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Abstract Tools to support modelling in system and
software engineering are widespread, and have reached
a degree of maturity where their use and availability
are accepted. Tools to support Model-Driven Develop-
ment (MDD) – where models are manipulated and man-
aged throughout the system/software engineering lifecy-
cle – have, over the last ten years, seen much research
and development attention. Over the last ten years, we
have had significant experience in the design, develop-
ment and deployment of MDD tools in practical settings.
In this paper, we distill some of the important lessons
we have learned in developing and deploying two MDD
tools: Epsilon and VIATRA. In doing so, we aim to iden-
tify some of the key principles of developing successful
MDD tools, as well as some hints of the pitfalls and risks.

1 Introduction

The last ten years have seen the development of nu-
merous tools for supporting Model-Driven Development
(MDD): the manipulation and analysis of structured de-
scriptions. MDD tools such as ATL [23], xText [42], Ep-
silon [16], VIATRA [5], ATOM3 [15], KerMeta [29], Ac-
celeo [1], FUJABA [13], MOFLON [3], GReAT [2] and
many others have been developed and deployed in a vari-
ety of software and systems engineering contexts. Many
of these tools are the result of research and development
on specific industrial use cases; others are the result of
theoretical and conceptual research. Some are now be-
ing applied on large-scale software engineering projects
and are being turned into products. As such, the field of
MDD tool development has reached a sufficient level of
maturity for its results to be assessed, and distillation of
lessons learned from the development of these tools can
take place.

This paper aims to identify some of the principles
underpinning the design, implementation and evolution

of MDD tools. The principles will be distilled from an
analysis of the development of two MDD tools that are
used in practice: VIATRA and Epsilon. These tools are
used in industry, on real projects, and have developed
in very different ways. Arguably, some of the lessons
learned from the development of these tools can inform
the development of new MDD tools, and can also be
used to support the evolution of existing tools. Our ob-
jective is not to propose the “ideal” MDD tool; such a
tool is unlikely to exist. However, the principles under-
pinning the development of MDD tools that are widely
used in practice can help in assessing existing tools, and
in improving them.

To elicit and present the lessons learned, the paper
will summarise the development of Epsilon and VIA-
TRA, starting from initial use cases and system require-
ments, leading to an initial tool architecture. Evolution-
ary steps (e.g., refactorings) will be discussed and pre-
sented, along with the triggers – which included both re-
quests for new functionality, as well as requests related to
non-functional characteristics such as performance and
scalability – that led to these refactorings.

The paper is structured as follows. Section 2 de-
scribes the development and evolution of Epsilon and
VIATRA, focusing on initial motivation and scenarios,
as well as some of the most important evolutionary steps.
Section 3 distills some of the key take-home messages
from these developments. We conclude in Section 4.

2 Evolution of MDD Tools

This section presents the development and evolution of
two MDD tools: Epsilon and VIATRA. Both Epsilon and
VIATRA are predominantly textual tools, featuring tex-
tual languages for specifying and executing MDD tasks.
Each part describes the tool as it currently exists, then
talks about its development cycle. The development of
Epsilon starts with an initial use case, and then moves to
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a discussion of refactoring stages, including both techni-
cal refactorings (i.e., to improve performance) and con-
ceptual refactorings. The development of VIATRA starts
from model transformation requirements, including sig-
nificant requirements for performance, and then broad-
ens its scope to include other MDD tasks.

2.1 The design and evolution of Epsilon

2.1.1 Epsilon Epsilon [16] is a tool for model manage-
ment, specifically for analysing and manipulating models
in specific ways. More precisely, it is a set of textual task-
specific model management languages, and a framework
for implementing new model management languages by
exploiting the existing ones. It is a component of the
Eclipse Model Framework Technology (EMFT) project.

From a user’s perspective, Epsilon provides a set of
inter-related and largely interoperable languages that
can be used to implement and execute various model
management tasks. The current architecture of Epsilon
is illustrated in Figure 1.

Epsilon Model Connectivity

Epsilon Object Language

EMF driver MDR driver XML driver Z driver

M2M Transformation (ETL) M2T Transformation (EGL)

Model Comparison (ECL) Model Merging (EML)

Model Refactoring (EWL) Model Validation (EVL)

Model Migration (Flock) Unit Testing (EUnit)

Fig. 1 Epsilon model management platform

Epsilon consists of a set of textual languages (each
including parsers, editing tools, and interpreters/virtual
machines), a connectivity framework (more on that later),
and some additional tools to help ease development. Each
language has further development tools (e.g., syntax-
aware editors). Each language aims to support a par-
ticular model management task. More specifically, there
is a language for direct manipulation of models (EOL)
[26], as well as languages for model merging (EML) [24],
model comparison (ECL) [25], model-to-model transfor-
mation (ETL) [27], model validation (EVL) [28], model-
to-text transformation (EGL) [36], model migration (Flock)

[35]) and unit testing of model management operations
(EUnit).

The core language in Epsilon is EOL; all other lan-
guages in Epsilon reuse EOL in some way, as it pro-
vides the conceptually common features required for ma-
nipulating and analysing models. In particular, it sup-
ports navigation of models (via OCL-like expressions
and queries), modification of models (via assignment
statements), and multiple-model access capabilities. How-
ever, EOL was – at least conceptually – not the first lan-
guage to be developed; it emerged from the development
of a different Epsilon language, as we now discuss.

2.1.2 Initial use case and architecture The use case that
triggered the development of Epsilon was one of model
merging. Model merging is the process of combining two
or more source models (possibly from different modelling
languages) into a target model (which may conform to
a completely different metamodel than the source mod-
els). The model merging scenarios that were of interest
were two-fold:

– support for version control on models, including com-
bining different versions of models, identifying differ-
ences, etc.

– support for merging behavioural models (e.g., state
machines, sequence diagrams).

Our research suggested that the process of model merg-
ing could be separated into four stages:

1. A comparison phase, where correspondences between
equivalent elements of source models are identified;

2. A conformance checking phase, where corresponding
elements identified in the previous phase are exam-
ined to identify conflicts that may render merging
impossible. This phase was particularly important
for version control, i.e., when merging models of the
same metamodel.

3. A merging phase, where corresponding and conform-
ing elements are combined; and

4. A reconciliation phase, where any inconsistencies in-
troduced in the merging phase are resolved.

What is revealing about this separation is that each
phase – comparison, ‘checking’, merging – is an oper-
ation that we might want to apply to models. Indeed, it
was this observation that suggested that model merging
itself was a composite operation that can be applied to
models – that is, merging was constructed from other
model management operations.

This raised the question what did model management
operations have in common? To this end, we investi-
gated model transformation, merging, constraint check-
ing (e.g., via OCL) and model-to-text transformation,
and identified a small set of features that all these oper-
ations have in common:

– navigating models;
– accessing multiple models simultaneously;
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– evaluating expressions on models;
– modifying models

We also noticed that different MDD tools tended to
reimplement many of these common features using non-
standard syntaxes, thus rendering interoperability of tools
more difficult (in part because syntax transformation
would have to take place) We argued [26] that there was
substantial value in encapsulating these features so that
they could be reused in different operations that required
them. This was the genesis of the core language of Ep-
silon – EOL – and the conceptual architecture depicted
in Figure 1.

In parallel with this conceptual process, we obtained
(from our collaborators who provided the initial use case)
constraints and requirements on the tools we were com-
mitted to produce. In particular, the collaborators re-
quired a textual interface to any tools (the intended users
preferred a textual interface instead of a graphical one).
It was also perceived that a textual interface, and textual
MDD languages, were preferred for fine-grained tasks
such as specifying how models were navigated, evaluat-
ing expressions, etc. This was unsurprising and paral-
lels the development of formal specification languages,
as well as model management langauges such as OCL.
At this time we also made a decision to implement our
MDD tools in an interpretive style (as opposed to a code
generator style), in order to quickly build a proof-of-
concept, and to allow us more flexibility in evolving the
tools quickly in the future. Since we were not unduly
concerned with performance at this stage, this seemed a
judicious decision.

Tools for EOL were then defined and implemented
(i.e., parsers, editors, an interpreter). These were devel-
oped largely without following an MDD approach – we
exploited grammarware technology and well-understood
concepts from the compiler and interpreter community.
This was because our focus was on rapidly developing
novel MDD tools (based around the conceptual analysis
of model management operations described earlier) and
supporting industrial MDD use cases, instead of ‘eating
our own dog food’ and developing MDD tools following
an MDD approach.

Based on the tools for EOL, we then implemented a
merging language – EML [24] – to support the scenarios
mentioned earlier. EML, a rule-based merging language,
supported the phases of merging mentioned earlier, while
reusing the core features of EOL to support navigation
and multiple-model access. However, even at this stage
we identified redundancy in the core features of EML.
We discuss this in the next section.

The intent with the design of EOL, from the start,
was for it to be reused in defining and implementing
other model management operations. At this stage, we
had identified model-to-text transformation as a repre-
sentative example, as well as refactoring; these will be
discussed in a following section. Before that, however,
we discuss a conceptual refactoring.

2.1.3 Conceptual refactoring After designing and im-
plement EOL and EML, and fulfilling our initial require-
ments and use cases, we took a step back and studied
the core features of EML. In particular, we observed two
recurring patterns in the logic of the merging programs
that we were writing in EML:

– Significant parts of the EML programs focused on
writing the expressions that would compare the mod-
els. In many places, these expressions would be re-
peated. A reusable operation concept was added to
EOL to simplify EML programs, but even with this
there was still substantial opportunities for reuse of
comparison logic that was not supported by EOL (or
EML).

– Some of the rules in the EML programs simply trans-
formed elements from one source language into the
target language. Effectively, some EML rules were
just transformation rules.

These observations led to the first major conceptual
refactoring of Epsilon: from a language consisting of a
core set of features (EOL) and a merging language, to a
platform of languages including EOL and EML, as well
as a language for transformation (ETL).

Effectively, the syntax and semantics of EML informed
the design of the transformation language, ETL. We
studied the patterns of transformation that were ex-
pressed in EML, and designed a syntax (and an execu-
tion engine) that would efficiently and concisely support
these patterns. This in turn simplified the design and
structure of EML; no longer would EML programs have
to express transformation logic as well as merging logic.

In parallel with the development of ETL, and the
refactoring of EML, we investigated the comparison logic
inherent in EML programs in more detail. As noted
above, we identified many situations where comparison
operations were expressed – artificially – using EOL, as
well as unexploited opportunities for reuse. As a result,
we defined a new model management like, ECL, to sup-
port the definition of comparison operations. As with
ETL and EML, ECL reused EOL to provide basic fea-
tures such as model navigation and expression definition.
The definition of ECL further simplified the definition of
EML. Now EML reused ETL for transformation rules,
ECL for identifying correspondences between models,
and only defined the logic of model merging itself.

This was a substantial conceptual refactoring, which
had a significant impact on end-users of Epsilon. In terms
of the underlying infrastructure of Epsilon there was less
of an impact, in part because much of the functionality
needed to support ETL and ECL already existed.

2.1.4 Infrastructural refactoring At this stage in Ep-
silon’s evolution, the platform had a significant num-
ber of users interested in transformation, merging (ver-
sion control, specifically) and model comparison. As the



4 Paige and Varró

number of users increased, requests for improved per-
formance and for handling larger models became more
prevalent.

The collection of requests for improved performance
led to a number of infrastructural refactorings:

– Because of requirements from industry partners, Ep-
silon from the start supported models of arbitrary
types, including EMF/Ecore, MDR (MOF) and pure
XML. This was provided via a connectivity layer that
abstracted Epsilon programs (e.g., in EML) from the
technology used to store the models. This meant that
Epsilon users could write programs without having to
be concerned with their models’ representations, but
it also meant that executing a statement on a model
incurred overhead (since the connectivity layer had
to redirect calls to specific technology handlers). As
a result, and also because of complex licensing issues
(e.g., MDR/MOF is licensed differently from EM-
F/Ecore), tailored versions of Epsilon became avail-
able, particularly standalone versions for EMF/Ecore
models, and MDR models. This improved efficiency
significantly.

– Some users requested the ability to obtain more de-
tailed, fine-grained information about the performance
of specific parts of the Epsilon programs. A profiler
was developed which supported this.

– Under the hood, Epsilon consists of a number of
parsers (implemented using ANTLR) and a num-
ber of virtual machines that orchestrate the execu-
tion of Epsilon programs. In parallel with the refac-
toring of the connectivity layer, above, the way in
which Epsilon virtual machines interact was simpli-
fied. There were two side-effects of this. Firstly, an
explicit user-accessible way for orchestrating Epsilon
programs was now needed, e.g., so that users could
run a sequence of programs one after the other. ANT
was used as a lightweight mechanism for this. Sec-
ondly, a number of patterns were identified for defin-
ing new Epsilon languages from existing ones; ar-
guably these patterns became more apparent after
simplifying the ways in which Epsilon languages in-
teract at execution time.

– For a number of users, performance issues arose be-
cause of the way in which they had constructed their
(very large) models: typically as a set of smaller mod-
els with cross-references. An analysis demonstrated
that maintaining these cross-references was partic-
ularly expensive as the models changed. As a re-
sult, the infrastructure of Epsilon evolved to support
a new framework for cross-model references, called
Concordance [34], targeted specifically at this prob-
lem.

This period of infrastructure consolidation and refac-
toring took approximately a year (though some of the
research results were published much later), and in our
view spending significant effort on improving the perfor-

mance of the infrastructure paid off later, particularly
in terms of retaining users for whom performance was a
significant concern.

An issue that arose in this period was the integra-
tion of Epsilon with other modelling tools (e.g., for cre-
ating UML models) and more general-purpose software
engineering tools (e.g., compilers, debuggers, code profil-
ers). Integration with modelling tools – such as Rational
Rose or MagicDraw – was carried out loosely, via in-
teroperability at the modelling technology level, e.g., in
terms of XMI, XML, or other persistent format. Inte-
gration with software engineering tools was also carried
out loosely via a persistent format (e.g., generated code)
and through use of the aforementioned ANT tasks. As a
result the development of Epsilon largely avoided some
of the difficult issues – e.g., complex API interpretation
– associated with interoperating with external tools.

2.1.5 New tasks After this period of work on Epsilon’s
infrastructure, we entered a phase of experimentation
with new tasks and MDD scenarios. A number of new
languages, supporting new operations, emerged from this
phase, including the model-to-text language EGL [36],
an inter-model consistency checking and validation lan-
guage, EVL, an update-in-place transformation language,
EWL, a model migration language, Flock, and a num-
ber of development tools, including EuGENia, an appli-
cation of Epsilon for generating the models required for
GMF editors.

The stages by which these languages developed had
certain commonalities:

– Typically, we were given or obtained an MDD sce-
nario, e.g., refactoring a model.

– We attempted to implement the scenario using ex-
isting Epsilon languages or tools. EOL, for example,
is computationally complete and is sufficient for im-
plementing any MDD task; using EOL is not nec-
essarily the most suitable approach, as the resulting
program may be complicated, cumbersome, or diffi-
cult to reuse or maintain.

– The attempt to use an existing Epsilon language for
solving an MDD problem sometimes did not suc-
ceed; sometimes the results were unsatisfactory (e.g.,
less maintainable). In these situations, as explained
in [30], we attempted to identify the recurring logical
patterns in the Epsilon code we had written, to give
us requirements for a new Epsilon language.

– We defined and implemented an abstract and con-
crete syntax for the new Epsilon language (reusing,
where possible, existing syntaxes and machines). A
number of language patterns of reuse were identified
from this, and are explained in detail in [30].

Through this general process, EVL, EWL and Flock
were all developed. EGL (the model-to-text language)
was developed differently: the requirements for model-
to-text transformation were not supported by any exist-
ing Epsilon language, and as such we did not carry out
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significant experiments with EOL (or other languages)
before implementing EGL.

By this stage in the evolution of Epsilon, there was a
clear meta-pattern: each language was logically coher-
ent, supporting one task (e.g., comparison, model-to-
model transformation, evolution, etc). Languages that
overlapped with others, thus leading to duplication in
functionality, were to be refactored and simplified, and
those interactions between languages made explicit, at
the programmer level, through use of the ANT workflow.
This key idea continues to influence the development of
Epsilon to this day.

A reasonable question to ask – and, indeed, we did
ask it during the stages of development of new Epsilon
languages – was whether it would have been better to
develop Epsilon as a single, general-purpose language
(e.g., just EOL) for model management, instead of a
family of small interoperable languages. We do not yet
have a clear answer to this question yet, but evidence
so far suggests that there is likely a minimum level of
complexity to an MDD task that would benefit from the
development of a task-specific language (as opposed to
use of a general-purpose language). An example of this
arose with the development of Flock, Epsilon’s model
migration language. Migration (like other MDD tasks)
can be implemented and carried out with EOL directly.
However, Flock was developed after some experiments
with using EOL (and other Epsilon languages) demon-
strated that it was at the wrong level of abstraction, and
substantial amounts of boilerplate code had to be writ-
ten to accomplish a conceptually simple task. A simple
migration task implemented in Flock may take only a
few lines of code, whereas the same task in EOL may
take many dozens of lines of code (if not more). This
observation was made for many of the tasks supported
by Epsilon’s languages, and while not conclusively in-
dicating that task-specific languages were always more
compact, at least provided some preliminary evidence
that they could be more compact than general-purpose
languages for the same problems.

2.2 The design and evolution of VIATRA

2.2.1 The VIATRA model transformation framework
The main objective of the VIATRA2 (VIsual Automated
model TRAnsformations) framework [5,38] is to provide
a general-purpose support for the entire life-cycle of en-
gineering model transformations including the specifica-
tion, design, execution, validation and maintenance of
transformations within and between various modeling
languages and domains.

VIATRA2 primarily aims at designing model trans-
formations to support precise model-based systems de-
velopment with the help of invisible formal methods. In-
visible formal methods are hidden by automated model
transformations projecting system models into various

mathematical domains (and, preferably, vice versa). The
VIATRA2 model transformation framework is available
as an official (open source) Eclipse Generative Modeling
Tools (GMT) subproject [41].

The main specialities of VIATRA2, when compared
with other MDD tools, include

– a model space for hierarchical and uniform represen-
tation of large models and metamodels based upon
VPM metamodeling [39]

– transformation language with both declarative and
imperative features based upon popular formal math-
ematical techniques of graph transformation (GT)
and abstract state machines (ASM) [38]

– a high performance transformation engine support-
ing (1) incremental model transformations, (2) event-
driven live transformations [31] where complex model
changes may trigger execution of transformations,
and (3) handling well over 1,000,000 model elements
[6]

– with main target application domains in model trans-
formations for model-based tool integration [4] and
model-based analysis [17].

Target application domains The most traditional ap-
plication area for VIATRA2 transformations – starting
as early as 1998 – is to support the transformation-based
dependability analysis of system models [12] taken from
various application areas (safety-critical and/or embed-
ded systems, robust e-business applications, middleware,
service oriented architecture) described using various mod-
eling languages (BPM, UML, etc.) during a model-driven
systems engineering process. Such a dependability anal-
ysis typically also includes the verification & validation,
the testing, the safety and security analysis as well as the
early assessment of non-functional characteristics (such
as reliability, availability, responsiveness, throughput, et-
c.) of the system under design. In addition, model trans-
formations for specification, design, deployment, opti-
mization or code generation in traditional model-driven
systems engineering are also focal areas for VIATRA2.

Target audience and end users The VIATRA2 frame-
work served as the underlying model transformation tech-
nology of many European projects in the field of de-
pendable embedded systems and service-oriented appli-
cations. In this way, academic and industrial partners in
these projects became the first end users of the frame-
work. Regular usage of the framework has been reported
at ARCS and TU Vienna (Austria), University of Leices-
ter (UK), LMU Munich (Germany), TU Kaiserslautern
(Germany), University of Pisa (Italy), Georgia Univer-
sity of Technology (USA) and University of Waterloo
(Canada). The VIATRA2 framework also serves as the
foundation of an industrial design toolkit for automotive
systems developed at OptXware Ltd. for the AUTOSAR
architecture.



6 Paige and Varró

2.2.2 The evolution of VIATRA

The first version of VIATRA The first version of the
VIATRA model transformation framework [14] was de-
veloped between 2000 and 2004. Source and target meta-
models and models were exported and imported in XMI
1.0 format. Transformation rules were captured in an
off-the-shelf UML tool using a dedicated UML profile
for model transformations. These transformation rules
were translated into a Prolog representation to be exe-
cuted by the SWI Prolog engine after manually writing
some glue code in Prolog for controlling the transforma-
tion process. While this first Prolog version of VIATRA
already offered acceptable performance for most trans-
formations, transformation development was a “one-man
show” due to lack of knowledge of Prolog.

The framework was completely rewritten from scratch
in Java in 2004 based upon Eclipse. Since then, the sys-
tem continuously improved along three major and sev-
eral minor releases with contributions from 7 PhD stu-
dents, several MSc students, and some employees of Op-
tXware, a spin-off company of the research group.

Back in 2004, our main design goals were to develop
a framework that

1. was usable by an average software engineer (or at
least by own MSc students),

2. integrated well with existing modeling languages (e.g.
UML, SysML, BPEL) and technologies (e.g. Java,
XML)

3. used a semantically well-founded transformation lan-
guage strongly related to formal notations like graph
transformation and abstract state machines, and

4. offered significantly better runtime performance com-
pared to graph/model transformation tools that ex-
isted in 2004.

Architectural overview of VIATRA2 The overall archi-
tecture of VIATRA2 is summarized in Fig. 2. Models,
metamodels and transformations are stored in the VPM
model space, where all these artefacts can be manipu-
lated via the core model management interfaces. While
entire model spaces (with related models and transfor-
mations) can be loaded and saved in an XML based
generic representation, in practice, model spaces in VIA-
TRA2 are typically populated by using importers adapted
to native formats of various languages and tools or using
the VIATRA Textual Modeling Language (VTML). Af-
ter model transformation programs (specified in VTCL
files) are parsed and loaded to a model space, they can
be executed on selected input models (in principle, on
arbitrary model elements from the model space). Then
the efficient execution of the transformation is carried
out by the graph pattern matcher and the respective
interpreter components for graph transformation (GT)
and abstract state machine (ASM) rules.

Having a high emphasis on performance, we did not
use our transformation language for developing VIA-
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Fig. 2 The VIATRA2 model transformation framework

TRA2 as a software tool. But as transformation mod-
els were used from very early days, certain optimiza-
tion steps could potentially be reimplemented within the
framework.

How did VIATRA2 succeed? As our foundational re-
search has primarily been directed to improve the per-
formance of the framework by proposing advanced graph
pattern matching techniques based upon local-search [22,
40] or incremental techniques [6, 7], VIATRA2 scores
very well among model transformation tools from a per-
formance aspect. In addition, new model transforma-
tion concepts (like incremental graph transformation [6],
live/event-driven transformations [31], or change-driven
transformations [10]) were successfully integrated to VI-
ATRA2 on the tooling level as well.

VIATRA2 also proved to be successful from a tool
integration point of view. Importers and exporters have
been developed (in research and student projects) to
popular standardized modeling languages (like UML, BP-
EL, SysML), back-end formal analysis tools (SAL, PEPA,
CPLEX, etc.) and a wide range of deployment platforms
of industrial relevance (e.g. ARINC 653, TTA, Apache
Axis2, WSDL) mainly in the field of critical embedded
systems and service-oriented computing. Some of these
scenarios (like [10]) included significant interoperability
challenges where the target model was not materialized,
but only a target API was available with limited trace-
ability information.

While the use of VPM as a (non-standard) underly-
ing metamodeling and model management paradigm def-
initely improved the expressiveness of transformations,
we had to invest more for developing exporters and im-
porters for these languages and tools compared to an
EMF-compliant model transformation tool.

Choosing a semantically well-founded transformation
language by combining two formal paradigms had advan-
tages and disadvantages. On the positive side, the graph
pattern language of VIATRA2 became very popular (not
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only among our students but also among collaborating
researchers and software engineers at our spin-off com-
pany) by offering a succinct, reusable and very expressive
language for capturing model queries and constraints
(especially, when compared to OCL). On the negative
side, only very few students actively used the declara-
tive notation of graph transformation — they used graph
patterns for the query part, but followed a more imper-
ative transformation style for expressing the effects of a
rule using abstract state machine constructs.

Despite continuous efforts to improve usability, the
entry level of writing a first model transformation in
VIATRA2 has remained relatively high (e.g. compared
to ATL). Most external VIATRA2 users received some
consultation from members of our research group in the
initial phases of their transformation development. After
learning the system, they were typically able to carry out
their model transformation task, but this still indicates
that we should have invested more in providing better
documentation, tutorials, and improving the overall us-
ability of VIATRA2.

Descendents of VIATRA2 The evolution of VIATRA2
in the recent years have also been dominated by the in-
troduction of new components, which used model trans-
formations in the background (as a service), but pro-
vided additional support for model driven design.

– Domain-specific modeling over VIATRA2 The
ViatraDSM framework [33] investigated a non-genera-
tive approach for designing rich domain-specific mod-
eling environments, which extensively used model tra-
nsformations for synchronization between abstract
and concrete syntax [32] or for capturing discrete
event based simulators [33].

– Design space exploration over VIATRA2 Sup-
port for model-driven design space exploration [18,
20] provides a guided search using permitted oper-
ations to reach a designated goal state. It uses the
transformation language of VIATRA2 to capture the
design problem and it heavily relies upon incremen-
tal transformations to improve the efficiency of state
space traversal.

– Incremental query evaluation for EMF mod-
els The main goal of the EMF-IncQuery framework
[8, 9] is to provide efficient incremental query evalu-
ation for EMF models. On the tooling level, EMF-
IncQuery adapts the graph pattern language of VI-
ATRA2 [11] to capture model queries, and the incre-
mental pattern matcher of VIATRA2 to obtain high
performance. EMF-IncQuery can be integrated as a
validation service for almost arbitrary existing EMF
based applications.

While VIATRA2 offers an interpreter to execute the
transformation rules, this is by no means the only mean-
ingful architectural choice. In fact, the EMF-IncQuery
framework provides both an interpreted and compiled

mode for supporting incremental model queries. Our ex-
perience is that the flexibility of the interpreted mode
is highly beneficial for designing and testing the queries
while the compiled mode is helpful in integrating queries
to existing applications.

2.2.3 Industrial experience and feedback on model trans-
formations Using the VIATRA2 model transformation
framework and its descendents in industrial (and indus-
try driven research) projects in an avionics and auto-
motive context (at our research group and also at our
spin-off company) gave valuable feedback for us, which
guided several recent research directions.

For instance, the need for validating complex con-
straints over EMF models (i.e. EMF-IncQuery as a re-
search project) arose from our spin-off company when
developing automotive modeling tools. As the AUTOSA-
R standard contains several hundreds of well-formness
constraints, the software engineers of the company had
difficulties in providing an efficient manual implementa-
tion of these constraints.

We gained extensive industrial experience for model-
driven configuration design both in context of automo-
tive [19, 37] and avionics systems [21]. Here the under-
lying deployment platforms were substantially different
(TTA, AUTOSAR or ARINC 653), the underlying de-
sign concepts turned out to be quite similar. While our
initial attempts aimed at providing automated model
transformations for as many design steps as possible, in-
dustrial domain experts suggested to decrease the level
of automation by using user-guided model transforma-
tions aligned with precise development workflows [4]. Es-
sentially, model transformations can assist designers in
making the right design decision (by proposing design
alternatives and calculating consequences of design de-
cisions), but an automated model transformation is not
allowed to make a design decision.

It was also interesting to notice the industrial pri-
orities in this context. Developing rich graphical views
of models and providing instantaneous support for early
validation of design rules and guidelines were of higher
priority compared to providing powerful graphical edi-
tors for models. Graphical editors were also beneficial in
both an AUTOSAR and avionics context, but required
significant programming effort.

3 Lessons Learned and Principles

In this section, we distill some of the key lessons learned
from our years of experience in developing, maintaining
and deploying both VIATRA and Epsilon. These lessons
learned capture insights from both mistakes we have
made as well as successes that we have had in solving
specific and general problems.

To help to present the lessons learned systematically,
we classify them as follows:
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– Requirements: lessons learned about establishing, elic-
iting, specifying and negotiating requirements for MD-
D tools, including lessons regarding end-users and
stakeholders.

– Architecture: lessons learned about architectural prin-
ciples and styles for MDD tools.

– Modelling Technology: lessons learned about the un-
derlying modelling technology used to express mod-
els, and in particular the interfaces between the MDD
tools and the modelling technology.

– Environmental Constraints: lessons learned about in-
terfaces of the MDD tool to the wider systems engi-
neering lifecycle.

3.1 Requirements

In the development of Epsilon and VIATRA, we learned
several important lessons about setting and specifying
requirements for MDD tools.

1. Start from a rich MDD scenario; it will help moti-
vate and trigger the development of your MDD tool,
and if it is sufficiently complex, it will guide your
development for several iterations.
The initial MDD scenario for Epsilon, based on model
merging/composition, had essential complexity that
was not immediately apparent to the Epsilon devel-
opers (including, for example, that comparison and
transformation were also key tasks that supported
model merging). This essential complexity introduced
technical and conceptual challenges into the develop-
ment of Epsilon that steered its development over the
first two years. Had we started from a less complex
scenario, the inherent flexibility and generality of the
toolset may have been lessened, and the resulting tool
may have been more specialised. This is not in itself
a problem - a specialised MDD tool can be extremely
valuable. However, the development of an MDD tool
is in itself part of a scientific exploration; having the
ability to conduct experiments while being guided –
but not overly constrained – by initial scenarios is of
significant value.
In case of VIATRA, the main initial motivating sce-
nario was related to mapping dynamic modeling lan-
guages (like statecharts, activity diagrams) to formal
languages such as Petri nets or transition systems
to carry out model-based analysis. This necessitated
to specify model transformations bridging large ab-
straction gaps between source and target languages.
As a result, VIATRA offered an expressive and rich
transformation language right from the beginning.

2. Try to have real end-users: they keep you honest. This
is important in general in systems engineering, but it
is particularly important for MDD tools, which exist
to automate tasks that end-users shouldn’t be doing
(i.e., rote, repetitive system engineering tasks). Both
VIATRA and Epsilon had real end-users, with real

requirements for automation, performability and re-
liability, from day one. This guided architectural de-
sign, technical design, and implementation and (be-
cause of the nature of the end-user engagements)
meant that rapid feedback on new features and im-
proved infrastructure could be obtained. Furthermore,
the entire EMF-IncQuery project emerged from ac-
tual needs and requirements of potential end users.

3. Start with complex challenges, transition to simpler
challenges. This is similar to the first lesson, but here
we are focusing more on satisfying requirements than
on identifying and using them to guide development.
Both VIATRA and Epsilon started development with
complex MDD challenges – e.g., model merging, fully
recursive patterns, meta-transformations, generic tra-
nsformations – which led to significant technical solu-
tions, powerful infrastructure, and a very general un-
derstanding of what was difficult in MDD tooling and
what was straightforward to support. Later iterations
focused on simpler MDD challenges – e.g., code gen-
eration, incremental queries, interactive transforma-
tions – that made the technical solutions developed
in earlier iterations easier to use and deploy.
By focusing on complex issues to begin with, it was
possible to identify components (e.g., comparison tool,
generic transformation tool) in the technical solu-
tions that may have had value as packaged, stan-
dalone tools. This was partly explored for both VI-
ATRA and Epsilon.

4. Worry less about the accuracy and suitability of the
abstractions chosen, and more about how easy it is
to change and extend those abstractions. Establish-
ing the requirements for an MDD tool is, in effect,
a modelling problem. When developing both Epsilon
and VIATRA, we spent considerable time trying to
ensure that we were working at the most appropriate
level of abstraction for the MDD task at hand, e.g.,
that the abstractions used for specifying model trans-
formations or queries were accurate, justified and
conceptually simple. It is obvious that the amount
of time you can spend on assessing the fidelity and
suitability of your abstractions is potentially infinite.
Indeed, we could have experimented for years with
different combinations of languages in Epsilon, build-
ing more capability in to the core technologies of both
VIATRA and Epsilon, etc. Arguably, the most scien-
tific, justfiable approach would be to agree on a justi-
fiable and reasonable set of abstractions for an MDD
task that can be extended or changed easily, and to
experiment with these ‘proposals’ until they are ei-
ther proven or shown to be invalid. This approach
has generally guided the development of Epsilon and
VIATRA in more recent times.
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3.2 Architecture

We now outline some of the key lessons we have learned
related to the architecture of MDD tools, in terms of
evolving an architecture, and also establishing non-functi-
onal requirements via the chosen architecture.

1. There is a significant design choice to be made early
on (in developing initial versions of MDD tools) be-
tween building a more usable tool and one that per-
forms better; focusing on one such property will help
you to make progress. This is unsurprising. However,
the developments of both Epsilon and VIATRA fo-
cused on one of these extra-functional properties at
the start of development; Epsilon focused on usabil-
ity, while VIATRA focused on performance. At later
stages of development, focus switched (e.g., from us-
ability to performance in the case of Epsilon). This
had advantages and disadvantages. In the case of
VIATRA, focusing on performance meant that the
MDD tool was capable of manipulating extremely
large models efficiently from the start; this in turn
meant that large modern standards (such as UML
2.x, AUTOSAR, MARTE) could be addressed di-
rectly with the tool without significant change. The
disadvantage of this is that VIATRA’s usability lagged
behind its performance, and a significant learning
curve was the result. In contrast, Epsilon’s develop-
ment focused on usability from the start – particu-
larly because there were end-users who required the
toolset by a specific deadline. This meant that the
tool always had users (who provided feedback) who
drove the development of new and novel features.
However, Epsilon’s performance wasn’t a focus at
the start; it never performed significantly worse than
user expectations, but when attempts were made to
manipulate extremely large models (on the order of
megabytes), it did not perform acceptably. Later ver-
sions of both VIATRA and Epsilon have addressed
concerns of usability and performance, respectively.

2. Getting the architecture right from the start is less
important than having a flexible architecture that can
be refactored. The architecture for both MDD tools
has changed significantly over different versions. In
both cases, we have been more concerned with hav-
ing architectures that allow us to experiment with
the features provided by the tools (e.g., adding new
features, dropping features, splitting features). Tight
coupling between the features of the tools has always
been viewed as problematic, since it reduces flexi-
bility and experimentation. For instance, significant
re-engineering had to be dedicated to get rid of tight
coupling between some VIATRA2 components intro-
duced in early versions of the framework.
Having a flexible architecture for an MDD tool is
also important because the external standards (e.g.,
MOF, Ecore, UML, OCL) and tools (e.g., EMF, GMF,

ANTLR) that the tools depend on will change; sim-
ilarly, the licensing for external tools and standards
may change, as well, and minimising the effect of said
changes on the MDD tools is beneficial.

3. Interpreters let you make progress quickly; code gen-
erators may be preferable for performance and in-
tegration. We found that using interpreters (virtual
machines) to support the languages in Epsilon al-
lowed us to quickly experiment with ideas and get
working MDD tools out to end-users quickly; it also
aided in debugging and testing the tools. However,
the performance of the tools obviously suffered, and
when it came to processing larger models the impact
of this decision was noticeable. It would be possi-
ble to build specialised versions of Epsilon that ex-
ploit code generation to meet strong requirements
for higher performance. However, in previous exper-
iments we have noticed that the bottleneck with (for
example) execution time on model management op-
erations tends to come from loading and storing mod-
els, not the virtual machines used to execute the
MDD program. It may be advantageous to focus re-
engineering effort on model persistence techniques
first, before addressing code generators.
Interpreters and code generators may co-exist, as dem-
onstrated by the EMF-IncQuery framework, a follow-
up project of VIATRA where model queries can be
evaluated in both modes. While the advantages of
the interpreted mode are similar to the Epsilon case,
the compiled version significantly reduces integration
efforts with existing tooling as only a few packages
of generated Java code need to be integrated, instead
of a complete query framework.

3.3 Modelling Technology

We learned several important issues related to the under-
lying modelling technology that MDD tools manipulate
in the course of developing VIATRA and Epsilon.

1. The choice of modelling technology impacts signifi-
cantly on utility and flexibility. VIATRA opted for a
non-standard underlying modelling technology, called
VPM, which is conceptually close to knowledge rep-
resentation in the semantic web (like RDF documents
and description logic). This design decision allowed
us to easily implement rich transformation features
such as generic transformations, multiple typing and
dynamic re-typing of model elements, which were im-
possible (or extremely complicated) when using an
EMF-based model representation and management.
The downside of this is, unsurprisingly, that sophis-
ticated bridges had to be built in VIATRA for EMF
technologies, and significantly hindered industrial ac-
ceptance and usage. Epsilon, by contrast, focused on
standard modelling technologies from the start, and
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quickly developed an abstraction layer between MDD
tasks and modelling technology.

2. Ideally, the user of an MDD tool should not need
to know how models are represented. The tasks sup-
ported by an MDD tool – e.g., transformation, code
generation, validation – are largely independent of
how models are stored, and exposing end-users to
modelling technology adds inessential complexity to
MDD tasks. To this end, VIATRA is based on graph
transformations and patterns, which abstract away
from modelling technology. Similarly, Epsilon pro-
vides an extensible model connectivity layer that ab-
stracts model representation from operations applied
to models. This means, in part, that an operation
in Epsilon is applicable to models of different types
(e.g., EMF/Ecore, XML, MDR), and that new model
representations can be added via implementation of
new drivers.

3. Providing access to model representation should be
possible, but not required. Sometimes – particularly,
for improved performance – it is helpful to be able
to access native model representations (e.g., XMI)
directly, instead of having to work with them (ab-
stractly) via drivers. This is particularly the case for
large models, or for new types of models for which
drivers or abstractions have yet to be developed or
fully optimised. To paraphrase, it is helpful to allow
end-users to work directly with the model represen-
tation if they need to (but, they shouldn’t have to,
since in some cases – particularly with XMI – working
with native representations can be awkward, time-
consuming and error prone). In certain tool integra-
tion scenarios, transformations may need to oper-
ate directly on native models developed with closed-
technology tools, but this case should be avoided
when developing new MDD tools due to immense
impact on costs.
More significant improvement on performance can be
achieved by providing intelligent query techniques
(like EMF-IncQuery). First, the native Java query
API of EMF models provides poor performance in
certain cases (e.g. lack of efficient reverse navigation,
or type-specific enumeration of instances in a model).
More importantly, the caching and incremental up-
dating of query result sets provides substantially bet-
ter performance in most cases compared to manually
coded Java programs over the EMF query API.

3.4 Externalities

In this section we outline several lessons we learned about
wider issues, particularly the relationship between the
development of MDD tools and how they are used within
larger system engineering processes, and by different kinds
of users.

1. Think about interoperation of the MDD tool with other
tools early. An MDD tool will often be used as part
of a larger toolchain, in a larger system engineering
process. For example, the results of model transfor-
mation may feed into downstream code generation,
compilation, testing, quality assurance and dynamic
update phases. Artefacts developed in such a pro-
cess may all need to be stored under suitable version
control. Early consideration of how the MDD tool
will be used in concert with other tools in the life-
cycle is likely to make future adaptation and deploy-
ment easier later. For example, in the case of Epsilon,
a decision was made early on to support operation
workflows using Ant, in order to support interopera-
tion with existing tools (like compilers, test tools and
version control tools) that were already supported
via Ant tasks. In the case of VIATRA, transforma-
tion chains were driven by existing workflow engines
(namely, the JBoss jBPM framework), and individ-
ual transformations were executed as services, which
allowed combining automated and user-driven tasks
into a single transformation process. Generally, stan-
dards – such as XML, workflow languages, metamod-
elling technologies – can help to support interopera-
tion, though interoperation is not easy, particularly
(as discussed earlier) if external APIs need to be
used.

2. Avoid over-automation. MDD tools should only as-
sist the developers in designing better systems, but
they cannot substitute for them in making design de-
cisions. Even the most sophisticated and optimized
techniques will be ignored by the industry if they try
to fully automate steps, which should actively involve
the designer. So the developer makes design decisions
and the clever MDD tool can sketch the options and
automate the consequences.

3. Consider the little things. Users depend on documen-
tation, built-in help, supporting infrastructure (e.g.,
syntax highlighting in editors, code completion) to
complete their tasks. Reliability and significant fea-
tures in the MDD tool are important, but additional
features like documentation and developer produc-
tivity tools may be the difference between building a
user-base and losing one.

4. Rapid response to feedback can help you keep your
users. The availability of quick feedback to user ques-
tions on forums and newsgroups (e.g., the Eclipse fo-
rums) is not only a good way to build the user-base
for your MDD tool, but is good advertising to users
who are considering your tool.

5. See what your user priorities are before spending sig-
nificant effort on secondary features. Secondary fea-
tures like debuggers and code profilers are impor-
tant, but are effort intensive to build and maintain.
Monitoring user discussions in forums and feedback
is essential to help identify where resources should
be spent. For example, in the case of Epsilon, more
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users were concerned with identifying performance
bottlenecks than in carrying out detailed debugging
of transformations or MDD operations; hence, ef-
fort was put into building profiling tools over a fine-
grained debugging infrastructure. In the case of VI-
ATRA2, end-user priorities introduced an oxymoron:
the adjective “visual” only appears in its name (for
historical reasons), but there was never a significant
push from users’ community to really introduce a vi-
sual language for capturing graph patterns and trans-
formation rules as the textual language was sufficient
for them.

4 Conclusions

Software engineers – and researchers in MDD in par-
ticular – have a particular mindset: they like to build
new things, e.g., new applications, new tools to support
system engineering. Many widely used applications and
tools have evolved from a brilliant idea, or a brainstorm-
ing meeting, or a persistent engineer trying to solve a
specific problem that had been troubling them. Many
software engineers may be unable or unwilling to cap-
ture their insights and thinking during their work, and
as a result some of their experience is lost. This paper is
an attempt to capture some of our experience in devel-
oping and deploying MDD tools over the past ten years.
Ideally some of the lessons we have learned will help in
the development of the next generation of system engi-
neering tools and languages still to come.

In looking back at the development of VIATRA and
Epsilon, what seems in retrospect obvious is that while
we have significant expertise in building MDD tools,
there are still substantial open questions about how to
use them in practice to solve large-scale software/sys-
tems engineering problems. In particular, how do we in-
terface MDD tools with existing tried-and-tested engi-
neering processes? How do we adapt the use of these
tools to new processes and process standards? How do
we validate the results of applying an MDD tool to a
model? How can we qualify MDD tools with respect to
relevant standards (e.g., for safety or security). There are
substantial opportunities, and significant challenges, as-
sociated with understanding the interface with the wider
context in which MDD tools are used.

What can we look forward to in the next ten years?
Beyond the interface issue mentioned previously, some
researchers are taking the view that MDD (and, indeed,
software engineering research) is at a crossroads: that
there are few fundamental scientific questions that re-
main to be answered, given the current state of software
engineering practice. In our view, there are numerous
open questions related to MDD practice, such as: how to
best deploy tools; how to best use MDD tools with oth-
ers; understanding the impact that MDD has on other
engineering practices and processes. Using MDD tools

– in anger, on real projects, with reported real results,
is now both feasible and necessary. Now is the time to
start focusing on doing MDD ; the tools we have at our
disposal are sufficiently mature to let this happen.
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Á. Horváth, I. Majzik, A. Pataricza, B. Polgár, I. Ráth,
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Efficient model transformations by combining pattern
matching strategies. In R. F. Paige, editor, Theory and
Practice of Model Transformations, Second International
Conference, ICMT 2009, Zurich, Switzerland, June 29-
30, 2009. Proceedings, volume 5563 of Lecture Notes in
Computer Science, pages 20–34. Springer, 2009.
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cremental evaluation of model queries over EMF mod-
els: A tutorial on emf-incquery. In R. B. France, J. M.
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ing executability into object-oriented meta-languages. In
MoDELS, pages 264–278, 2005.

30. R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and
F. A. C. Polack. The design of a conceptual framework
and technical infrastructure for model management lan-
guage engineering. In ICECCS, pages 162–171, 2009.
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