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ABSTRACT
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The final publication is available at http://dx.doi.org/10.1145/3417990.3421407.

Executable models can be used to support all engineering activities
in Model-Based Systems Engineering. Testing and simulation of
such models can provide early feedback about design choices. How-
ever, in today’s complex systems, failures could arise due to subtle
errors that are hard to find without checking all possible execution
paths. Formal methods, and especially model checking can uncover
such subtle errors, yet their usage in practice is limited due to the
specialized expertise and high computing power required. There-
fore we created an automated, cloud-based environment that can
verify complex reachability properties on SysML State Machines
using hidden model checkers. The approach and the prototype is
illustrated using an example from the aerospace domain.

CCS CONCEPTS
• Software and its engineering→ Systemmodeling languages;
Formal software verification.
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1 INTRODUCTION
Modeling is a key activity in any engineering discipline to cope
with complex systems. Model-Based Systems Engineering (MBSE)
makes models first-class citizens supporting all engineering ac-
tivities from specification and design to validation, and not just
documentation. A typical modeling language used in MBSE is the
Systems Modeling Language (SysML) [20]. Recent developments in
related specifications [19, 21] and tooling turned SysML artifacts
into executable models, which can be simulated and analyzed [11]
to provide early feedback about design options and decisions.

Motivation. Testing and simulation, however, can explore only
a handful of traces for typical interactions or calculate common
values for system properties. When the modeled system is complex,
failures can arise due to subtle design details or corner cases that
are difficult to detect with manual review or simulation (e.g., dead-
locks in protocols or a combination of specific inputs and timing
could result in an unexpected error). Formal methods use precise
formalisms, logic solvers, and search algorithms to reason about
correctness properties of the modeled system.Model checking [4] is
an automated formal verification technique that can systematically
traverse all possible execution traces in the model, and therefore
either prove that an undesired behavior is not possible or show a
concrete execution trace that violates the property.

Research on using model checkers to verify high-level engineer-
ing models, like UML State Machines, spans several decades [12].
These methods define a mapping from the high-level modeling
language to the low-level mathematical input language of a model
checker (e.g., transition systems or timed automata) encoding the se-
mantics of the modeling language. Newer approaches extended this
basic idea by making verification more scalable [13] or adapting
to newer specifications (e.g., to SysML [7] or fUML [15]). How-
ever, most of such works require complex toolchains and a deep
understanding of the model checking tools employed, therefore
prohibiting its wide-spread usage by systems engineers. To counter
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(a) Block definition (b) Behavior specified as state machine

Figure 1: A simple SysML model describing a simplified spacecraft and illustrating the scope of our approach.

this challenge, the inputs and configuration parameters of model
checkers can be hidden using automated transformations, an ap-
proach commonly referred to as hidden formal methods [24].

Recently, MBSE approaches started to utilize cloud-based, open,
collaborative environments, where various modeling and analy-
sis tools can be integrated (e.g., OpenMBEE1). System models are
stored in versioned model stores (e.g., OpenMBEE MMS2 or Team-
work Cloud3). Scalable cloud-based environments also open up the
possibility to use resource-intensive analyses such as model check-
ing. Solutions are already available to perform static error analysis
on the stored models, e.g., the IncQuery Server [10] supports com-
plex model queries with the VQL language [3]. However, to the
best of our knowledge, there is no integrated solution that utilizes
formal methods and model checking to verify system models.

Objective. Our objective is to transfer the extensive research
results on executableMBSE and formal verification into a pragmatic,
integrated, and extensible environment. Our vision is to extend
the analysis capabilities of IncQuery Server with integrated and
automated model checking that can be used as a turnkey solution
to catch hard to detect problems in system design models.

Results. We designed a flexible architecture and created a proof-
of-concept tooling that automatically transforms SysML State Ma-
chine models stored in a central model store to the input language
of different model checker back-ends via an intermediate repre-
sentation, while carefully preserving the semantics of the original
models. End-users can define reachability properties over predi-
cates of states and variables directly in the system models. Model
checkers are executed in containerized cloud environments, and the
analysis results (e.g., an execution trace demonstrating a violation)
are back-annotated to the original modeling elements, therefore
completely hiding formal verification. To summarize, the contribu-
tions of the paper are as follows:
1https://github.com/Open-MBEE
2https://github.com/Open-MBEE/mms-alfresco
3https://www.nomagic.com/products/teamwork-cloud

• Proposed a modern, cloud-native framework for verifying
systems engineering models using model checker back-ends.

• Created a proof-of-concept Model Checking as a Service
(MCaaS) environment based on proprietary and open tools.

• Demonstrated that formal verification can be completely
hidden from the end-user with automated transformations.

2 MOTIVATING EXAMPLE AND SCOPE
A simplified spacecraft model in Figure 1 illustrates the kind of
modeling elements and properties that our MCaaS approach cur-
rently targets. The spacecraft can receive a Ping signal from the
ground to start sending data in packets. The data transmission con-
sumes battery power, and if the battery level falls below 80%, the
spacecraft has to start recharging. If the battery level falls below
40%, ongoing data transmission is paused until a full recharge. The
duration of packet sending, power consumption, and recharging
activities is specified with parameters. There are several properties
that the system design has to fulfill, but as an example, consider that
the spacecraft (a) should only start transmitting when receiving a
ping, and (b) should never transmit when the battery is below 40%.

While Property (a) could be checked in principle with reviews or
model validation rules, Property (b) is much harder as we have to
consider all feasible paths in the model. This is where ourMCaaS ap-
proach can exploit the full power of formal methods.

Scope. Checking state machine models is a hard problem in gen-
eral. On the one hand, the rich set of modeling elements often result
in large state space (e.g., a high number of interleavings) that pose
a challenge for model checkers. Furthermore, there are also vari-
ous cases where different tools or standards implement different
behavior for the same modeling construct. Therefore, we currently
limit ourselves to a subset of SysML that can be well supported by
typical model checkers but is already expressive enough to show
the feasibility and usefulness of our approach.

Our prototype supports the verification of a single hierarchical
state machine that is owned by a Block. The state machine can have
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Figure 2: Reachability property.
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Figure 3: Overview of the MCaaS architecture.

both simple and composite states, consisting of orthogonal regions
and hierarchy. The Block can have several ports. Each port is typed
by an Interface Block that lists the allowed incoming or outgoing
signals. Signals currently cannot have parameters. The Block can
define several Value Properties that can be used in the state machine
as variables in guards, effects, and actions. Currently, we support
integer and Boolean types.

States can be connected by transitions, possibly also crossing
hierarchy levels. Transitions can have a trigger and a list of guards
and effects. Triggers can refer to signals arriving via any port of
the owner Block. Guards consist of arbitrary predicates defined
over the variables of the owner Block with basic arithmetic and
comparison operators. Transition effects can either be assignments
(with the same restrictions as for guards) or signal sending opera-
tions (implemented by the ALH.sendSignal helper script, specifying
the signal and port name). Guards and effects must be atomic and
bounded (e.g., no loops are allowed). In our implementation, we cur-
rently use a simplified JavaScript syntax, but it can later be replaced
with Alf [18]. States can be associated with entry and exit behav-
iors (activated upon entering and leaving the states, respectively),
which consist of assignments and signal sending operations with
the same restrictions as transition effects. Do-behaviors, as they
can be interrupted during execution, are currently not supported.

Reachability property. The prototype implementation supports
the verification of reachability properties on state machines. Such
properties describe state predicates: the configuration of the state
machine and logical expressions over its variables. The purpose of
the model checker is to prove if any execution eventually reaches a
configuration where the predicate holds.

In our prototype, we use SysML sequence diagrams to define the
reachability property, as illustrated by Figure 2. The property de-
fines the undesired configuration where the Transmitting state of
the state machine is active, and the battery level of the Spacecraft
is below 40% corresponding to Property (b) defined earlier in this
section. The sequence diagram consists of a lifeline representing
the Block whose state machine is to be verified. The lifeline can con-
tain several SysML state invariants defining the state configuration
(conjunction) to be reached. Furthermore, a simplified JavaScript
syntax can be used to express logical predicates over variables.

3 MODEL CHECKING AS A SERVICE
An overview of our cloud-native MCaaS architecture is presented
in Figure 3. Users design the state machines and define the proper-
ties of interest in their modeling tool of choice, and push them to a
model repository 1 . Then, users open a web browser to perform

verification and validation (V&V) actions 2 with theMCaaS add-on.
The add-on first performs static checks 3 to validate the structural
integrity of the models, before translating them into an intermedi-
ate representation 4 . We use the Gamma Statechart Composition
Framework [17] and its statechart language as an intermediate rep-
resentation, as it is close to SysML State Machines and provides
various verification features. In our current scenario, we use Gamma
to translate the intermediate representation to a formal model and
a query to be checked by different model checkers 5 . The model
checkers analyze the query and return their result in terms of the
formal model. The verification result, including a possible execution
trace, is back-annotated to the Gamma representation 6 , which is
further mapped back to the original SysML representation to be
presented in the browser 7 . This way, the process is fully auto-
mated, and all details of formal methods and model checking are
hidden from end-users.

One advantage of the MCaaS approach is the separation of con-
cerns for the engineering and the formal verification domains: sys-
tems engineers can design both the models and the properties in a
high-level, engineering language they are familiar with. Further-
more, the verification result is also presented in this format, making
it easier to understand without expertise in formal methods. The
second advantage of our approach is that it uses an intermediate
language instead of direct translation to model checkers. This al-
lows easy integration of new model checkers (forming a portfolio),
which is a crucial feature due to the fact that model checking is
a hard problem, and different tools have different strengths. Cur-
rently, Gamma supports UPPAAL [2] and Theta [23]. Furthermore,
model checkers can be started in parallel with different configura-
tions, and their results can be combined. The ability to scale-out in
the cloud allows the adaptive allocation of a high amount of compu-
tational resources [22] that can address the high resource demand
of model checkers. Finally, the intermediate representation can also
help in achieving semantic integrity. The tool- or standard-specific
semantics could be implemented as parameters of the translation
to the intermediate representation.

To prove the feasibility of our approach, we implemented a
working prototype. In order to utilize the benefits of the cloud, we
deployed IncQuery Server [10] together with the MCaaS add-on
in a Docker4 container. We defined a web interface for the model
checker (MC) runtimes and deployed them in separate containers.
In the following subsections, we discuss the details of the major
steps of the workflow in the context of the prototype.

4https://www.docker.io

https://www.docker.io
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Modeling and static checks. In the prototype implementation,
systems engineers use Cameo Systems Modeler5 or MagicDraw6

to design state machines and reachability properties in SysML 1 .
These models are uploaded to Teamwork Cloud (TWC), a collabora-
tive model repository. Engineers engage with the MCaaS workflow
via the Jupyter notebook in a web browser 2 . The notebook is
the frontend of the MCaaS add-on of IncQuery Server (IQS) [10],
a scalable query evaluation middleware on the top of collabora-
tive model repositories in the cloud. The add-on fetches a given
revision of the model from TWC and caches it in memory on IQS.
Next, IQS performs static checks 3 , defined by well-formedness
constraints in VQL [3], to ensure the structural integrity of both the
state machine and the property (e.g., the lifeline on the sequence
diagram should represent a Block whose classifier behavior is the
state machine). Invalid elements or constructs are reported in the
browser along with an informative error message.

Transformation to the intermediate language. The SysML State
Machines are transformed to the statechart language of the Gamma
framework (GSL) 4 [17]. The GSL language features are close to
SysML State Machines. Thus, the elements of the currently sup-
ported scope (see Section 2) are transformed to the corresponding
elements in GSL, taking into account the PSSM semantics [21].
Furthermore, the JavaScript guards and effect behaviors of transi-
tions and states are translated to the Gamma expression and action
languages, respectively. During the transformation, a traceability
model between the SysML State Machine and the Gamma state-
chart is built to track the mapping between the source and target
models. This traceability model is also used for transforming the
reachability property and back-annotating the verification results
to the source domain.

Gamma is a statechart composition framework, thus the state-
chart has to be placed in a wrapper, which defines scheduling and
interactions with the environment. We create the wrapper based on
the Block owning the state machine. The ports of the wrapper are
connected to the ports of the state machine, simply forwarding the
signals between the environment and the state machine. We use
the synchronous composition semantics of Gamma, which means
the statechart execution is periodically scheduled by an external
trigger. In each execution cycle, the statechart consumes the input
signals, changes its internal state (the state configuration or the
values of its variables), and produces the output signals.

The reachability property is transformed into a temporal logic
expression7 in Gamma. The states are transformed to state ref-
erences of the Gamma statechart, and the logical predicates are
transformed to Gamma guard expressions. Finally, a reachability
query is formed from the conjunction of the translated terms.

Translation to model checkers. Gamma supports UPPAAL [2] and
Theta [23] as model checker back-ends 5 . Our prototype currently
only integrates UPPAAL, where the statechart is translated to timed
automata, and the reachability property to a liveness query [1] in
CTL [4]. More information on the translation can be found in [9]. If
the (reachability) property holds for the automata, a trace (execution
path) leading to the target state is returned.
5https://www.nomagic.com/products/cameo-systems-modeler
6https://www.nomagic.com/products/magicdraw
7Gamma supports a subset of CTL [4], including reachability (EF op.) as a special case.

Back-annotation. The MCaaS approach performs back-annota-
tion both from the result of the model checker to the intermediate
(Gamma) representation 6 and to the original SysML model in
the form of a sequence diagram 7 (see Figure 4). Each step of
the execution trace contains all the relevant information to fully
reproduce the execution: (1) the active state configuration, including
the values of variables, the (2) set of input signals that were received,
and the (3) set of output signals that were sent by the statechart. The
sequence diagram is returned to the user, and it can be simulated
in a tool of choice, e.g., the Cameo Simulation Toolkit,8 helping
engineers to inspect the execution in detail or to derive test cases.

Verifying the example. When checking Property (b) on the moti-
vating example (Figure 1), the prototype confirms reachability of
the undesired configuration and returns a trace (Figure 4). The state
machine and its ports are represented by lifelines. Rounded rect-
angles depict active states, values of variables are shown between
curly braces (in terms of the statechart in Figure 1b). Outgoing and
incoming arrows, w.r.t. the spacecraft lifeline, represent sent and
received signals, respectively. The trace proves that Property (b) is
violated, because in the last state the battery is 39% and the Space-
craft is still transmitting. Using the trace, engineers can debug the
model and find that wrong boundaries in the guards cause the issue:
battery >= 40 and battery < 40 should be replaced by battery > 40
and battery <= 40, respectively. After fixing the guards, the proto-
type can prove that the undesired state is not reachable anymore.

Figure 4: Trace showing that Property (b) is violated.

4 RELATEDWORK
Gibson et al. used the Java Pathfinder model checker to verify multi-
ple collaborating SysML State Machines including do-behaviors [7,
8]. However, the property to be checked must be given (as an asser-
tion) in the generated Java code, guards were transformed manually,
8www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit
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and the result (trace) was not annotated back. The ProMoBox frame-
work [14] enables the automatic verification of Domain Specific
Modeling Languages (DSMLs) by generating specialized metamod-
els allowing temporal properties in the language. They focused on
providing verification extensions for any DSML, while we focused
specifically on SysML. RoboChart [16] is a DSML for robotic appli-
cations, adopting the minimalist core of the UML state machine
notation, while also supporting collaborating state machines and
timing aspects. The formal properties are defined in a textual DSL
with verification-specific keywords. The models and properties are
translated into a CSP problem and solved by the FDR [6] refine-
ment model checker, implemented in a desktop tool. Zalila et al.
verify software processes modeled in the SPEM language [25] and
properties defined in the temporal extension of OCL (TOCL). Both
the SPEM model and the TOCL query are translated to a FIACRE
model and properties in LTL. In contrast, we reuse elements of
the source modeling language for the properties. PLCverif [5] also
supports multiple model checker back-ends via an intermediate rep-
resentation for PLC codes. Formal methods are hidden by writing
requirements using English sentence templates (to be translated to
CTL or LTL). PLCverif however, focuses on PLC codes in a desktop
IDE, compared to our cloud-based solution targeting SysML State
Machines. Sharifloo andMetzger proposed a cloud-based framework
for checking run-time properties of adaptive systems [22], focusing
on cloud resource allocation prediction based on model complexity
and run-time measures (memory, CPU) from past executions. Our
approach can also utilize such aspects in the future.

5 CONCLUSION
In this paper, we proposed a cloud-based, “push-button” verification
workflow for SysML State Machines and reachability properties us-
ing the Gamma intermediate language and different model checkers.
All details of formal methods and model checking are fully auto-
mated and hidden from the engineers via translations, including
the back-annotations of the resulting trace.

In the future, we plan to add further model checkers to the work-
flow and experiment with their adaptive scalability by adopting
and extending the work of Sharifloo and Metzger [22]. Moreover,
we are planning to extend the supported state machine elements
and languages for guards, effects, and do-behaviors described with
activities to make it more useful for systems engineers, while pre-
serving the semantic integrity of the workflow. Finally, although
the workflow is fully automated and no formal methods knowledge
is required, we plan to define points where human intervention and
assistance is possible. This can help in cases where human expertise
is needed to optimize a long-running verification job by modifying
the engineering model or configuring the model checker.
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