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Abstract. Despite the wide range of existing generative tool support,
constructing a design environment for a complex domain-speci�c lan-
guage (DSL) is still a tedious task as the large number of derived features
and well-formedness constraints complementing the domain metamodel
necessitate special handling. Incremental model queries as provided by
the EMF-IncQuery framework can (i) uniformly specify derived features
and well-formedness constraints and (ii) automatically refresh their re-
sult set upon model changes. However, for complex domains, derived
features and constraints can be formalized incorrectly resulting in in-
complete, ambiguous or inconsistent DSL speci�cations. To detect such
issues, we propose an automated mapping of EMF metamodels enriched
with derived features and well-formedness constraints captured as graph
queries in EMF-IncQuery into an e�ectively propositional fragment of
�rst-order logic which can be e�ciently analyzed by the Z3 SMT-solver.
Moreover, overapproximations are proposed for complex query features
(like transitive closure and recursive calls) Our approach will be illus-
trated on analyzing DSL being developed for the avionics domain.

Keywords: model validation, model queries, SMT-solvers

1 Introduction

The design of integrated development environments (IDEs) for complex domain-
speci�c languages (DSL) is still a challenging task nowadays. Generative environ-
ments like the Eclipse Modeling Framework (EMF) [1], Xtext or the Graphical
Modeling Framework (GMF) signi�cantly improve productivity by automating
the production of rich editor features (e.g. syntax highlighting, auto-completion,
etc.) to enhance modeling for domain experts. Furthermore, there is e�cient tool
support for validating well-formedness constraints and design rules over large
model instances of the DSL using tools like Eclipse OCL [2] or EMF-IncQuery
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[3]. As a result, Eclipse-based IDEs are widely used in the industry in various
domains including business modeling, avionics or automotive.

However, in case of complex, standardized industrial domains (like ARINC
653 [4] for avionics or AUTOSAR [5] in automotive), the sheer complexity of the
DSL is a major challenge itself. (1) First, there are hundreds of well-formedness
constraints and design rules de�ned by those standards, and due to the lack of
validation, there is no guarantee for their consistency or unambiguity. (2) More-
over, domain metamodels are frequently extended by derived features, which
serve as automatically calculated shortcuts for accessing or navigating models
in a more straightforward way. In many practical cases, these features are not
de�ned by the underlying standards but introduced during the construction of
the DSL environment for e�ciency reasons. Anyhow, the speci�cation of derived
features can also be inconsistent, ambiguous or incomplete.

As model-driven tools are frequently used in critical systems design to detect
conceptual �aws of the system model early in the development process to de-
crease veri�cation and validation (V&V) costs, those tools should be validated
with the same level of scrutiny as the underlying system tools as part of a soft-
ware tool quali�cation process issues in order to provide trust in their output.
Therefore software tool quali�cation raises several challenges for building trusted
DSL tools in a speci�c domain.

In the current paper, we aim to validate DSL tools by proposing an au-
tomated mapping from their high-level speci�cation to the state-of-the-art Z3
SMT-solver [6]. We assume that DSL tools are speci�ed by their respective EMF
metamodels extended with derived features and well-formedness constraints cap-
tured (and implemented) by graph queries within the EMF-IncQuery frame-
work [7,8]. We de�ne a validation process, which gradually investigates derived
features and well-formedness constraints to pinpoint inconsistency, ambiguity or
incompleteness issues. We identify constraints and derived features which can
be mapped to e�ectively propositional logic formula [9], which are a decidable
fragment of �rst order logic with e�ective reasoning support. Moreover, we pro-
vide several approximations for constraints which lie outside of this fragment to
enable formal analysis of a practically relevant set of constraints.

The main innovation of our approach is to provide a combined validation

of metamodels, derived features and well-formedness constraints de�ned by an

advanced graph query language (instead of OCL) using approximations to cover

complex query features. Our approach is illustrated on validating several DSL
tool features taken from an ongoing industrial project in the avionics domain.

The rest of the paper is structured as follows. Sec. 2 provides an overview of
EMF metamodels enriched with derived features and well-formedness constraints
captured by graph queries of the EMF-IncQuery language in the scope of a
DSL from the avionics domain. Sec. 3 describes a high-level overview of mapping
DSLs to logic formula and validation scenarios from a domain expert's viewpoint.
Details of the mapping are elaborated in Sec. 4, while Sec. 5 includes an initial
evaluation of expressiveness and preliminary execution results. Related work is
assessed in Sec. 6 while �nally, Sec. 7 concludes our paper.
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Fig. 1: Metamodel of the Functional Architecture

2 Preliminaries: Domain Modeling

To illustrate the proposed V&V technique, this paper elaborates a case study
from DSL tool development for avionics systems. To create an advanced model-
ing environment, we augment the metamodel with query-based derived features

and well-formedness validation rules. Both of these advanced features are de-
�ned using model queries. Within the paper, we use the language of the EMF-

IncQuery [10] framework to de�ne these queries over EMF metamodels.

2.1 Metamodel of the Case Study

In model-driven development of avionics systems, the functional architecture and
the platform description of the system is often developed separately to increase
reusability. The former de�nes the services performed by the system and links
between functions to indicate dependencies and communication, while the latter
describes platform-speci�c hardware and software components and their inter-
actions. The functional architecture is usually partially imported from industry
accepted tools and languages like AADL [11] or Matlab Simulink [12].

A simpli�ed metamodel for functional architecture is shown in Fig. 1. The
FunctionalArchitectureModel element represents the root of a model, which con-
tains each Function (subtype of the FunctionalElement). Functions have a min-
imumFrequency, a type attribute and multiple FunctionalInterfaces, where each
interface is either an FunctionalOutput (for invoking other functions) or an Func-
tionalInput (for accepting invocations). An output can be connected to an input
through an InformationLink. Finally, if an input or output is not connected to an
other Function then they must be terminated in a FAMTerminator.
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Fig. 2: The model and type DF and the terminatorandInformationLink WF constraint

2.2 Derived Features

Derived features (DF) are often essential extensions of metamodels to improve
navigation, provide path compression or compute derived attributes. The value
of these features can be computed from other parts of the model by a model

query [7,13]. Such queries have two parameters, in case of (i) derived EReferences
one parameter represents the source and another the target EObjects of the
reference while in case of (ii) derived EAttributes one parameter represents the
container EObject while the other one the computed value of its attribute.

FunctionalElements are augmented with the model derived EReference (high-
lighted in blue in Fig. 1) that represents a reference to the container Function-
alArchitctureModel EObject from any FunctionalElement within the containment
hierarchy. Additionally, for the type EAttribute of the Function EObject a de-
rived attribute is de�ned, which takes a value from the enumeration literals:
Leaf, Root, Intermediate.

In Fig. 2 we use a custom graphical and the EMF-IncQuery textual no-
tation [3] to illustrate the queries de�ned for these derived features. On the
graphical notation each rectangle is a named variable with a declared type, e.g.
the variable _Par is a Function, while arrows represent references of the given
EReference between the variables, e.g. the function This has the _Par function
as its parent. A special reference between variables is the transitive closure de-
picted by an arrow with a + symbol, e.g., the parent reference between the This
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and _Par variables in the model query. Finally, the OR pattern bodies represent
that the matches of the query is the union of the matches of its or bodies.

For example, the type query (see in Fig. 2) has three OR pattern bodies
each de�ning the value for the corresponding enum literal of the type attribute:
(i) Leaf if the container EObject does not have a child function along the sub-
Functions EReference and it is not under the FunctionalArchitectureModel along
the rootElements EReference, where both of these constraints are de�ned using
negative application conditions (NEG), (ii) Root if container EObject is directly
under the FunctionalArchitectureModel connected by the rootElements EReference
or (iii) Intermediate if container EObject has both parent and child functions.
Validation challenges: We aim to validate the following properties for DFs:

� Consistency means that there is at least one valid instance model contain-
ing an object that has a target object or attribute value for the DF.

� Completeness means that in each valid instance model the derived feature
is evaluated with at least one result (target object or attribute value).

� Finally, unambiguity means that in each valid instance model, DF can only
be evaluated to a single result (target object or attribute value).

2.3 Well-Formedness Constraints

We also de�ne some structural well-formedness (WF) constraints (usually de-
rived from design rules and guidelines) to be validated on functional architec-
ture models. In our current approach WF constraints de�ne ill-formed model
structures and thus they cannot have a match in a valid model. In our running
example, a design rule captures that a FunctionalData EObject with a FAMter-
minator cannot also be connected to an InformationLink. It is speci�ed by the
terminatorandInformationLink query (see in Fig. 2) that has two OR pattern bod-
ies, one for the FunctionalInputs and one for the FunctionalOutputs with their
corresponding incomingLinks and outgoingLinks, respectively.

The aim of our case study is to demonstrate that its derived features and well-
formedness constraints can be e�ectively validated using our mapping method
(see in Sec. 4) to the Z3 SMT solver.
Validation challenges:

� Consistency of WFs can only be interpreted over the complete DSL spec-
i�cation, which in our understanding means that there is at least one valid
instance model that satis�es all constraints.

� The subsumption property of a DSL is de�ned over its set of well-formedness
constraints. If a WF constraint is subsumed by the set, then such a WF con-
straint does not express any additional restriction over the DSL. Therefore,
it can be removed without changing the set of the valid instance models.

3 Overview of the Approach

Our approach (illustrated in Fig. 3) aims at validating complex DSL languages
by automatically mapping from their high-level speci�cation to the Z3 [6] SMT-
solver. These complex DSLs are assumed to be de�ned by (i) a metamodel
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Fig. 3: Overview of DSL validation: Inputs and outputs

speci�ed in EMF and augmented with both (ii) derived features and (iii) well-
formedness (WF) constraints captured by model queries within theEMF-IncQuery

framework. These three artifacts form the input for our generator to provide the
logical formulas that is fed into the Z3 solver. The output of the solver is ei-
ther a proof of inconsistency or a valid model that satis�es all given constraints
generated from the input artifacts.

Additionally, search parameters can be de�ned to impose additional restric-
tions or speci�c overapproximations to reduce the complexity of the formula to
be proved. Moreover, as an optional input for the generator the user can de�ne
� based on the counter examples and proves provided by the solver � speci�c
instance level constraints in the form of an partial snapshot [14,15] (also called
input model) to restrict the domain of possible instance model and thus prune
trivial valid models (e.g., empty model) provided by the Z3 solver.

End User Validation Work�ow Our iterative validation work�ow for complex
DSLs (see Fig. 4) assumes the existence of the metamodel (captured in EMF),
its derived features and well-formedness constraints (captured as graph queries).

First, each DF is investigated by adding them to the formal DSL speci�cation
(extending it with one new DF in a prede�ned order), and then by validating this
speci�cation in Z3. Then, WF constraints are validated similarly, by augmenting
the speci�cation with a single WF constraint at each validation step.

The validation fails, if the compiled set of formulas are inconsistent (formally,
no models can be constructed). In such a case, the designer needs to either
(i) �ne-tune the search parameters, (ii) provide a new partial snapshot or (iii)
modify the DSL speci�cation itself based on the proof outcome. If the formal DSL
speci�cation with all DF and WF constraints is validated, then it is valid under
the assumptions imposed by the search parameters and the partial snapshot.

The separation to start the iterative validation process with the derived
features and then continue with the well-formedness constraints is based on
the assumption that each derived feature eliminates a large set of trivial, non-
conforming instance models (that are not valid instances of the DSL). This eases
the re�nement in case of an erroneous DF or WF is added in the actual step
based on the proof provided by the solver.

Example DSL validation scenario To illustrate the execution of our validation
work�ow Fig. 5 shows a possible validation scenario for our running example.
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Fig. 4: End user work�ow of validation of DSLs

As the input for the validation scenario we use the metamodel, DFs and WF
constraints as de�ned in Sec. 2 with three modi�cations (to add hypothetical
conceptual �aws in queries):

1. the second pattern body (marked as bomb 1 in Fig. 2) is missing from the
DF query type, which de�nes Function elements of Intermediate type,

2. the third body of query type specifying the Leaf type is also changed: it for-
gets to de�ne a NAC condition over the rootElements EReference (bomb2).

3. one WF constraint is added to the DSL speci�cation expressed by the IL2T

query, which prohibits that a InformationLink is connected to a FAMTerminator.
This constraint only di�ers from the �rst body of the original WF constraint
that it uses the inverse edges and thus it is a redundant.

Sec. 2 describes how the DFs and WF constraints are added to the formal
DSL speci�cation (after the metamodel is already added) and validated. To ease
understanding the counter examples (CE_i) or partial snapshots (PS) produced
or de�ned during the validation are depicted on the right side. Each row de-
scribes Fig. 5 which validation step was executed in the actual iteration, what
was its outcome and what action has been taken to re�ne its validation.

First (Step 1) we add the type DF to the formal speci�cation and validate its
consistency by setting the default overapproximation for the transitive acyclicity
constraint (see in Section 4.1) to a maximum of 2 levels. Then (Step 2), the
completeness of the type DF is checked resulting in a failure due to the produced
CE1 counter example that is a function without its Intermediate type. This is
�xed by adding the second pattern body with the Intermediate de�nition to the
type pattern. By correcting it, the validation is successfully executed. After this
the ambiguity of the attribute is tested (Step 3) and failed again (with a singular
function node that is both a Leaf and a Root) that is �xed by adding the missing
NAC condition on the rootElements to the third pattern body of type. The next
step (Step 4) adds the model DF and followed in Step 5 with its completeness
validation, which fails due to CE3 that does not have a model EReference. A
partial snapshot is de�ned with a FunctionalArchitecutreModel object to prune
the search space and avoid such counter examples, however, its revalidation (Step
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Fig. 5: Example DSL validation scenario

6) ends in a Timeout (more than 2 minutes) and thus this feature can only be
validated on a concrete bounded domain of maximum 5 model objects. In Step
7 the unambiguity of the model DF is validated without a problem. Followed by
the consistency validation of the terminatorandInformationLink WF constraint
(Step 8). Finally, the IL2T WF constraint is checked for subsumption (Step 9)
and found positive; thus it is already expressed by the DSL speci�cation and can
be deleted from the WF constraints.

4 Mapping DSLs to FOL Formulae

In this section, we demonstrate how Ecore metamodels augmented with derived
features and well-formedness constraints captured as model queries (namely,
EMF-IncQuery graph patterns) are mapped to �rst order logical (FOL) for-
mulae. Our idea is to map all DSL concepts to the e�ectively propositional frag-
ment (EPR) [9] of FOL to guarantee decidability and e�cient validation (that
can be automatically proved using the Z3 [6] solver). It corresponds to formulae
written in prenex normal form, which contain only constants, universal quanti-
�ers, and functions that return boolean values (aka predicates). If it is failed,
the speci�cation is handled as a general FOL problem or can be approximated
by EPR statements. Some feature like transitive closure is still inexpressible in
FOL, these constraints are approximated.

Mapping structure for DSL In order to represent a DSL speci�cation in FOL
we use the following structure: DSL = META ∧DFs ∧WFs, where META rep-
resents the FOL statement set de�ned by the metamodel (e.g., type hierarchy),
DFs symbolizes the statement set speci�ed by the derived features and �nally,
WFs represents the set of statements for the well-formedness constraints.

A FOL statement may be handled using under- or overapproximations, where
statements CU or CO under- or overapproximate statement C if they satisfy



Validation of Derived Features and Well-Formedness Constraints in DSLs 9

that CU ⇒ C or C ⇒ CO, respectively. As a trivial example, the true constant
overapproximates all statements and can substitute any DSL constraint.

This de�nition can be extended to statement sets, where a statement set
CS is over- or underapproximated by a statement set CSO (or CSU ), if each
statement C ∈ CS is over- or underapproximated by a statement CO ∈ CSO (or
CU ∈ CSU ). This allows to validate properties of the DSL by proving the same
properties on its under- or overapproximations. The construction of META, DFs
and WFs and their corresponding approximations are de�ned and illustrated in
the following sections.

4.1 Mapping of the Ecore Model

The di�erent features of the target domain speci�c language described as an
Ecore metamodel are mapped to FOL formulae in the following way. Each gen-
erated statement is added to the META set.

Type hierarchy The elements of the output instance model are uniformly
mapped to a Z3 type object declared by the compiler. Type indicator predicates
are used to describe that an object is an instance of an EClassi�er. Additionally,
to interpret supertype relations a d disjunction of ci conjunctions of type predi-
cates are constructed, formally d = c1 ∨ c2 ∨ . . .∨ cn. For each non-abstract type
in the metamodel one ci = type1 ∧ type2 ∧ . . .∧ typem is constructed where only
those type predicates typei are positive literals that are either its direct type
or one of its supertypes (e.g., for type Function the FunctionElement is also a
positive literal and all other type predicates are negative literals). This way only
one ci can be true in d for any objects that conforms to the metamodel.

For example, the Function class in Table 1 is mapped to a formula where only
the Function(f) and the FunctionalElement(f) predicates are positive literals.

References and attributes An EReference between two EObjects is a directed
relation represented as reference predicates (boolean functions) and its target
type is explicitly asserted to restrict their range to the speci�c EObject types.
E.g. the FOL formula generated for parent EReference in Table 1 ensures that
the source object e is a FunctionalElement while the target end f is a Function.

An inverse reference in Ecore is mapped to two separate predicates de�ned in
the opposite direction and an additional equivalence operation is de�ned between
them to assert their inverse nature. For instance, parent(e,f) is de�ned to be
an inverse of subElements(f,e) in Table 1.

The objects of an EMF model are arranged into a directed tree hierarchy
along the containment EReferences, which is mapped into two constraints: (i)
The acyclicity constraint de�ned as a transitive closure stating that any object
is unreachable from itself is de�ned similarly to the example in Section 4.2 and
(ii) the singular root constraints is expressed as a statement that there is exactly
one object in the model without a parent.
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EObject 7→ Object

f : Function

Function FunctionalElement 7→

Type: Function(f )
cfunction: Function(f ) ∧ FunctionalElement(f )
∧¬FAMTerminator(f ) ∧ ¬InformationLink(f )
∧ . . . ∧ ¬FunctionalInterface(f )

e.getParent == f

Function FunctionalElement

subElements0..*parent0..1 7→

Reference predicate Parent(e, f )
End types: ∀e, f : Parent(e, f ) ⇒
(FunctionalElement(e) ∧ Function(f ))
Inverse edges: ∀e, f :
Parent(e, f ) ⇔ subElements(f , e)
At most one multiplicity: ∀e, f1, fextra :
Parent(e, f1 ) ∧ Parent(e, fextra) ⇒ f1 = fextra

f.type : FunctionalType

Function
type : FunctionType

<<enumeration>>
FunctionType
Root
Leaf
Intermediate

7→

Attribute type:

Type = {Root , Intermediate,Leaf }
Attribute value:

type(f ,Leaf )

Table 1: Examples of mapping the features of an Ecore metamodel.

Our approach currently supports EAttributes with enumeration types, where
the enum literals are mapped to constants and the EAttribute is represented as
a predicate with the source as the container object and the target as the value
of corresponding constant. For example, the type(f,Leaf) de�nes that the value
of the type EAttribute is a Leaf in Table 1. We plan to investigate [16] to extend
to other types.

By default, the predicates model the Ecore links with the most general 0..*
multiplicity. An upper bound can be mapped to an EPR by assuring there that
the number of di�erent target objects are less then it de�nes, however, a lower
bound cannot be expressed without existential quanti�ers and thus leads out of
EPR. Without going into details an example mapping of cardinality constraints
are demonstrated in Row 2 of Table 1.

4.2 Mapping of the Graph Queries

In the current section we highlight how di�erent features of the EMF-IncQuery

graph query language are mapped to FOL formulae.

Structure of a Query On the top level, a graph query consists of : (i) a
parameter list, which is a �x sized vector of variables over the objects of the in-
stance model and (ii) one or more disjunctive (OR) pattern bodies, which de�ne
constraints over its parameters and additional existentially quanti�ed internal
variables. A query in our mapping is de�ned as a disjunction of its bodies, where
the bodies are the conjunction of its constraints.

In Table 2, the mapping of the query of the type DF is exempli�ed, where
the �rst row de�nes how its pattern bodies are mapped to three separate body_i
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predicates. The second row demonstrates how the second body of the query
is mapped to a FOL formula, where the _Par and _Chl are its inner variables.
Simple constraints in a pattern body are handled as follows:

� Attribute check conditions are mapped to their corresponding equivalent in
FOL as over enum literals only the equivalence and non-equivalence relation
are de�ned. For instance, in Table 2 the third row de�nes an equivalence
relation between the Target variable and the Intermediate constant.

� An EClassi�er constraint de�nes the type of the object that is bound to a
variable, which is simply mapped to its corresponding type predicate. E.g,
in the fourth row in Table 2 the This variable can only be of type Function.

� EReference constraints are compiled into their corresponding reference pred-
icates, for example, in Table 2 the parent EReference is mapped to the its
corresponding parent(_Chl,This) reference predicate.

� Finally, a negative application condition is mapped to (i) a subpattern de�ni-
tion � for the neg pattern � identically to how a pattern body is constructed
and a (ii) pattern call (PL) constraint. The PL constraint forbids the satisfac-
tion of the subpattern with the parameter substitution speci�ed by its de�n-
ing pattern body. For instance, in Table 2 the nacSubPattern(Child,Parent)

is constructed and it is called using the ¬nacSubPattern(_Chl,This) formula
with the _Chl and This variables as de�ned by in the third pattern body of
the type query.

7→

DF predicate: typeDF (This,Target)
Or queries: ∀Type,Target : typeDF (This,Target) ⇔
body1(This,Target) ∨ body2(This,Target)
∨body3(This,Target)

7→
Pattern body: body(This,Target) = ∃_Par ,_Chl :
Function(_Par) ∧ Function(_Chl) ∧ Function(This)
∧parent(_Chl ,This) ∧ parent(This,_Par)

7→ Attribute Condition: Target = Intermediate

7→ EClassi�er constraint: Function(This)

7→ EReference constraint: parent(_CHL,This)

7→

Negative Application Condition:

Subpattern: nacSubpattern(Chlid ,Parent) ⇔
parent(Chlid ,Parent)
Pattern call constraint:

¬nacSubPattern(_Chl ,This)

Table 2: Mapping of graph query features.
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Constraint Approximation The EMF-IncQuery graph query language is
more expressive than the EPR fragment of FOL thus some constraints (like
recursively called patterns, transitive closures) cannot be expressed within its
boundaries. Below, we sketch the overapproximation of the transitive closure
feature of the query language, while more technical details are available in [17].

We use an overapproximation on the maximum iteration of the traversal on
the transitive reference. The idea is to de�ne unique transitive predicates for
each iteration that de�nes how many more references it can traverse along the
transitive reference, where �nally the ending predicate is substituted with the
true predicate (overapproximation). Additionally, to force acyclic traversal the
predicates also specify uniqueness constraints over the visited objects.

For example, predicate parentMatch(This, P ) ⇒ parent2Match(This, P ) de-
�nes an overapproximation of length 2 for the transitive closure of the parent

EReference in the second pattern body of the model query, in the following way:
2: parent2Match(This, P ) ⇒ parent(This,P)∨ ∃m1 : parent(This,m1 ) ∧

parent1Match(m1 , P,This)
1: parent1Match(This, P, d1 ) ⇒ parent(This,P)∨ ∃m2 (m2 6= d1 ) :

parent(This,m2 ) ∧ parent0Match(m2 , P, d1 ,This)
0: parent0Match(This, P, d1 , d2 ) ⇒ parent(This,P)∨ ∃m3 (m3 6= d1 ,m3 6=

d2 ) : parent(This,m3 ) ∧ true

F

Note that a similar idea is used in case of recursive pattern calls, where after
�attening the call hierarchy only the recursive calls are needed to be overapprox-
imated based on the number of maximum allowed calls.

Patterns as DF and WF When constructing the set of axioms for a DSL from
graph patterns, derived features and well-formedness constraints need to be han-
dled di�erently. In case of DFs, we need to guarantee that the evaluation of the
predicate of the derived feature and its graph query de�nition is equivalent. For
example, in case of type of a Function where type is the attribute predicate and
typeDF is a pattern it looks like this: ∀src, trg : type(src, trg) ⇔ typeDF (src, trg).
This statement is added to the statement set DFs.

When a pattern de�nes a WF constraint, by de�nition, it is not allowed
to have any match in a valid model, thus the axiom needs to be quanti�ed
accordingly. For instance, for patternterminatorandInformationLink we add to the
WF set: ∀Ter , InfLink : ¬terminatorandInformationLink(Ter , InfLink).

4.3 Search parameters

The veri�cation can be parameterised by di�erent optional search parameters:

� Target partition: In order to reduce the state space of the veri�cation it can
be de�ned to map only a part of the metamodel relevant to the veri�cation.

� Partial snapshot: The veri�cation may fail on trivial counterexamples that
are theoretically correct but do not corresponds to the expected structure.
The range of the checked models can be limited to the extension of an ini-
tial instance model, which constitutes the constants of the input and the
assumptions partially de�ne the truth-value of the predicates.
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� Maximum size of veri�ed instance model: Following the small scope
hypothesis [18], the maximum size of the instance models to be checked
during the validation can be optionally de�ned. This allows to solve the
validation as a SAT problem or provide a minimal counter example.

� Approximation level:Whenever an over- and underapproximation is used
to describe a certain metamodel, DF or WF feature it is required to explicitly
de�ne the boundaries (or level) of the approximation.

5 Evaluation

The aim of our evaluation is to illustrate that our mapping approach is capable
of expressing and validating complex metamodel and query features either by
directly mapping them to EPR (denoted as +), solve them as a general FOL
proving problem (�) or approximate the general problem by relaxing it to an
ERP (e.g. overapproximate the containment hierarchy by neglecting it). The
Table 3 summarizes all relevant features of both the Ecore metamodels and the
EMF-IncQuery model query languages that can (+) or cannot (�) be mapped
directly to EPR, needs approximation (A) to de�ne it in FOL or is inexpressible
(X) in FOL. As the DF andWF constraints in overall are validated using di�erent
polarity the quanti�cations of their variables will di�er and thus; they cannot
be mapped the same way (e.g., the same query may not be validated as DF or
WF over the same properties). Detailed discussion about the mapping of these
features is available in [17].

The runtime performance of our approach is negligible in cases when the
mapping can be kept in EPR and then is usually under 1 sec for example,
in our scenario it was less than 100 ms for all feature validation except for
the completeness validation of the model DF (timeout). However, whenever the
mapped features are outside of EPR the outcome of the validation relies on the
underlying automated theorem prover, which may be able to validate the feature
but there are no guarantees that it will ever produce a proof or refutation due
to undecidability of FOL in general.

6 Related work

There are several approaches and tools aiming to validate UML models en-
riched with OCL constraints [19] relying upon di�erent logic formalisms such
as constraint logic programming [20,21,16], SAT-based model �nders (like Al-
loy) [22,23,24,25], �rst-order logic [26,27], constructive query containment [28],
higher-order logic [29,30], or rewriting logics [31]. Some of these approaches (like
e.g. [21,23,24]) o�er bounded validation (where the user needs to explicitly re-
strict the search space), others (like [27,29,26]) allows unbounded veri�cation
(which normally results in increased level of user interaction and decidability
issues).

SMT-solvers have also been used to verify declarative ATL transformations
[32] allowing the use of an e�ciently analyzable fragment of OCL [27]. The
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Features of the metamodel

EClasses E +

Class hierarchy E +

EEnums E +

EReferences E +

EAttributes E +

Multiplicity upper bound E +

Multiplicity lower bound E �

Inverse edges E +

Containment hierarchy A �

Partial snapshot E +

DF Features of model query WF

E + Classi�er constraint E +

E � EReference constraint E +

E � Acyclic pattern call E +

E � Negative pattern call E �

A � Transitive closure A +

A � (Positive) pattern call recursion A +

A � Arbitrary call graph A �

X Aggregate (eg. Count, Sum) X

X Check expressions X

E: Expressible A: Approximable X: Inexpressible +: in EPR �: not in EPR
Table 3: Expressing Ecore and EMF-IncQuery language features in Z3

FORMULA tool also uses the Z3 SMT-solver as underlying engine, e.g. to rea-
son about metamodeling frameworks [15] where proof goals are encoded as CLP
satis�ability problem. The main advantage of using SMT solvers is that it is refu-
tationally complete for quanti�ed formulas of uninterpreted and almost uninter-
preted functions and e�ciently solvable for a rich subset of logic. Our approach
uses SMT-solvers both in a constructive way to �nd counter examples (model
�nding) as well as for proving theorems. In case of using approximations for rich
query features, our approach converges to bounded veri�cation techniques.

Graph constraints are used in [33] as means to formalize a restricted class
OCL constraints in order to �nd valid model instances by graph grammars.
An inverse approach is taken in [34] to formalize graph transformation rules
by OCL constraints as an intermediate language and carry out veri�cation of
transformations in UML-to-CSP tool. These approaches mainly focus on map-
ping core graph transformation semantics, but does not cover many rich query
features of the EMF-IncQuery language (such as transitive closure and recursive
pattern calls). Many ideas are shared with approaches aiming to verify model
transformations [34,35,32], as they built upon the semantics of source and target
languages to prove or refute properties of the model transformation.

The idea of using partial models, which are extended to valid models during
veri�cation also appears in [14,15,36]. These initial hints are provided manually
to the veri�cation process, while in our approach, these models are assembled
from a previous (failed) veri�cation run in an iterative way (and not fully man-
ually). Approximations are used in [37] to propose a type system and type in-
ference algorithm for assigning semantic types to constraint variables to detect
speci�cation errors in declarative languages with constraints.

Our approach is di�erent from existing approaches as it uses a graph based
query language instead of OCL for capturing derived features and well-formedness
constraints. Up to our best knowledge, this is the �rst approach aiming to val-
idate queries captured within the EMF-IncQuery framework, and the handling
of derived features is rarely considered. Furthermore, we sketch an iterative val-
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idation process how DSL speci�cations can be carried out. Finally, we also cover
the validation of rich language features (such as recursive patterns or transitive
closure) which is not covered by existing (OCL-based) approaches.

7 Conclusion

In the paper, we addressed the validation of DSL tools speci�ed by a combination
of EMF metamodels and graph queries (of EMF-IncQuery) capturing derived
features and well-formedness rules. For that purpose, we de�ned an iterative
(and semi-automated) validation work�ow and a mapping of metamodels and
queries to the e�ectively propositional (EPR) fragment of �rst-order logic, which
can be e�ciently analyzed by the Z3 SMT solver. In order to cover rich language
features (such as transitive closure and recursion), we proposed constraint ap-
proximations to yield formulae that fall into EPR. Moreover, validation can be
guided by the designer in the form of initial (partial) model snapshots, which
need to be included in valid instance models. We illustrated our approach on
a running example extracted from an ongoing research project in the avionics
domain.

Our future work is intended to be directed to improve the level of query
feature coverage and raise the level of automation of our system. For instance,
our current approach is restricted to handle attributes of enumeration values
only, while real metamodels contain attributes of integers, strings, etc. For this
purpose, we may build upon [16] where reasoning is provided for string attributes
in OCL constraints or other decision procedures for numeric domains.

In our current framework, automation is restricted to forward mappings,
while re�nements are carried out manually by the domain engineer. It would
be advantageous to shift our framework towards a black-box solution as much
as possible, which immediately raises several challenges. On the tooling level,
counter-examples derived by Z3 should be back-annotated to the DSL tool-
ing (as model instances). On the validation level, an interesting direction is to
develop counterexample guided re�nement of approximations where false posi-
tive counterexamples obtained as a result of approximations can be �ltered by
instance-level validation techniques.
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