partition: If a view
model element is not changed, the associated source
model part has to remain unchanged.

Conditions 1-4 are related to usability and they connect
the new backward propagation technique to our previous for-
ward transformation approach. Some form of consistency is
ensured in several approaches (e.g. [5]) but we also incor-
porate WF constraints of the source language. Hippocratic
behavior defined in [28] states that a backward or forward
transformation must not modify the source or the target
model if they are already consistent. In Property 6. and
7. we define a stronger requirement which states that con-
sistent partitions of the source and target models should not
be modified. This constraint simultaneously keeps most of
the source model untouched and makes the deduction phase
more efficient by limiting the task to partial models.

4. EXPERIMENTAL EVALUATION
In order to evaluate the performance of the key step of our

backward change propagation technique we have conducted
initial measurements on a prototype implementation in the
context of the running example as case study (taken from
the CONCERTO project). The measurement scenarios and
the results are available on GitHub1. Our measurements
aim to address the following questions:

Q1 What is the influence of the size of the source model,
the size of the target change and the scope of the source
model (i.e. the number of newly created source objects)
on the runtime of the solver?

Q2 What is the difference between incremental model gen-
eration and full model generation (like in [10]) with
respect to performance and the quality of results?

1 https://github.com/FTSRG/publication-pages/wiki/
incremental_backward_change_propagation_of_view_
models_by_logic_solvers

https://github.com/FTSRG/publication-pages/wiki/incremental_backward_change_propagation_of_view_models_by_logic_solvers
https://github.com/FTSRG/publication-pages/wiki/incremental_backward_change_propagation_of_view_models_by_logic_solvers
https://github.com/FTSRG/publication-pages/wiki/incremental_backward_change_propagation_of_view_models_by_logic_solvers


Figure 3: Structure of the generated source models

Q3 What are the (solver-specific) limitations of our back-
ward change propagation technique?

Our evaluation exclusively focuses on assessing the per-
formance of the model generation step for the source model
(detailed in Sec. 3.3), and excludes the performance evalu-
ation of change partitioning (Sec. 3.2). In our initial exper-
iments, we experienced that both the change partitioning
time (i.e. the selection of affected source elements) and the
forward transformation time is negligible (less than 1 sec-
ond for the largest problems we measured) compared to the
time required to solve the logic problem by Alloy. Thus
performance limitations are dominated by the latter.

4.1 Change propagation problem generator
In order to measure the performance of our technique we

extended the running example visible in Fig. 1 to a change
propagation benchmark, which can be parametrized and
scaled by the size (s) of the source model and the number of
changes (c) in the views. We have created valid health care
models illustrated in Fig. 3 in the following way :

1. First, a Sensor is created with a PeriodicTrigger.

2. Two MeasurementTypes are added to the model, which
are measured by two respective Measures activated by
the periodic trigger. Then two Reports are added to
the model, which are triggered by two new EventFin-
ishedTriggers waiting for the measurements of two dif-
ferent types. Then the result is reported to two newly
created Hosts.

3. Step 2 is repeated s times, which means that the model
has 2s MeasurementTypes, 4s Measures, 2s Reports, 2s
EventFinishedTriggers and 2s Hosts.

4. The view models are derived, which creates in a
dataflow model with 2s Hosts and 2s InformationTypes 4s
dataflow references, and an event ordering model with
1 Init, 1 Finish, 6s Activities and 10s after references.

5. Then changes are applied to the view models: c Mea-
surementType and c Hosts with their dataflow references
are randomly removed from the first view model, and
a new Action is added to the event ordering view.

As a result, we obtain non-trivial source and view models,
while the random changes of the view model remain seman-
tically meaningful.

4.2 Measurement Setup
Each model generation task was executed on the gener-

ated healthcare change propagation problems using the Al-
loy Analyzer (with SAT4j-solver). Each change propagation
problem is solved with our incremental solution which gen-
erates only the affected part in the source model. As a
baseline, we compare it to a solution conceptually similar
to [10] which generates full models for a view model. The
full model generation is achieved as a corner case of the in-
cremental generation where the changed view models are
interpreted as if they were newly created, and no part of the
source model is preserved.
We measured the runtime of Alloy Analyzer, which con-

sists of an initial conversion to a conjunctive normal form
and then solving the SAT-problem by the back-end solver.
We executed each measurement 5 times, then the average of
the execution times was calculated. The measurements were
executed with a 120 second timeout on an average personal
computer2. The memory usage of the solver was always
below 2 GB.

4.3 Measurement Result
The execution times of our measurements (see Fig. 4–

Fig. 7) are given in seconds.
• |S| denotes the number of objects in the original source
model (MS);

• |∆V | denotes the size of the target change, i.e. the
sum of removed and newly created matches in the view
model (MO

V and MN
V );

• Finally, |N | denotes the source scope, i.e. the number
of new objects in the changed source model candidates
(the number of objects in MS

N ). It is equivalent to the
scope of model generation in Alloy when incremental
technique is used.

In case of full model generation where the each model
object is newly created, the size of the original model is
subtracted from this value, so the two techniques are com-
parable with respect to the number of objects.

4.4 Increasing model size
First, Fig. 4 displays the runtime results of cases where

only one change is performed (c = 1, ∆V = 8..9). Eleven
different series are measured, where the change propagation
is solved with source scope of |N | new elements (ranging
from 0 to 10) with increasing the size of source models |S|
up to 123 objects. With 0 new elements, the problem was
unsatisfiable, otherwise valid solutions were created.
The results show a polynomial (cubic) increase of run-

times in the size of the original source model, and it always
harder to solve the problem with increasing source scope
size. Additionally, the solver has a similar characteristics
regardless a problem is satisfiable or unsatisfiable. Fortu-
nately, smaller solutions can be retrieved more efficiently,
which is typically preferred over solutions with unnecessary
elements.
We also depicted the run-times in Fig. 5 while further

increasing the size of source scope. This shows that the
source scope needs to be decreased when the size of source
models increases in order to obtain the same run-time.
2CPU: Intel Core-i5-m310M, MEM: 16GB, OS: Windows
10, Reasoner: Alloy Analyzer 4.2 with sat4j
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4.5 Increasing target change size
Fig. 6 displays the results with larger target change sizes.

Here, the vertical axis displays the source scope, i.e the num-
ber of new objects added to the source model by the solver,
and different series shows the run-times of target change size
ranging from 8 up to 43 changes, and the measurement is
repeated for two model sizes. For the smallest change one
new element is needed to successfully create solutions, two
new object is needed for the next change size, and so on, so
the largest changes needed at least 5 new objects.
The results shows that the run-time is not directly af-

fected by the size of the change, different change sizes have
the same complexity. However, a larger target change size
usually implies a larger source scope, which, of course, in-
fluences the run-time of the solver. In other terms, if the
consequences of a large target changes are attempted to be
propagated back to the source model with a small scope
size, then the logic solver will conclude that the problem is
unsatisfiable. While if we also increase the scope size, then
the problem might become satisfiable - but the logic solver
may fail to find a solution due to its performance limits.
Therefore, based on our measurements of increasing model

and change size, our first question can be addressed as fol-
lows:
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A1 The runtime of the solver is a polynomial function of
the original size of the model and the source scope size
(i.e number of newly added elements). The size of the
target change increases the size of the source scope re-
quired for a solution.

4.6 Incremental vs. full generation
In Fig. 7 the runtime of the incremental and full model

generation is depicted with respect to the size of the source
model size and the source scope. Only results of two small
source models (15 and 27) are presented as on all larger
cases, the full model generation technique was unable to
provide a solution.
In comparison, the incremental model generation tech-

nique performed much better: it was able to solve some
nontrivial problems, and in general, it was orders of magni-
tude faster than full generation.
From the perspective of model quality, the full model gen-

eration approach redirected several relations where the tar-
get view model was unchanged (e.g. unchanged dataflows),
which might be undesired in change propagation scenarios.
On the other hand, the full change propagation may find so-
lutions which requires changes in partitions categorized as
unaffected by our change partitioning, which can be only re-
trieved by manual configuration of the affected part in case
of incremental generation.
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The difference between incremental and full model gen-



eration for backward change propagation purposes can be
summarized as follows:

A2 Incremental model generation provides better perfor-
mance for source models of increasing size for a given
scope. Full model generation may be able to retrieve
some hidden solutions. Unlike full model generation,
incremental generation is able to detect if a change
propagation setup is unsatisfiable for a given scope.

4.7 Limitations
Our initial experimental results revealed several limita-

tions of our approach most of which were caused by using
Alloy as an underlying logic solver. When investigating the
runtime for model generation, we found that over 80% of the
time is spent for an initial conversion to Conjunctive Nor-
mal Form (CNF) prior to starting the model finding step.
In fact, CNF conversion took over 99% of the time for large
models with |S| = 160 elements. The largest source model
our technique was successfully executed had 243 objects, and
the run-time for propagating a single target change was over
20 minutes (again, spent dominantly on CNF conversion).
While our incremental query-based forward transforma-

tion scales to source models orders of magnitude larger, we
can state as a conclusion that such scalability cannot be
achieved for incremental backward change propagation when
using Alloy as a solver.
However, the fact that model generation time is domi-

nantly spent on CNF conversion in Alloy (and not on the
actual SAT/SMT-based model finding), this may trigger fu-
ture research to replace Alloy with a dedicated incremental
model finder for EMF-based models.
Furthermore, when investigating small backward change

propagation problems with our approach, one may gain
domain-specific insights to identify specific target changes
which can be always mapped to a source change (e.g. by
some rule-based transformation techniques).

A3 Incremental backward change propagation using model
generation by Alloy scales only to small models com-
pared to incremental forward transformations. But an
incremental model generation technique scales signif-
icantly better than full model generation, which is a
hope for dedicated future model generators.

4.8 Threats to Validity
Finally, let us investigate the most critical threats to va-

lidity of our conclusions.

• While our case study is relatively complex (as it orig-
inates from the CONCERTO project), our measure-
ments were executed only on a single case study, thus
our findings may not be applicable in a more gen-
eral context. However, our model generator approach
has strong roots in [27] where efficiency of incremen-
tal model finding by using existing model solvers were
assessed, and the experimental results point to similar
limitations. Moreover, our negative results (e.g. poor
performance of Alloy) are more likely generalizable for
other model generation and transformation scenarios.

• We excluded the time of forward transformation and
change partitioning from our measurements - as initial
experiments showed that they were less than a second.

• As execution times of Alloy quickly started to increase,
we only had 5 measurements for each case, thus we did
not carry out a full-fledged statistical analysis of our
results. Correspondingly, our findings are softer (more
qualitative than quantitative).

5. RELATED WORK
Most existing view model synchronization techniques use

bijective transformations where transformations can be ex-
ecuted in both the forward and reverse directions such in
lenses [8], injective functions [18] or ATL [30]. Triple Graph
Grammars (TTG) [24] are a well-know approach for model
synchronization [12] where the forward and reverse transfor-
mation rules are derived automatically from a bidirectional
rule definition. A special class of TGG is View TGG [2]
which is specialized for efficient update propagation. As a
fundamental difference, our approach uses patterns to de-
fine the well-formedness constraints and the view instead of
generative graph grammars.
Most closely related approaches for view synchronization

are listed in Table 4. To compare them to our approach,
we use several characteristics to guide the structure of this
section.

Using Logic Solvers. Using logic solvers for generating
possible source and target candidates is common part of sev-
eral approaches. [5] uses Answer Set Programming, [4] maps
the problem to Mixed Integer Linear Programming. Those
approaches use solvers to select model elements which may
alter the matches related to view model changes (similar to
the calculation of the affected part). As a difference, our ap-
proach takes the whole DSL specification into the account,
to change source model elements which are only implicitly
related to the view changes, caused by the interaction of the
metamodel, the WF constraints and other view models.
[17] uses Alloy to generate change operations on the source

model which leads to a modified source model which is
(i) well-formed and (i) consistent with the changed target
model. As a difference, our solution creates the changed
partition (and not the change operations). [10] and [9] con-
verts the transformation to Alloy similarly, but do not han-
dle WF constraints of the source model, and changes the
whole source model. By selecting the affected part, our so-
lution likely has better scalability as it has to manage less
objects: [9] scales up to 20 objects in the source and target
models in total, and no other measurement is given. This
technique is also suggested in the future work of [17].

Traceability Links. For the backward propagation of
changes, use of traceability links is a well-accepted approach
to define which part of the source model has to be updated
upon a change on the target model. In [24], these links
are stored as a correspondence model where their mainte-
nance is derived from the TGG rules. [19] also specifies
trace classes to facilitate and maintain traceability links. [10]
stores traceability links in Alloy[16] as a bijective mapping.
[3] uses a weaving model that stores the traces of references
between different models in the view, however all objects
in the view model act as proxies to an object in the source
model. Our solution builds and maintains a traceability dur-
ing the forward propagation of changes. Moreover, we reuse
the information stored in the traces to improve the affected
part calculation for changes in the view.

Well-formedness constraints. To avoid the calculation
of ill-formedness source models after the backward propa-



Approach Logic Solver Traceability WF const. Partial Model Interoperability
ATL[30] - - - - +
TGG[24] - + - - +
QVT-R[19] - + + - +
QVT-R with Alloy[17] SAT Solver - + - +
JTL[5] ASP - - - +
MTE with MILP[4] MILP - - - +
EMF Views [3] - + - + +
F-Alloy [9] SAT Solver - + - +
QueST[10] SAT solver + + - +
Our solution SAT solver + + + +

Table 4: Comparison of related approaches

gation of a view model change, well-formedness constraints
should be taken into account. This property is supported in
the specification of [19] and by [17] and in our approach.

Partial synchronization. [13] defines partial synchro-
nization to apply the changes of target model only to the
relevant part of the source model. This reduces the number
of possible source candidates. Our approach identifies the
fixed part of the source model, that cannot be changed, and
selects the complement of this part which will be the basis
of constraints. While [13] defines a formal framework for
model synchronization, our solution can be interpreted as
an efficient and view-model specific realization of it.
Partial models have certain similarity to uncertain mod-

els, which offer a rich specification language [7, 21] amenable
to analysis. Uncertain models provide a more expressive
language (called MAVO annotations) compared to partial
snapshots (which implements only annotation V and O from
MAVO) but without handling additional WF constraints.
Such models document semantic variation points generically
by annotations on a regular instance model, which are grad-
ually resolved during the generation of concrete models. An
uncertain model is more complex (or informative) than a
concrete one, thus an a priori upper bound exists for the
derivation, which is not an assumption in our case.
Concrete models compliant with an uncertain model can

synthesized by the Alloy Analyzer [23], or refined by graph
transformation rules [22]. Each concrete model is derived in
a single step, thus their approach is not iterative like ours.
Scalability analysis is omitted from the respective papers,
but refinement of uncertain models is always decidable.
We believe that our contribution is novel in the context of

view model synchronization in the sense that the effects of
uni-directional and non-injective forward rules are reversed
by mapping models, WF constraints and rules into first-
order logic and then using iterative calls to a SAT-solver.
Furthermore, the consistency criteria for the derived source
models is stricter as it includes WF constraints of the source
language (and not only consistency constraints of the trans-
formation). Moreover, a fix partial model is specified upon
a change in the target model using traceability links main-
tained during the forward propagation. Finally, iterative
and incremental calls to logic solvers scales better then a
full model generation run.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented an incremental backward

change propagation approach from view models to source

models (in full details compared to [26]), which (1) provides
a change partitioning technique to separate possibly affected
and unaffected partitions of the source model, (2) transforms
the source model partitions, the queries and WF constraints
of the source language to a logic problem and (3) generates
well-formed and consistent source model candidates by the
Alloy Analyzer. This way, valid source candidates can be de-
duced in case of multiple view models and when backward
transformation rules are not explicitly specified.
An initial experimental evaluation of our approach was

carried out in the context of a health care model (taken from
the CONCERTO European project), which demonstrated
that (A) our incremental model generation approach scales
much better compared to generating the full source model
in a single call to a logic solver, but (B) its scalability is
severely limited by the Alloy Analyzer (especially, by an
initial internal conversion to a CNF form).
As future work, we plan to (i) prioritize the synthesized

solutions, (ii) improve the calculation of the source model by
calling multiple solvers to minimize the size of the solution or
(iii) to develop a dedicated graph solver on top of SAT/SMT
solvers as replacement of the Alloy Analyzer used currently
in our approach.
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