
Incremental View Model Synchronization Using Partial Models
Kristóf Marussy

Budapest University of Technology

and Economics

Department of Measurement and

Information Systems

MTA-BME Lendület Cyber-Physical

Systems Research Group

Budapest, Hungary

marussy@mit.bme.hu

Oszkár Semeráth

Budapest University of Technology

and Economics

Department of Measurement and

Information Systems

MTA-BME Lendület Cyber-Physical

Systems Research Group

Budapest, Hungary

semerath@mit.bme.hu

Dániel Varró

Budapest University of Technology

and Economics

MTA-BME Lendület Cyber-Physical

Systems Research Group

Budapest, Hungary

McGill University

Montreal, Quebec, Canada

varro@mit.bme.hu

ABSTRACT

View models are functional abstractions of a set of source models

derived by unidirectional model transformations. In this paper, we

propose a view model transformation approach which provides a

fully compositional transformation language built on an existing

graph query language to declaratively compose source and target

patterns into transformation rules. Moreover, we provide a reactive,

incremental, validating and inconsistency-tolerant transformation

engine that reacts to changes of the source model and maintains an

intermediate partial model by merging the results of composable

view transformations followed by incremental updates of the target

view. An initial scalability evaluation of an open source prototype

tool built on top of an open source model transformation tool is

carried out in the context of the open Train Benchmark framework.

ACM Reference Format:

KristófMarussy, Oszkár Semeráth, andDániel Varró. 2018. Incremental View

Model Synchronization Using Partial Models. In Proceedings of ACM/IEEE
21th International Conference on Model Driven Engineering Languages and
Systems (MODELS ’18). ACM, New York, NY, USA, 11 pages. https://doi.org/

10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Complex industrial toolchains used for designing cyber-physical

systems frequently depend on various models on different levels

of abstraction. Abstract models [12] can be derived and synchro-

nized by view model transformations upon changes of one or more

underlying source models.

View synchronization challenges are addressed by using ei-

ther general purpose model transformation tools (e.g. ATL [32, 41],

ETL [35], Henshin [5], VIATRA [53]), bidirectional model synchro-
nization techniques (like various TGG tools [23, 26, 38, 46], QVTr [44]),

or dedicated view transformation techniques (like View TGGs [4, 31],

Active Operations [6], VIATRA Views [17], QuEST [22]).

To tackle complex scenarios, view model transformations are

desirably defined in a compositional way to reuse existing transfor-

mations without further changes. While sequential composition

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

(chaining) is widely supported, existing tools need to impose major

restrictions in case of parallel composition (merging) of target views.

An ideal view transformation engine is reactive (i.e. reacts to source

model changes), target incremental (i.e. updates only affected target
elements), consistent (i.e. continuously maintains a transformation

relation between source and target models) and validating (i.e. the

view model is a valid instance of the target view language).

Currently, there is a significant trade-off in existing tools between

the expressiveness and compositionality of the view transformation

language, and the level of support for desirable features of the view

transformation engine. On the one hand, fully reactive behavior is

a challenge in itself supported by only few tools (e.g. [6, 41, 53]),

while incrementality, consistency and validity is provided at the

same time for very restrictive transformation languages.

Our main contribution in the paper is a unidirectional view

transformation approach with a (1) a fully compositional view trans-
formation language, and (2) a reactive, incremental, validating and
inconsistency-tolerant transformation engine. The view transforma-

tion language explicitly reuses the VIATRA Query Language [52]

to declaratively capture relevant source and view patterns by fol-

lowing the principles of ramification [37]. Moreover, inconsistency-
tolerant partial models (a generalization of partial models of [21, 54])

provide the conceptual core of the transformation engine.

The transformation engine reacts to aggregated changes of the

source model observed in the result set of graph queries (hence

reactive), then it builds and maintains a partial model as an knowl-

edge base with traceability links. Once the partial view model be-

comes a valid instance of the target metamodel (i.e. relevant aggre-

gated changes are observed in the knowledge base, and structural

constraints are respected), the target view model is incrementally
updated by providing a corresponding change (e.g. model delta, no-

tification or API call). Our engine is inconsistency tolerant in the

sense that inconsistencies are semantically persisted in the internal

knowledge base. This allows to keep a large fragment of the source

and view models in sync in case of inconsistent source changes and

provides hippocratic behavior (i.e. avoids the unnecessary deletion

and recreation of elements).

The transformation engine is implemented as a prototype tool [2]

and integrated into the open source VIATRA transformation frame-

work [8]. Moreover, we carry out an initial scalability evaluation by

adapting an existing view model transformation from an industrial

research project (aiming to carry out for dependability evaluation

from automotive designs) to the open Train Benchmark [51].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

Source Model (Rail)

r1: Route r2: Route

sw: Switch

sp1: Switch
Position

sp2: Switch
Position

positions

follows

positions

follows

PN = (tr1||tr2)(Rail, Dep)

swUp
1

swDown
0

swFail

swRep

r1Up
1

r1Down0

r1Rep
r1SwFail

r2Up 1

r2Down0

r2Rep
r2SwFail

tr1

Source Model (Dep)

ma: FailureRepairModel

mb: Immediate
RepairModel

mc: Immediate
RepairModel

tr2

Trace: sw 7→ {swUp, swDown, swRep, swFail}, r1 7→ {r1Up, r1Down, r1Rep}, r2 7→ {r2Up,
r2Down, r2Rep}, sp1 7→ {swUp, swDown, r1Up, r1Down, r1Rep, r1SwFail}, sp2 7→ {swUp,
swDown, r2Up, r2Down, r2Rep, r2SwFail}, ma 7→ {swUp, swDown, swRep, swFail},
mb 7→ {r1Up, r1Down, r1Rep}, mc 7→ {r2Up, r2Down, r2Rep}

Figure 1: Example models with traceability links.

2 A OVERVIEW OF COMPOSITIONAL VIEW

TRANSFORMATIONS

A view transformation Trд = tr (Src1, . . . , Srck) aims to derive a

target view model Trд as an abstraction of a set of source models

Src1, . . . , Srck . A tr is a functional and unidirectional mapping from

source(s) to target models typically with loss of information.

Moreover, in a typical view synchronization scenario, each tar-

get change is causally dependent on some (aggregate) change of

the source model (e.g. a model delta or notification upon model

update). This causal dependence can be captured by a match of a

view transformation rule in the source model which triggers the

simultaneous creation of respective target elements together with

some traceability links between source and target elements.

A motivating example. The running example of the paper is

adapted from an industrial project where formal dependability anal-

ysis of automotive models were carried out by composing two view

transformations: (1) PN = tr1(Aut) maps automotive component

models Aut to stochastic Petri nets PN [3], and (2) PN = tr2(Dep)
is a reusable mapping [11, 40] from a domain-independent depend-

ability modelDep to stochastic Petri nets. The target Petri net model

is defined as the (parallel) composition of the two transformations

PN = tr1 | |tr2(Aut ,Dep) calculated over the two input models.

Due to IP restrictions of automotive models, we present the chal-

lenge using a public model of railway networks developed as part of

the Train Benchmark [51], a cross-technology macrobenchmark of

graph-based model query tools. A sample source and target model

are shown along with the traceability links in Fig. 1, while some

transformation rules will be illustrated later in Figure 7.

2.1 Levels of compositional definitions

To categorize the levels of compositionality in, let us assume the

existence of two view transformations, tr1 and tr2 and a single

source model Src to simplify the discussion. Transformations tr1
and tr2 can be composed in different ways.

In many practical scenarios [4, 28], chaining of view transfor-

mations is necessitated, which is a sequential composition of trans-

formations Trд = tr2 ◦ tr1(Src) = tr2(tr1(Src)) where tr2 takes

the output of tr1 as its source model, and the target model of this

transformation chain is the subsequent result of tr2. The definition
of sequential composition is supported in several tools [28, 42].

Given two existing view transformations Trд = tr1(Src) and
Trд = tr2(Src), another relevant aspect is parallel composition
Trд = tr1 | |tr2(Src) = tr1(Src) ⊕ tr2(Src) where the target model is

derived by merging (or gluing) the results of transformations tr1
and tr2 both applied on the same source model Src . If the two trans-
formations are independent, the target model is the union of the

individual transformations, otherwise the aggregated result can be

computed e.g. by some complex category-theoretical foundations

[15, 18, 19]. Below, we briefly categorize the major assumptions for
parallel composition tr1 | |tr2 used in existing transformation tools.

(1) In the independent case, each target object is fully defined

by a single rule in one transformation, thus a union of target ele-

ments can be taken without merge, i.e. Trд = tr1(Src) ∪ tr2(Src).
Otherwise, a new transformation tr3 needs to be written manually.

(2) In the serializable case, the parallel composition is turned

into a sequential composition where one transformation (e.g. tr1)
is taken as-is (called primary) while the other transformation tr2
(called secondary) needs to be manually changed to tr2, i.e.
tr1 | |tr2(Src) = tr ′

2
(tr1(Src), Src)) or tr

′
1
(tr2(Src), Src)).

(a) Certain transformation languages (e.g. ATL [32]) restrict
primary rules, i.e. at most one serialization tr ′

2
(tr1(Src), Src)) or

tr ′
1
(tr2(Src), Src)) can exist. In ATL, outgoing references of an

object can only be defined in a primary rule (to ensure multiplic-

ity constraints in the target language), thus a static check will

prevent serializing the transformations in the wrong way.

(b) Other serializable view transformation approaches [8, 28]

are unrestricted to allow both serializations tr ′
2
(tr1(Src), Src))

and tr ′
1
(tr2(Src), Src)), but one of the transformations still needs

to be adapted to take the output of the other (instead of Src).
(3) Fully compositional view transformation approaches allow to

compose tr1 and tr2 as tr1 | |tr2(Src) = tr1(Src) ∪? tr2(Src) without
changing the transformations by using some sophisticated model

merge operator ∪? to weave the target models of individual trans-

formations into a joint result.

(a) In ID-based composition tr1 | |tr2(Src) = tr1(Src)∪IDtr2(Src),
rules assign the same ID to objects that need to be merged in

the final target model. The ID attribute can be selected from the

metamodel intrusively [44] or added by augmentation [37].

(b) Relation-based composition tr1 | |дtr2(Src) = tr1(Src)∪д(Src)
tr2(Src) can mark unrelated objects constructed separately by

transformations tr1 or tr2 to be merged. The merge operation is

a parameter, i.e it can be specified as a categorial colimit with

a suitable reference or connection model [18, 20, 45], by direct
mappings [15], or by graph bisimulation [14].

2.2 Properties of view transformation engines

A view transformation engine Out (i) = exec(tr , In(i)) repeatedly
executes a transformation tr at a given point i in (logical) time on

a (source) input In(i) to derive a (target) output Out (i) while (a)

maintaining the consistency relation Trд = tr (Src) between the

source and target models and (b) keeping the target model a valid

instance of the target language (Trд ⊨ MMT).

(1) A batch engine takes the entire source model at any step:

Out (i) = exec(tr , Src(i)). A delta-based engine takes amodel change

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Table 1: Comparison of view model transformation techniques.

Engine properties

Parallel composition React. Incr. Cons. Valid. Comment

Our approach relation-based R • IT •

Reactive ATL [33, 41] independent R • C • Restrictions in source and trace language

TGG Virtualized View [31] independent R • C ◦ Only single node or reference in rule target side

TGG Materialized View [4] independent R • C • Only single node or reference in rule target side

Viatra Views [17] independent R • C • Only single node or reference in rule target side

QueST [22] independent D • C • Only single node or reference in rule target side

Incremental QVTr [48] restricted serializable R • ? ? Cons., valid. difficult to determine due to QVTr semantic issues [25, 50]

EMF Views [13] independent NR ◦ C ◦ Infers target metamodel

Active Operations [6] restricted serializable R • C ◦ Transformation also defines target metamodel

Hearnden et al. [27] restricted serializable D • IT ◦ Produces deduction tree tree as target model

ATL (no imperative code) [32] restricted serializable NR ◦ C • Restrictions on outgoing references in non-primary rules

ATL (+imperative code) [32] serializable NR ◦ NC • No consistency checking for imperative actions

eMoflon TGG [38, 39] restricted serializable D • C/A • Restrictions for negative application conditions (NAC)

Viatra [28, 53] serializable R • NC • No consistency checking for imperative actions

QVTr [44] M2M [55] ID-based NR ◦ ? ? Cons., valid. difficult to determine due to QVTr semantic issues [25, 50]

Epsilon ETL [35] + EML [36] relation-based NR ◦ NC • Merge operators for composition in separate language

JTL [16] serializable D ◦ C/A • No answer if the target cannot satisfy constraints

RAMification [37, 43] ID-based NR ◦ C ◦ Metamodel constraints are relaxed
GRoundTram, ATLGT [29, 30] relation-based D • C ◦ Graph bisimulation based data model, non-EMF

Legend: R reactive, D delta-based, NR non-reactive (batch); C consistent, C/A consistent or aborts, NC non-consistent, IT inconsistency tolerant; • yes, ◦ no

as input, but it executes on-demand :Out (i) = exec(tr , Src(i−1),∆
(i)
Src).

A reactive engine executes in response to source model changes [10,

41] (e.g. model notifications or deltas): Out (i) = exec(tr ,∆
(i)
Src). Ini-

tialization loads the source model as a large delta.

(2) An incremental engine updates only those target elements

which are affected by a specific source model change, i.e. ∆
(i)
T rд =

exec(tr , In(i)) thus the new target model is obtained by applying

this delta:Trд(i) = Trд(i)+∆
(i)
T rд . A non-incremental engine derives

the new target model from scratch: Trд(i) = exec(tr , In(i−1)).
(3) A consistent engine continuously enforces consistency con-

straints between source and target elements: ifOut (i) = exec(tr , In(i))

then Trд(i) = tr (Src(i)). An non-consistent engine does not guar-
antee these constraints if the transformation rules are conflicting

with each other (e.g. in case of a specific source model change).

(4) A validating engine derives the view model as a valid in-

stance model of the target metamodel (or viewtype) where all meta-

model constraints (e.g. aggregation, multiplicity) are satisfied: if

Trд(i) = exec(tr , In(i)) then Trд(i) ⊨ MMT . Checking these struc-

tural constraints of the target metamodel is out of scope for a

non-validating engine, thusTrд(i) ⊭ MMT . A validating engine can

be used for both materialized and virtualized viewtypes [12].

Fully compositional view transformations need to face the con-

ceptual challenge that while enforcing the consistency between

the source and target models, one may easily violate the structural

constraints imposed by a metamodeling framework like EMF [49].

2.3 Related work

A desired view transformation approach offers a fully compositional

language and a reactive, incremental, consistent and validating

engine but no transformation tools currently exist which support

all these properties. Our overview of (the significant amount) of

related work primarily focuses on existing transformation tools by

categorizing the level of support (1) for parallel compositionality

in transformation languages, and (2) for desirable transformation

engine properties in Table 1. For space considerations, we highlight

only the typical restrictions found in the context of multiple tools.

Imperative transformation approaches reactively build the target

model (like imperative ATL, VIATRA or ETL) but they do not pro-

vide consistency guarantees, i.e. certain target models may not be

consistent with a source model. Unfortunately, such inconsistencies

can propagate to future stages of the transformation.

Bidirectional model synchronization tools (like different TGG

implementations or JTL) provide either guarantee consistency or

they abort the execution of the transformation. These tools offer a

certain level of serializability, but they are not fully compositional.

Dedicated view transformation approaches (like TGGViews,Via-

tra Views, Reactive ATL) use a restricted transformation language

(wrt. their regular transformation counterpart) to provide desir-

able engine behavior. However, parallel composition of different

transformations is very limited.

Most existing fully compositional approaches (like QVTr, ramifi-

cation, Epsilon with combined ETL and EML languages) are neither

reactive nor incremental and only EML is validating. Only GRound-

Tram and ATLGT support target incrementality and delta-based

source incrementality, but over a custom (non-EMF compliant)

model representation. The closest approaches to ours are [16, 27]

as they build a knowledge base based on first order logic and target

models are derived by logical inference, but these approaches are

not fully compositional.

Our work provides a view transformation approach with (1) a

fully compositional transformation language built on top of an ex-

isting declarative query language, and (2) a transformation engine

which is reactive, incremental, validating and inconsistency-tolerant
at the same time. An inconsistency-tolerant engine is a relaxed ver-

sion of a consistent engine whereTrд(j) , tr (Src(j))may happen af-

ter some conflicting source model changes Out (j) = exec(tr ,∆
j
Src),

but all other desirable properties are preserved.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

petrinet

railway dependability

RailwayElement

Route

EBoolean
 = false

Switch

tion :
Position =
FAILURE

SwitchPosition

Position =
FAILURE

ErrorModel

FailureRepair
Model

ImmediateRepair
Model

[0..1] route

[0..*] follows
[0..1] target[0..*] positions

[1..1] railwayElement

Arc

kind : ArcKind

ArcKind

IN OUT
ImmediatePlace

tokens : EInt

Tran

PetriNTran
Timed
Tran

[1..1] place [1..*] arcs

[1..1] tran

Figure 2: Two source and one target metamodels.

3 INCONSISTENCY-TOLERANT PARTIAL

MODELS

Our view transformation technique builds on inconsistency-tolerant

partial models which store inconsistent and unknown information

in models by generalizing the merging of inconsistent and incom-

plete views in conceptual models [45]. This section provides theo-

retical foundations based on Belnap-Dunn 4-valued logic [7, 34].

3.1 Preliminaries: Foundations of metamodels

A metamodel contains the main concepts and relations of a domain,

and captures the basic structure of the models. Formally, a meta-
model defines a signature Σ = {C1, . . . ,Ct ,R1, . . . ,Rr ,∼}, which
is a vocabulary of unary type predicate symbols {Ci }ti=1 defined
for each class, binary relation predicate symbols {Rj }rj=1 defined
for each reference and attribute, and additionally, an equivalence

relation ∼. In our running example, Figure 2 defines two source

(railway and dependability) and one target metamodels (petrinet).
Metamodeling tools impose additional structural constraints on

instance models to enforce a basic structure. In the EclipseModeling

Framework (EMF) [49], violating such a structural constraint would

prevent the materialization (saving) of a model.

Type hierarchy. A metamodel defines a type system by supertype
relations and abstract classes. For each object o, there shall be a sin-
gle class C, where (i) C is non-abstract, and (ii) o is an instance of C
whenC′

is the supertype ofC. In the petrinetmetamodel in Figure 2,

an abstract Tran is either an ImmediateTran or a TimedTran.
Type compliance. The metamodel restricts the classes C1, C2 of

objects at the ends of a reference R: ∀o1,o2 : R(o1,o2) ⇒ C1(o1) ∧
C2(o2). E.g., the target of a tran reference has to be a Tran.
Multiplicity constraints are placed on upper bounds on the num-

ber of references adjacent to an object: ∀o,o1,o2 : R(o,o1) ∧R(o,o2)
⇒ o1 ∼ o2. For example, an Arc can have only one tran.
Inverse relations. Some references R and R′

always occur in pairs:

∀o1,o2 : R(o1,o2) ↔ R′(o2,o1). See e.g., tran and arcs.
Containment hierarchy. EMFmodels are arranged in a strict tree

hierarchy via the containment references. EMF restricts objects not

to (i) have multiple containers, and (ii) form circles via containment

references. E.g., an Arc cannot be contained by multiple Trans.

1

1/2
0

⊑

⊑

⊑

⊑

(X ⊑ Y) B (X = 1/2) ∨ (X = Y) ∨ (Y =)

(a) Lattice of logical values.

X ¬X
0 1

1 0

1/2 1/2

∨ 0 1 1/2
0 0 1 1/2
1 1 1 1 1

1/2 1/2 1 1/2 1

 1 1

∧ 0 1 1/2
0 0 0 0 0

1 0 1 1/2
1/2 0 1/2 1/2 0

 0 0

⊕ 0 1 1/2
0 0 0
1 1 1
1/2 0 1 1/2

(b) Logic connectives (¬, ∨, ∧) and information merge (⊕).

Table 2: Belnap-Dunn 4-valued logic.

Equivalence relation ∼ is reflexive: ∀o : o ∼ o, symmetric: ∀o1,o2 :
o1 ∼ o2 ⇒ o2 ∼ o1, and transitive: ∀o1,o2,o3 : o1 ∼ o2 ∧ o2 ∼ o3 ⇒
o1 ∼ o3. In a regular instance model, objects are different from one

other, but partial models may have explicit ∼ relations.

3.2 Inconsistency-tolerant partial models

For a flexible composition of parallel view transformations, we

propose inconsistency-tolerant partial models as a generalization

of partial models [21, 54] that explicitly represents inconsistencies

and uncertain parts of view models.

Belnap-Dunn logic. As a semantic basis, we use the 4-valued

Belnap-Dunn logic [7] with regular true and false values (denoted
by 1 and 0, respectively), an unknown value (1/2) to represent un-

specified properties (which can be either 1 or 0), and an inconsistent
value () to represent errors where both 1 and 0 values simultane-

ously hold. An information ordering relation ⊑ is introduced (see

Table 2a) where is larger than 1 and 0 while 1/2 is less than 1 and

0. Operation X ⊕ Y denotes the merge of information values by

taking the maximum of two logic symbols with respect to ⊑. The

4-valued truth table for basic logic connectives is listed in Table 2b.

Inconsistency-tolerant partial models. A partial model P = ⟨ObjP ,
IP ⟩ is a 4-valued logic structure of Σ, where ObjP is a finite set of
objects, and IP is a 4-valued interpretation of the relation symbols

in Σ with:

• IP (Ci) : ObjP → {0, 1, 1/2, } for each Ci ;
• IP (Ri) : ObjP × ObjP → {0, 1, 1/2, } for each Rj , and
• Ip (∼) : ObjP ×ObjP → {0, 1, 1/2, } for equivalence relation.

A partial model P is concrete, if (i) there are only 0 and 1 values

in IP , and (ii) all equivalent objects are already merged, i.e. o1 ∼ o2
only if o1 ≡ o2. A concrete partial model can be interpreted as an

instance modelM (i.e. a labeled graph). If all structural constraints

are also respected (M ⊨ MM) then M can be materialized into a

regular EMF model, which will be formalized later.

Example 3.1. A sequence of partial models corresponding to Tran
swRep of Fig. 1 is listed in Fig. 3b. For example, the left-most partial

model states that element swRep is a Tran (1), and it is unknown

(1/2) if it is also Place, a TimedTran or ImmediateTran. Later, we
will apply a sequence of functions to remove all 1/2 and values

and obtain a regular instance model.

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

swRep1
Place = 1/2
Tran = 1
TimedTran = 1/2
ImmediateTran=1/2 swRep

Place = 1/2
Tran = 1
TimedTran = 1
ImmediateTran=1/2

swRep
Place = 0
Tran = 1
TimedTran = 1
ImmediateTran=0

swRep2
Place = 1/2
Tran = 1/2
TimedTran = 1
ImmediateTran=1/2

swRep
Place = 0
Tran = 1
TimedTran = 1
ImmediateTran=0

Object merge
Propagation: Incomp

~

Concretization

(a) Partial model refinement by merge functions

swRep
Place = 0
Tran = ⚡
TimedTran= 0
ImmediateTran= 0

swRep
Place = 1/2
Tran = 1
TimedTran= 1/2
ImmediateTran= 1/2

swRep
Place = 0
Tran = 1
TimedTran= 1/2
ImmediateTran= 1/2

swRep
Place = 0
Tran = 1
TimedTran= 0
ImmediateTran= 0

Propagation: Incomp Concretization Propagation: Incomp Materialization

(b) Inconsistency found during partial model refinement

Figure 3: Sample chain of partial models

JR(o1, . . . ,on)KPZ B IP (Ri)(Z (oi), . . . ,Z (oj))

Jo1 ∼ o2KPZ B IP (∼)(Z (o1),Z (o2)) J¬φKPZ B ¬JφKPZ
Jφ1 ∧ φ2KPZ B (Jφ1KPZ ∧ Jφ2KPZ)
Jφ1 ∨ φ2KPZ B (Jφ1KPZ ∨ Jφ2KPZ)

J∀o : φ(o)KPZ B
∧
x ∈ObjP Jφ(o)K

P
Z ,o 7→x

J∃o : φ(o)KPZ B
∨
x ∈ObjP Jφ(o)K

P
Z ,o 7→x

Figure 4: Semantics of 4-valued predicates

3.3 Graph predicates

A graph predicate φ(v1, . . . ,vn) is a first-order logic (FOL) predicate
over an infinite set of variables (o1,o2, . . .), the relation symbols of

Σ (Ci ,Rj ,∼), standard logic connectives (¬,∧,∨), and quantifiers

(∃,∀). The semantics of a graph predicate Jφ(v1, . . . ,vn)KPZ can be

evaluated on a partial model P with variable binding Z : {v1, . . . ,
vn } → ObjP to yield a logic value 0, 1, 1/2 or as defined in Fig-

ure 4. For concrete (2-valued) models this semantics is equivalent

to standard FOL. A variable binding Z of φ(v1, . . . ,vn) is called a

match, if 1 ⊑ Jφ(v1, . . . ,vn)KPZ , i.e., there is either a real match of

the graph predicate or there is an inconsistency.

Following [54], the structural constraints of a metamodelMM
are captured by a malformedness predicate φMM where a match
of the predicate highlights elements that violate the constraint. If P
is an instance model M , and there is no match of predicate φMM
(1 @ JφMM KPZ for all variable bindingsZ , i.e. it can be 0 or 1/2), then
M is a valid instance model:M ⊨ MM , thus it can be materialized.

Example 3.2. A sample graph predicate derived from a structural

constraint of the petrinet metamodel (see Figure 2) captures that a

Tran needs to be either a TimedTran or a ImmediateTran:

∀o : Tran(o) ⇒ TimedTran(o) ∧ ImmediateTran(o).

3.4 Merge functions for partial models

In order to unify the semantic treatment of partial model concretiza-

tion, view model merge and rule application, we define a merge
functionm : ObjP → ObjQ between objects of partial models P and

Q . Functionm is defined to ensure a refinement relation ⊑ : P ×Q
between partial models P and Q [54], which respects information

ordering as stated by the following conditions for all o1,o2 ∈ ObjP :
• IP (Ci)(o1) ⊑ IQ (Ci)(m(o1)) for all Ci ∈ Σ,
• IP (Rj)(o1,o2) ⊑ IQ (Rj)(m(o1),m(o1)) for all Rj ∈ Σ,
• IP (∼)(o1,o2) ⊑ IQ (∼)(m(o1),m(o2)).

Partial model refinement is information preserving in the sense

that all true (resp. false) predicates remain true (resp. false) in any

refinement of a partial model (as proved in [54]).

Example 3.3. Before the formal definitions, merge functions are

informally illustrated along two different sequences in Figure 3.

(1) The 1st sequence (Fig. 3a) starts from a partial model where

two objects are marked as equivalent (∼), thus (a) an object merge
function can be applied, which merges information from input ob-

jects: swRep becomes both a Tran (due to the top object) and an

TimedTran (due to the bottom object). (b) Then an Incomp propaga-

tion rule will refine the model in accordance with the type hierarchy

since a TimedTran object cannot be a Place or an ImmediateTran.
Finally, (c) the concretization step has no further effect, and we

obtain an instance model on the right.

(2) The 2nd sequence (Fig. 3b) first (a) applies an Incomp propa-

gation rule to ensure that a Tran is no longer a Place. Then (b) con-

cretization is executed to set 1/2 values to 0 for TimedTran and

ImmediateTran. Now (c) another Incomp propagation rule finds

that an abstract Tran needs to be refined into either a TimedTran or

an ImmediateTran thus it changes their 0 value to the inconsistent

value (both 0 and 1 at the same time). (d) If a materialization step

is now executed then the inconsistent object is removed.

Below, we define the different merge functions for partial models:

(1) Propagation rules handle type inferencing over 4-valued logic.
A propagation rule (detailed in Figure 5) takes the form prop =
φ(v1, ...,vn)
αi ↑ ··· αk ↓

, where φ is a precondition, and αi↑ (known to be true)

and αk↓ (known to be false) are atomic actions over the free vari-
ables of φ. For every match Z of φ (with 1 ⊑ Jφ(v1, . . . ,vk)KPZ), we
obtain a merge function propZ from P to a new partial model Q
with ObjQ = ObjP , propZ (o) = o, and IQ is obtained by modifying

IP as follows:

JαKQZ =

JαKPZ ⊕ 1, if α↑ is an action of prop,
JαKPZ ⊕ 0, if α↓ is an action of prop,
JαKPZ , otherwise.

The function propZ is a merge function, because both A ⊕ 1 and

A ⊕ 0 respect the refinement ⊑ of logical values.

(2) Object merge om : ObjP → ObjQ merges two distinct objects

o1,o2 ∈ ObjP into a joint objecto1,2 ∈ ObjQ if 1 ⊑ IP (∼)(o1,o2) and
leaves the object unchanged otherwise. Formally, ObjQ = ObjP \

{o1,o2} ∪ {o1,2}, and IQ is obtained by combining the contents of

the two elements of IP with ⊕ i.e.

IQ (Ci)(o) =

{
IP (Ci)(o1) ⊕ IP (Ci)(o2), if o = o1,2,

IP (Ci)(o) otherwise.

The function omo1,ok is a merge function, because ⊕ respects the

refinement ⊑ of logical values.

(3) Concretization is a merge function conc : ObjP → ObjQ that

refines a partial model P to a concretized (partial) model Q by

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

Type Hierarchy:

SuperUp:

C2(o)
C1(o)↑

, SuperDn:

¬C1(o)
C2(o)↓

if C1 is a superclass of C2,

Join:

C1(o) ∧ · · · ∧ Cn (o) ∧ ¬C′
1
(o) ∧ · · · ∧ ¬C′

m (o)
C∗(o)↑

if among types that are not subclasses of any C′
j ,

C∗
is the unique most generic non-abstract common subclass of all Ci
(n ≥ 1,m ≥ 0, and C∗

may be equal to one of C1, . . . , Cn),

Incomp:

C1(o) ∧ · · · ∧ Cn (o) ∧ ¬C′
1
(o) ∧ · · · ∧ ¬C′

m (o)
C∗(o)↓

if among types that are not subclasses of any C′
i ,

C1, . . . , Cn and C∗
have no common non-abstract subclass,

Relations:

RelUp:

R(o1, o2)
C1(o1)↑ C2(o2)↑

, RelDn:

¬C1(o1) ∨ ¬C2(o2)
R(o1, o2)↓

if C1 and C2

are the source

and target of R,

Mult:

R(o, o1) ∧ ¬(o1 ∼ o2)
R(o, o2)↓

if R has upper multiplicity 1,

ContMult:

R1(o1, o) ∧ ¬(o1 ∼ o2)
R2(o2, o)↓

if R1, R2 are containment,

ContLoop:

R1(o1, o2) ∧ · · · ∧ Rn−1(on−1, on)
Rn (on, o1)↓

if all Ri (1 ≤ i ≤ n)
are containment

Equivalence:

∼Symm:
o1 ∼ o2
o2 ∼ o1↑

, ∼Tran:
o1 ∼ o2 ∧ o2 ∼ o3

o1 ∼ o3↑
, ∼Refl:

1

o1 ∼ o1↑

Figure 5: Propagation rules for EMF structural constraints.

setting all 1/2 values to 0. Partial model Q can only contain 0, 1 and

 values. If Q has no values then it is a concrete instance model.

Concretization preserves partial model refinement, i.e., P ⊑ Q .
A materialization function mat : ObjP → ObjQ takes a con-

cretized partial model P and removes all inconsistent elements by

setting all values to 0 to obtain an instance model Q . In general,

materialization is not a merge function (as P @ Q), since informa-

tion preservation is violated when rewriting predicates (7→ 0).

However, if a concretized (partial) model is free from values, then

materialization is a trivial merge function due to being idempotent.

Materialization is non-invasive, as it keeps all valid model elements

in a concretized model, but removes inconsistent model elements

to make the instance model EMF-compliant (e.g., serializable).

Correctness of merging partial models. Computations over 4-

valued partial models carried out by a sequence of merge functions

and finalized by a materialization step guarantee that the final result

is a valid instance model, thus it can be materialized.

Theorem 3.4 (Correctness). Let Q = (mat ◦mk ◦ . . . ◦m1)(P)
where allmi are merge functions and mat is a final materialization.
If 1 @ JφMM KPZ then 1 @ JφMM K

Q
Z and Q is an instance model.

Proof Sketch. Since merge functions are compositional, and

they respect partial model refinement Pi ⊑ Pj , thus the truth value

of graph predicates never flips from 0 to 1 (or vice versa). Thus if a

predicate φ is not violated initially in P , then it is not violated in the

partial model obtain right before Q . Materialization is only applied

if no 1/2 values are present in Pj , and since it removes all elements

with a value, the final result will be valid instance model. □

‹pattern-dec› ::= ‹pattern-name›‹param-list›

‹param-list› ::= (‹variable›(,‹variable›∗))

‹pattern-def› ::= ‹pattern-dec›‹pattern-body›(or ‹pattern-body›)∗

‹pattern-body› ::= {‹constraint›;(‹constraint›;) ∗ }

‹constraint› ::= Ci(‹variable›) | Ci.Ri(‹variable›,‹variable›) |

‹variable›==‹variable› | ‹variable›!=‹variable› |

(find | neg find | count find)‹pattern-dec› |

(check | eval)(‹expression›)

Underlined elements are parts of the restricted template grammar.

(a) Grammar of graph patterns in Viatra

‹view› ::= ‹rule›(‹rule›)∗

‹rule› ::= rule ‹pattern-dec›(=>‹pattern-dec›)?(‹lookup›)∗

‹lookup› ::= lookup ‹pattern-dec›=>‹param-list›

(b) Grammar for our View Transformation Language (VTL)

Figure 6: A compositional view transformation language

4 VIEWMODEL TRANSFORMATIONS

In this section we propose a view transformation language with

relation-based composition along with a reactive, incremental, vali-

dating and inconsistency-tolerant execution engine. The view trans-

formation is based on 4-valued partial models.

4.1 View definition by graph patterns

In this paper we introduce a declarative and fully compositional

view transformation language based on graph queries. We reuse the

Viatra Query Language [52] to form view transformation rules by

using pairs of precondition patterns, template patterns and lookups
to reference (matches of) other transformation rules.

A graph pattern captures structural constraints with a graph

predicate. In the concrete syntax of Viatra (as illustrated in Fig-

ure 6a), a pattern is declared (‹pattern-dec›) by a unique name

(‹pattern-name›), and a list of formal pattern parameters (‹param-list›).
The predicate of a pattern is defined by a disjunction of pattern

bodies (‹pattern-body›) connected by the or keyword. A pattern

body contains a conjunction of constraints that can be type and ref-

erence checks (Ci() and Ri(,)), equivalence check (==), positive,
negative and aggregated pattern calls to compose complex patterns

(resp. find , neg find and count find keywords), or external Java

source code (using check or eval keywords) for attribute checks.

As templates of a view transformation rule, we define a restricted

set of graph patterns (denoted by the underlined part of Figure 6a),

which disallows multiple bodies, inequality constraints, negative

and aggregated pattern calls, and check or eval expressions. In

summary, a template pattern is a conjuction of atomic constraints.

A view transformation consists of a set of view transformation

rules (see Figure 6b) where each rule consists of a (i) a precondition
pattern for the source language, (ii) a(n optional) template pattern

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

Railway model transformation (tr1):
rule element(e) => elementNet(pUp, pDown, tRep);

template elementNet(
pUp, pDown, tRep)

pUp:
Place 1 pDown:

Place 0

tRep: Tran

pattern element(e)

e: Switch

e: Route

OR

rule req(r, sw) =>
connect(pSwUp, pSwDown, pRUp, pRDown, tRRep) {

lookup element(r) => (pRUp, pRDown, pRRep);
lookup element(sw) => (pSwUp, pSwDown, _); }

pattern req(r, sw)

sw: Switch

r: Route

sp: SwitchPosition

positions

follows

template connect(pSwUp, pSwDown,
pRUp, pRDown, tRRep)

pRUp:
Place

pRDown:
Place

pSwDown: Place

pSwUp:
Place

tRFail: ImmediateTran

tRRep: Tran

Dependability model transformation (tr2):
rule eModel(m) => errorNet(pUp, pDown, tRep);

template errorNet(pUp, pDown, tRep)

pUp:
Place

pDown:
Place

tRep: Tran

pattern eModel(m)

m: Error
Model

rule frm(m) => frmNet(pUp, pDown, tRep) {
lookup eModel(m) => (pUp, pDown, tRep); }

template frmNet(pUp, pDown, tRep)

pUp:
Place

pDown:
Place

tFail: TimedTran

tRep: TimedTran

pattern frm(m)

m: FailureRepair
Model

rule imm(m) => immNet(pUp, pDown, tRep) {
lookup eModel(m) => (pUp, pDown, tRep); }

pattern imm(m)

m: ImmediateRepairModel

template immNet(tRep)

tRep: ImmediateTran

(a) Rules for the railway model (tr1), dependability model (tr2) and glue (g) transforma-

tions, which are composed to obtain the transformation tr1 ||g tr2.

Glue transformation (g):
pattern glue(e, m)

m: ErrorModel

e: RailwayElement

rule glue(e, m) {
lookup element(e) =>

(pUp, pDown, tRep);
lookup eModel(m) =>

(pUp, pDown, tRep); }

pattern frm(m) { FailureRepairModel(m); }

@Template pattern errorNet(pUp, pDown, tRep) {
Place(pUp); Place(pDown);
TimedTran(tFail); TimedTran(tRep);
Arc(aUpFail); Arc.kind(aUpFail, ArcKind::IN);
Arc.place(aUpFail, pUp); Arc.tran(aUpFail, tFail);
Arc(aFailDown); Arc.kind(aFailDown, ArcKind::OUT);
Arc.tran(aFailDown, tFail); Arc.place(aRepUp, pDown); }

(b) Precondition pattern frmand template frmNet

with Viatra Query textual syntax.

Place1 Transition
(abstract)

Immediate
Tran

Timed
Tran

tokens

IN Arc IN and OUT Arcs

(two objects)

OUT Arc

(c) Graphical syntax for stochastic Petri nets.

Figure 7: View transformation rules for Train Benchmark dependability example.

for the target language built from a restricted subset of pattern

language elements, and (iii) a list of lookups for traceability links

and parameter bindings. A lookup refers to implicit traceability

links between source and target elements created when the source

pattern was matched and the corresponding target elements were

created by the transformation rule referred in lookup,

Example 4.1. View transformation rules of our running example

are defined in Figure 7. A detailed description is provided for the frm
rule (for dependability transformation) in Figure 7b. Its precondition

pattern matches a single FailureRepairModel element m, assuming

that the eModel rule has already been applied in the context of m
as defined by the corresponding lookup. As a result of the rule, the

frmNet template is applied on the target model, which specifies the

creation of two places (pUp and pDown), two TimedTran elements

(tFail an tRep), and two corresponding Arcs between them (from

pUp to tFail and from tFail to pDown). However, due to the right

side lookup directive, the two places pUp and pDown as well as the

transition tRep need to be merged with corresponding target Petri

net elements already created when rule eModel was applied - as

defined by the unification introduced by identical variable names.

4.2 Execution of view transformations

View models are constructed in four steps as shown in Figure 8.

(1) First, each view transformation rule creates a partial model

representing the application of a template predicate in isolation.

Next, (2) the partial models are merged together by linking different

view fragments along equivalences fk based on the lookups in

rules. After that, (3) the merged partial model is refined by various

merge functions to enforce target metamodel constraints. Finally,

(4) as the merged view may contain inconsistencies due to the

contradicting view specifications, a materialization step operation

removes values from the partial model to end up with a regular

target instance model.

I. Reactive (source-incremental) execution. First, the precon-

dition φS of a rule R is matched against the source model by cal-

culating the match set ZS = {Z | 1 ⊑ JφS KPZ }. We explicitly reuse

existing features of the VIATRA framework. Changes in the match

set of source predicates are handled by using the incremental graph

query engine of VIATRA [52]. All subsequent processing steps in

our engine is triggered and executed as a reactive transformation

[53], therefore our entire engine becomes reactive.
II. Template instantiation and model merge. Then each rule

R is applied independently. For each match Z ∈ ZS of rule R a

template partial model T = ⟨ObjT ,IT ⟩ is created for each rule

according to the target predicate φT . This T is constructed as:

• Each variable v of φT is mapped to an object of ObjT
• Constraints of φT are translated to a 1 value in IT :

– If there is a Ci (v) in the predicate φT , and variable v is

mapped to an object o, then IT (Ci)(o) = 1

– If there is a Rj (v1,v2) in the predicate φT , and variable

v1,v2 are mapped to objects o1,o2, then IT (Rj)(o1,o2) = 1

– If there is av1 ∼ v2 in the predicateφ
T
, and variablev1,v2

are mapped to objects o1,o2, then IT (∼)(o1,o2) = 1

• Every other values of IT are 1/2.

Next, each independently created template partial model {T1, . . .Tn }
is copied together into a merged partial modelMP = ⟨ObjMP ,IMP ⟩

in order to represent all templates and lookups.

• ObjMP consists of the union of objects of the template partial

models: ObjT1 ∪ . . . ∪ ObjTn .
• IMP is the same as the ITi of template partial model Ti : for
each objects o1, . . . ,on in a template model Ti , and for each

symbol α ∈ Σ: IMP (α)(o1, . . . ,on) = ITi (α)(o1, . . . ,on)
• Between the templates, lookup rules adds additional ∼ to

add connections templates.

• In all other cases IMP (α)(o1, . . . ,on) is 1/2.

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

Incremental View Transformation
Engine

1. Incremental
Query Engine

3. Inconsistency-tolerant
Partial Target Model

(ITPT)

Source
Model

2. S2PT
Transformation

4. PT2T
Materialization

5. Model
Manipulation

API

Target
Model

Precondition
Queries

Postcondition
Templates

Unit Propagation
Rules

Transformation
Rules

Structural
Constraints

S2PT Trace PT2T Trace

match set change
notifications

partial model
updates

ITPT change
notifications API calls

executes

listens for
matches parses

into statements

incorporates
statements

fixed pointexecutes

satisfiesensures

link to matches
link to
target
objects

Figure 8: Overview of the view transformation

Figure 9: Initial partial model derived from predicates.

The partial model PM obtained after this step is para-complete
[7, 34], thus it may contain 1/2 and 1 values, but no 0 and values.

Example 4.2. Figure 9 illustrates the application of the frm rule

(from Figure 7) for the source models of Rail and Dep from Figure 1.

• First, the precondition of the rule frm checks for the existence

of an FailureRepairModel element, and then the template

errorNet is applied. As a result, the bottom part of the partial

model (marked by a dashed rectangle) is created with model

elements corresponding to the template.

• Since the rule contains a lookup to another rule eModel,
partial model elements created by the two rules need to be

merged. This is initiated by adding equivalence relations ∼

between the corresponding elements defined by variables

such as maUp, maDown and maRep.
• Similar equivalences are declared by applying other transfor-

mation rules from Figure 7 and Figure 9 presents the entire

partial model derived by all rules. The glue rule is a spe-

cial view transformation rule where no target elements are

created but only equivalences are declared.

III. Reactive object merge and propagation. By now, all objects

of the partial model created by different templates are identified

to be merged by marking them with equivalence relations. The

merge functions defined for inconsistency tolerant partial models

in subsection 3.4 are executed in an incremental way.

Each propagation rule prop = φ/αi has a graph predicate φ as

a precondition which can be captured by a regular graph query

evaluated over 4-valued logic. The execution of a propagation rule

can be carried out reactively by extending the constraint rewriting

technique [47] to provide 2-valued may and must graph predicates

for under- and over-approximation. For the incremental execution

of an object merge om, we rely upon incremental maintenance tech-

niques for strongly connected components used for graph queries

with transitive closure [9].

As a result of this step, all 1/2 values are removed, and all equiv-

alent objects (marked by ∼) are merged, thus the partial model

becomes para-consistent [7, 34] as it contains only 0, 1 and values.

However, during the propagation phase, the partial model may

contain both uncertain 1/2 and inconsistent values.

Example 4.3. The effects of object merge and propagation rules

were illustrated in Figure 3a. The two swRep objects of the partial

model created by rules element (yellow dot) and frm (blue diamond).

The Figure 3b case corresponds to a hypothetical source change

where the match of rule frm no longer exists, thus the effects of

the template need to be removed. The exact merge procedure was

discussed in Example 3.3.

IV. Incremental materialization. At the final step, erroneous

elements of the target model are removed by a materialization

step. After materialization, the partial model is a bijection of the

target instance model, thus (1) all structural constraints of the tar-

get metamodel are ensured in accordance with the correctness of

merge functions (see Theorem 3.4) hence our technique is validat-
ing. Moreover, (2) each change in this final partial model can be

incrementally propagated to the target instance model, hence our

approach is (target-)incremental. If a source model change does not

affect a view model model, then no change is propagated to the

target view model. Therefore, (3) our approach is hippocratic.
Concerning the (source-target) consistency of our approach, we

need to separate the case when no symbols need to be removed

during materialization. In such a case, all steps are valid refinement

steps, thus it is guaranteed that the final model Pn refines all applied

templatesTi (Ti ⊑ Pn) which ensures consistency. If an symbol is

removed duringmaterialization, then the cause of this inconsistency

can be shown by a corresponding match of a unit propagation rule

tracing the found issue back to the applied templates, the source

model and the structural constraint of the target metamodel.

Example 4.4. If all the propagation steps are executed for the

partial model of Figure 9 then the target Petri net instance model

of Figure 1 is obtained.

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

5 EVALUATION

Research Questions. Our view transformation approach is fully

implemented as an open source project [2]. We carried out an

experimental evaluation to address three research questions:

RQ1. What is the complexity of different execution phases in our

view transformation engine?

RQ2. What is the performance overhead for the initial run of our

view transformation engine compared to reactive imperative

transformations with explicit traceability?

RQ3. What is the performance overhead for change-driven behav-

ior of our view transformation engine compared to reactive

imperative transformations with explicit traceability?

Case studies. We selected two substantially different view trans-

formation challenges for our investigation. (1) VirtualSwitch is a

filtering transformation taken from [17] where the size of the source

model is significantly larger than the size of the target model. (2)

Dependability is an extended version of the case study used in this

paper which aims to compose two separate transformations in a

way that the target Petri net model is significantly larger than any

of the two source models. We believe that these transformations

are representative for key practical applications of view transfor-

mations: the VirtualSwitch scenario is typical for in traditional view

models with information loss [12] while the transformation chal-

lenges in the Dependability case are common for the formal analysis

of extra-functional properties of systems [24, 40].

Compared approaches. First, we instrumented our ViewModel
transformation approach to enable the clear separation of differ-

ent transformation phases to address RQ1. Then we compare our

approach with two different view transformation styles available

in VIATRA
1
. These solutions use an explicit traceability model (vs.

implicit traceability in our approach) and imperative actions in trans-
formation rules using Java/Xtend (vs. declarative query-based tem-

plates). However, differences in query performance can bemitigated

to a large extent. (1.a) The source-reactive solution [17] uses exactly

the same source queries as our view transformation approach, but

rule priorities had to be set carefully. (1.b) The trace-reactive solu-
tion [28] uses queries with both source and traceability elements

as part of its precondition. Since both the level of compositionality

and the properties of the view transformation engine are different

in these approaches compared to our view transformation approach

(see subsection 2.3), our evaluation may reveal the performance

trade-offs of the increased expressiveness of our approach.

Experiment setup. To investigate the initial transformation runs

(RQ2), our measurement setup contains 5 source models of increas-

ing size. For the VirtualSwitch case, the source models were ranging

from 25K to 425K elements, while the target models were ranging

from 500 to 9K elements. For the Dependability case, the source

models ranged 1K to 25K while the target models ranged from 3K

to 72K. In each case, we measured the initial time for populating the

caches of queries and the execution time of the first transformation,

while the load time of source models was excluded. To address

1
Our repository contains an implementation of the transformations in batch ATL

and a partial implementation in eMoflon, but the different performance optimizations

in those tools would disallow to separate query performance from transformation

performance.

RQ1, we measure how much time the different phases of our view

transformation approach takes during this initial run.

To investigate the change-driven behavior (RQ3), we first cre-

ated 10 different elementary changes (modifications of one element)

and 5 change mixes containing 100 elementary changes each (with

fix ratio between different types of change within each mix). Due to

space restrictions, we only present results for 3 changemixes within

the paper, while all other measurements (and plots) are available

in [1]. Change mix (A) presents a balanced mix of changes, while

types of changes in mixes (B) and (C) were selected from those

elementary changes that caused longer synchronization times in

the Dependability and VirtualSwitch cases, respectively.

Each experiment was executed 30 times after 10 warmup runs

on a cloud-based virtual environment (with 4 CPU, 16GB memory

and 8GB disk size) on Amazon AWS.

Results. Our evaluation results comparing the performance of

core reactive VIATRA transformations and our view model ap-

proach are presented in Figure 10a where the two VIATRA trans-

formations (source vs. trace-reactive) have very similar behavior.

The two key internal phases of our approach separating the source-

to-partial model (S2PT) transformation and partial-model-to-target

(PT2T) materialization stages (with propagation and concretization)

are presented in Figure 10b.

Since the VirtualSwitch case is dominated by the size of the

source model while the Dependability case is dominated by size

of the target model, the logarithmic horizontal (x) axis presents

a combined model size as the geometric mean (

√
|src | ∗ |trд |) of

source and target model sizes (i.e. number of objects) which is

compatible with the logarithmic scale of the plots. The logarithmic

vertical (y) axis presents the execution times (in ms).

The intermediate partial model for the largest source models

had (1) 38K partial model variables and 58K partial model atomic

statements which represents 8K target objects (VirtualSwitch) and
(2) 222K partial model variables and 401K partial model atomic

statements to represent 72K target objects (Dependability).

Discussion. Based on these experimental results, we make the

following observations related to the research questions:

RQ1: Both major view transformation phases appears to grow

polynomially in model size, but more data points (model sizes)

would be necessitated for a firm statement.

Dependability: The construction of the partial target model and

its materialization are both challenging. The S2PT phase (0.4 s on

smallest, but 12 s on largest) and the PT2T (0.3 s on smallest, but

14 s on largest) are within 0.5 orders of magnitude, while PT2T is

slower on large models as it has to perform type inferencing and

complex object merges.

VirtualSwitch: The key challenge is to filter the source model,

thus the intermediate partial model is smaller and necessitates fewer

complex merges than above. Thus PT2T is 1 order of magnitude

faster (S2PT 3.7 s on largest vs PT2T 0.65 s on largest).

RQ2: The initial query took exactly the same time (0.15 s for

largest Dependability, 150 s for largest VirtualSwitch) for each im-

plementation of the transformations, because the same queries and

the same query engine (VIATRA) was used, thus our measurements

highlight the differences in the transformation phase. There was a

MODELS ’18, October 14–19, 2018, Copenhagen, Denmark K. Marussy et al.

● ●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ● ● ● ●

●

●
●

●
●

● ● ● ● ●

● ●
●

●
●

● ● ● ●
●

Initial query Initial transformation (A) Usual mix (B) Depend. stress mix (C) VirtSw. stress mix

D
ependability

V
irtualS

w
itch

10+3 10+4 10+510+3 10+4 10+510+3 10+4 10+510+3 10+4 10+510+3 10+4 10+5

10+0

10+1

10+2

10+3

10+4

10+5

10+0

10+1

10+2

10+3

10+4

10+5

Model size = sqrt(#source elements * #target elements)

E
xe

cu
tio

n
tim

e
(m

s)

Transformation ● Our approach Source−reactive VIATRA Trace−reactive VIATRA

(a) Complexity of source query initialization, initial transformation, and the sychronization of a (A) bal-

ancedmix ofmodifications of 100 operations, andmodificationmixes of 100 operations focused on stress-

ing the (B) Dependability, (C) VirtualSwitch transformation.

●
●

●
●

●

●
●

●
●

●

D
ependability

V
irtualS

w
itch

10+3 10+4 10+5

10+0

10+1

10+2

10+3

10+4

10+5

10+0

10+1

10+2

10+3

10+4

10+5

Model size

E
xe

cu
tio

n
tim

e
(m

s)

Execution step ● S2PT PT2T

(b) Complexity of the two execu-

tion phases in our approach dur-

ing initial transformation.

2 orders of magnitude difference in Dependability (26.7 s vs 0.48 s

on largest), and 1 in VirtualSwitch (4.4 s vs 0.4 s on largest) between

execution times in favor of reactive VIATRA transformations.

RQ3: In the Dependability case, we observed 2.5 orders of mag-

nitude difference in mixes (A) and (B) which cause major changes

in the target model (94 s vs 0.2 s on largest). In mix (C), which cause

significantly fewer target changes as only attributes of places are

modified, VIATRA was instantaneous, but our approach also took

only 10–150ms depending on model size to process the change.

In the VirtualSwitch case, VIATRA was instantaneous even in

the modification mix specifically designed to cause target model

changes. In (A) and (C), our approach took around 100-150 ms,

which is significantly less than the initial transformation.

Conclusion. Our approach is more sensitive to target model size

than source model size. The incremental behavior of our approach

is also dominated by the size of the implied target change. For small

target deltas, the overhead of our approach was less than 150ms.

The S2PT phase takes more time for complex model filtering and

weaving challenges, while PT2T is slower when it has to materialize

a large partial model. Unlike reactive VIATRA [17, 53], our approach

achieves compositional and consistent view transformations (i.e.

no manual adaptations to compose the original transformations).

The performance penalty of this increased expressiveness is about

1-2 orders of magnitude increase in execution time compared to an

industrial model transformation engine.

Threats to validity. To mitigate internal validity, 10 warm-up

runs were included prior to the measurements to decrease the

fluctuation of runtime caused by JVM. While our measurements

were executed in the cloud (AWS), the same virtual machine was

used for to compare the different approaches in a fair way.

To address external validity, we selected two transformations

with substantially different characteristics (massive filtering in Vir-
tualSwitch vs. complex merging inDependability). Train Benchmark

models serve as a common source model used in both cases, which

may reduce the generalizability of our result to other domains. How-

ever, the Train Benchmark [51] has been actively used within the

MDE community as a performance benchmark for different query

and transformation tools, thus external validity is not compromised.

6 CONCLUSIONS AND FUTUREWORK

We proposed a fully compositional view transformation language

executed by a reactive, incremental, validating and inconsistency-

tolerant view transformation engine. Our approach reuses the VIA-

TRA Graph Query Language [52] to define target fragments which

are merged during transformation using the novel concepts of

inconsistency tolerant partial models based on 4-valued logic foun-

dations to gracefully handle temporal inconsistencies during trans-

formations. The execution engine reuses existing support for incre-

mental graph queries as available in the VIATRA framework [53]

to provide reactive behavior, while graph predicates used in merge

functions also enable incremental propagation of changes while

ensuring structural constraints of the target language.

Our experimental evaluation also highlighted that such an in-

creased expressiveness on the view transformation language level

does not come for free as the core (imperative and reactive) VIATRA

engine executes 1-2 orders of magnitude faster for the case studies

- but the individual transformations had to be modified manually

to achieve the necessitated merge functionality.

The detailed evaluation of the different execution phases also

points to key directions for future work for a hybrid view transfor-

mation engine. A sophisticated static analyzer may automatically

reveal transformation rules where compositionality falls into amore

simple class, thus many optimizations available in existing view

transformation tools would become amenable to improve perfor-

mance. Nevertheless, our view transformation approach already

provides strong support for the most challenging composition prob-

lems for a very expressive view transformation language.

Incremental View Model Synchronization Using Partial Models MODELS ’18, October 14–19, 2018, Copenhagen, Denmark

REFERENCES

[1] 2018. Supplementary Materials for Incremental View Model Synchronization

Using Partial Models. (2018). https://github.com/FTSRG/publication-pages/wiki/

Incremental-View-Model-Synchronization-Using-Partial-Models

[2] 2018. ViewModel project repository. (2018). https://github.com/ftsrg/viewmodel

[3] Marco Ajmone Marsan, Gianfranco Balbo, Gianni Conte, Susanna Donatelli, and

Giuliana Franceschinis. 1994. Modelling with Generalized Stochastic Petri Nets.
John Wiley & Sons.

[4] Anthony Anjorin, Sebastian Rose, Frederik Deckwerth, and Andy Schürr. 2014.

Efficient Model Synchronization with View Triple Graph Grammars. In ECMFA
2014 (LNCS), Vol. 8569. Springer.

[5] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele

Taentzer. 2010. Henshin: Advanced Concepts and Tools for In-Place EMF Model

Transformations. In MODELS 2010 (LNCS), Vol. 6394. Springer, 121–135.
[6] Olivier Beaudoux, Arnaud Blouin, Olivier Barais, and Jean-Marc Jézéquel. 2010.

Active Operations on Collections. In MODELS 2010 (LNCS), Vol. 6394. Springer.
[7] Nuel D. Belnap. 1977. A Useful Four-Valued Logic. In Modern Uses of Multiple-

Valued Logic. Springer, 5–37.
[8] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán

Ujhelyi, and Dániel Varró. 2015. Viatra 3: A Reactive Model Transformation

Platform. In ICMT 2015 (LNCS), Vol. 9125. Springer, 101–110.
[9] Gábor Bergmann, István Ráth, Tamás Szabó, Paolo Torrini, and Dániel Varró. 2012.

Incremental PatternMatching for the Efficient Computation of Transitive Closure.

In ICGT 2012: Graph Transformations (LNCS), Vol. 7562. Springer, 386–400.
[10] Gábor Bergmann, István Ráth, Gergely Varró, and Dániel Varró. 2012. Change-

driven model transformations. Softw. Syst. Model. 11, 3 (2012), 431–461.
[11] Andrea Bondavalli, Ivan Mura, and István Majzik. 1999. Automatic Dependability

Analysis for Supporting Design Decisions in UML. In 4th IEEE International
Symposium on High-Assurance Systems Engineering (HASE ’99). IEEE Computer

Society, 64–74.

[12] Hugo Bruneliere, Erik Burger, Jordi Cabot, and Manuel Wimmer. 2017. A feature-

based survey of model view approaches. Softw. Syst. Model. (2017).
[13] Hugo Brunelière, Jokin Garcia Perez, Manuel Wimmer, and Jordi Cabot. 2015.

EMF Views: A View Mechanism for Integrating Heterogeneous Models. In ER
2015 (LNCS), Vol. 9381. Springer, 317–325.

[14] Peter Buneman, Mary Fernandez, and Dan Suciu. 2000. UnQL: a query language

and algebra for semistructured data based on structural recursion. VLDB J. 9, 1
(2000).

[15] Marsha Chechik, Shiva Nejati, and Mehrad Sabetzadeh. 2012. A relationship-

based approach to model integration. Innov. Syst. Softw. Eng. 8, 1 (2012), 3–18.
[16] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.

2010. JTL: A Bidirectional and Change Propagating Transformation Language.

In SLE 2010 (LNCS), Vol. 6563. Springer, 183–202.
[17] Csaba Debrezeni, Ákos Horváth, Ábel Hegedüs, Zoltán Ujhelyi, István Ráth, and

Dániel Varró. 2014. Query-driven incremental synchronization of view models.

In VAO ’14. ACM, 31–38.

[18] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. 2011. Specifying Overlaps

of Heterogeneous Models for Global Consistency Checking. In MODELS 2010
(LNCS), Vol. 6627. Springer, 165–179.

[19] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (Eds.). 1999. Handbook
of Graph Grammars and Computing by Graph Transformation. World Scientific

Publishing Co., Inc., River Edge, NJ, USA.

[20] Gregor Engels, Reiko Heckel, Gabriele Taentzer, and Hartmut Ehrig. 1997. A

Combined Reference Model- and View-Based Approach to System Specification.

Int. J. Softw. Eng. Knowl. Eng. 7, 4 (1997), 457–477.
[21] Michais Famelis, Rick Salay, and Marsha Chechik. 2012. Partial models: Towards

modeling and reasoning with uncertainty. In 34th Int. Conf. Softw. Eng. IEEE.
[22] Hamid Gholizadeh, Zinovy Diskin, and Tom Maibaum. 2014. A Query Struc-

tured Approach for Model Transformation. In Workshop on Analysis of Model
Transformations (CEUR Workshop Proceedings), Vol. 1277. CEUR-WS.org, 54–63.

[23] Holger Giese, Stephan Hildebrandt, and Leen Lambers. 2014. Bridging the gap

between formal semantics and implementation of triple graph grammars. Softw.
Syst. Model. 13 (2014), 273–299. Issue 1.

[24] Stephen Gilmore, László Gönczy, Nora Koch, Philip Mayer, Mirco Tribastone, and

Dániel Varró. 2010. Non-functional properties in the model-driven development

of service-oriented systems. Software & Systems Modeling 10, 3 (2010), 287–311.

https://doi.org/10.1007/s10270-010-0155-y

[25] Joel Greenyer. 2006. A study of technologies for model transformation: Reconciling
TGGs with QVT. Diplomarbeit. Universität Paderborn.

[26] Joel Greenyer and Ekkart Kindler. 2007. Reconciling TGGs with QVT. InMODELS
2007 (LNCS), Vol. 4735. Springer, 16–30.

[27] David Hearnden, Michael Lawley, and Kerry Raymond. 2006. Incremental Model

Transformation for the Evolution of Model-Driven Systems. In MODELS 2006
(LNCS), Vol. 4199. Springer, 321–335.

[28] Ábel Hegedüs, Ákos Horváth, István Ráth, Rodrigo Rizzi Starr, and Dániel Varró.

2016. Query-driven soft traceability links for models. Softw. Syst. Model. 15, 3
(2016), 733–756.

[29] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, and Keisuke

Nakano. 2011. GRoundTram: An integrated framework for developing well-

behaved bidirectional model transformations. In ASE 2011. IEEE.
[30] Sochiro Hidaka and Massimo Tisi. 2016. Partial Bidirectionalization of Model

Transformation Languages. Technical Report. https://hidaka.cis.k.hosei.ac.jp/

research/papers/scp2016.pdf

[31] Johannes Jakob, Alexander Königs, and Andy Schürr. 2006. Non-materialized

Model View Specification with Triple Graph Grammars. In ICGT 2006 (LNCS),
Vol. 4178. Springer, 321–355.

[32] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008. ATL: A

Model Transformation Tool. Sci. Comput. Program. 72, 1–2 (2008), 31–39.
[33] Frédéric Jouault and Massimo Tisi. 2010. Towards Incremental Execution of ATL

Transformations. In ICMT 2010 (LNCS), Vol. 6142. Springer, 123–137.
[34] Norihiro Kamide and Hitoshi Omori. 2017. An Extended First-Order Belnap-

Dunn Logic with Classical Negation. In LORI 2017 (LNCS), Vol. 10455. Springer,
79–93.

[35] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. [n. d.]. The Epsilon

Transformation Language. In ICMT 2008 (LNCS), Vol. 5063. Springer, 46–60.
[36] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. 2006. Merging

Models with the Epsilon Merging Language (EML) (LNCS), Vol. 4199. Springer,
215–229.

[37] Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and Manuel

Wimmer. 2010. Explicit Transformation Modeling. In MODELS 2009 (LNCS),
Vol. 6002. Springer, 240–255.

[38] Marius Lauder, Anthony Anjorin, Gergely Varró, and Andy Schürr. 2012. Bidi-

rectional Model Transformation with Precedence Triple Graph Grammars. In

ECMFA 2012 (LNCS), Vol. 7349. Springer, 287–303.
[39] Erhan Leblebici, Anthony Anjorin, Lars Fritsche, Gergely Varró, and Andy Schürr.

2017. Leveraging Incremental Pattern Matching Techniques for Model Synchro-

nisation. In ICGT 2017 (LNCS), Vol. 10373. Springer, 179–195.
[40] IstvánMajzik, András Pataricza, and Andrea Bondavalli. 2002. Stochastic Depend-

ability Analysis of System Architecture Based on UML Models. In Architecting
Dependable Systems (LNCS), Vol. 2677. Springer, 219–244.

[41] Salvador Martínez, Massimo Tisi, and Rémi Douence. 2017. Reactive model

transformation with ATL. Science of Computer Programming 136 (2017), 1–16.

[42] SergeyMelnik, Philip A. Bernstein, Alon Halevy, and Erhard Rahm. 2005. Support-

ing executable mappings in model management. In SIGMOD ’05. ACM, 167–178.

[43] Bart Meyers. 2016. A Multi-Paradigm Modelling Approach to Design and Evolu-
tion of Domain-Specific Modelling Languages. Ph.D. Dissertation. Universiteit
Antwerpen.

[44] Object Management Group. 2016. MOF Query/View/Transformation Specifica-

tion. (2016). http://www.omg.org/spec/QVT/1.3/ Version 1.3.

[45] Mehrdad Sabetzadeh and Steve Easterbrook. 2006. View merging in the presence

of incompleteness and inconsistency. Requir. Eng. 11, 3 (2006), 174–193.
[46] Andy Schürr. 1995. Specification of Graph Translators with Triple Graph Gram-

mars. In WG 1994 (LNCS), Vol. 903. Springer, 151–163.
[47] Oszkár Semeráth and Dániel Varró. 2017. Graph Constraint Evaluation over

Partial Models by Constraint Rewriting. In ICMT 2017. 138–154.
[48] Hui Song, Gang Huang, Franck Chauvel, Wei Zhang, Yanchun Sun, Weizhong

Shao, and Hong Mei. 2011. Instant and Incremental QVT Transformation for

Runtime Models. In MODELS 2011 (LNCS), Vol. 6981. Springer, 273–288.
[49] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:

Eclipse Modeling Framework 2.0 (2nd ed.). Addison-Wesley Professional.

[50] Perdita Stevens. 2010. Bidirectional model transformations in QVT: semantic

issues and open questions. Soft. Syst. Model. 9, 7 (2010).
[51] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2017. The Train

Benchmark: cross-technology performance evaluation of continuous model

queries. Softw. Syst. Model. (2017).
[52] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó,

István Ráth, Zoltán Szatmári, and Dániel Varró. 2015. EMF-IncQuery: An inte-

grated development environment for live model queries. Sci. Comput. Program.
98, 1 (2015), 80–99.

[53] D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, and Z. Ujhelyi. 2016. Road

to a reactive and incremental model transformation platform: three generations

of the VIATRA framework. Software and Systems Modeling 15, 3 (2016), 609–629.

[54] Dániel Varró, Oszkár Semeráth, Gábor Szárnyas, and Ákos Horváth. 2018. To-

wards the Automated Generation of Consistent, Diverse, Scalable and Realistic

GraphModels. InGraph Transformation, Specifications, and Nets. LNCS, Vol. 10800.
Springer, 285–312.

[55] Edward D. Willink. 2017. The Micromapping Model of Computation; The Foun-

dation for Optimized Execution of Eclipse QVTc/QVTr/UMLX. In ICMT 2017
(LNCS), Vol. 10374. Springer, 51–65.

https://github.com/FTSRG/publication-pages/wiki/Incremental-View-Model-Synchronization-Using-Partial-Models
https://github.com/FTSRG/publication-pages/wiki/Incremental-View-Model-Synchronization-Using-Partial-Models
https://github.com/ftsrg/viewmodel
https://doi.org/10.1007/s10270-010-0155-y
https://hidaka.cis.k.hosei.ac.jp/research/papers/scp2016.pdf
https://hidaka.cis.k.hosei.ac.jp/research/papers/scp2016.pdf
http://www.omg.org/spec/QVT/1.3/

	Abstract
	1 Introduction
	2 A Overview of Compositional view transformations
	2.1 Levels of compositional definitions
	2.2 Properties of view transformation engines
	2.3 Related work

	3 Inconsistency-tolerant partial models
	3.1 Preliminaries: Foundations of metamodels
	3.2 Inconsistency-tolerant partial models
	3.3 Graph predicates
	3.4 Merge functions for partial models

	4 View Model Transformations
	4.1 View definition by graph patterns
	4.2 Execution of view transformations

	5 Evaluation
	6 Conclusions and future work
	References

