Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

Formal Validation and Model Generation
for Domain-Specific Languages
by Logic Solvers

Pu.D. DISSERTATION

Oszkar Semerath

Thesis supervisor:
Prof. Daniel Varré

Budapest, 2019

Oszkar Semerath
https://inf .mit.bme.hu/en/members/semeratho

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem
Villamosmérnoki és Informatikai Kar
Méréstechnika és Informacids Rendszerek Tanszék

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudésok korutja 2.
Date of admission: March 2019
Version compiled: November 10, 2019

http://hdl.handle.net/10890/13134

https://inf .mit.bme.hu/en/research/publications/
formal-validation-and-model-generation-domain-specific-languages—-logic-solvers

https://inf.mit.bme.hu/en/members/semeratho
http://hdl.handle.net/10890/13134
https://inf.mit.bme.hu/en/research/publications/formal-validation-and-model-generation-domain-specific-languages-logic-solvers
https://inf.mit.bme.hu/en/research/publications/formal-validation-and-model-generation-domain-specific-languages-logic-solvers

Declaration of own work and references

I, Oszkar Semerath, hereby declare that this dissertation, and all results claimed therein are
my own work, and rely solely on the references given. All segments taken word-by-word, or
in the same meaning from others have been clearly marked as citations and included in the
references.

Nyilatkozat 6nall6 munkarol, hivatkozasok atvételérol

Alulirott Semerath Oszkar kijelentem, hogy ezt a doktori értekezést magam készitettem és
abban csak a megadott forrasokat hasznaltam fel. Minden olyan részt, amelyet sz6 szerint,
vagy azonos tartalomban, de atfogalmazva mas forrasbdl atvettem, egyértelmien, a forras
megadasaval megjeloltem.

Budapest, 2019. 03. 26.

Semerath Oszkar

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor, Prof. Daniel Varr6. He
provided me with continuous guidance, insight and his many visionary advice over the past ten years,
through my undergraduate and master studies to my Ph.D.

I am thankful to all my former and present colleagues in the Fault Tolerant Systems Research
Group, especially Prof. Andras Pataricza, Dr. Istvan Majzik and Dr. Zoltan Micskei for their hard work
for guiding the research the group. I would like to thank all of my co-authors and collages I worked
with: Agnes Barta, Marton Bur, Gabor Bergmann, Csaba Debreceni, Rebeka Farkas, Abel Hegedis,
Akos Horvath, Benedek Izs6, Kristof Marussy, Andras Szabolcs Nagy, Istvan Rath, Gabor Szarnyas,
Zoltan Szatmari, Zoltan Ujhelyi, Andras Voros, and everybody worked in my research group. I was
very fortunate that I could work on my research in cooperation with many talented students: Maria
Beks, Csaba Hajdu, Benedek Horvath, Raimund-Andreas Konnerth, Adam Lengyel, Krisztion Mayer,
Anna Monory, Dénes Terebesi, Alexandra Anna Sélyom and many others from my research group,
and Aren Babikian, Anqi Li, Sebastian Pilarski from McGill University.

I would like to thank all the financial support I got for my research. My research was partially
conducted in MTA-BME Lendiilet Cyber-Physical Systems Research Group. Additionally, my research
was supported by research projects:

« CERTIMOT (Design and Analysis Techniques for Certifiable Model Transformations, ERC_HU-

09-01-2010-0003),

+ CONCERTO (Guaranteed Component Assembly with Round Trip Analysis for Energy Efficient

High-integrity Multi-Core Systems, ART-2012-333053),

« MONDO (Scalable Modelling and Model Management on the Cloud, EU ICT-611125),

« R3-COP (Resilient Reasoning Robotic Co-operating Systems, ART-100233),

« and collaborative projects with Embraer and Ericsson Hungary.

Moreover, my research was partially supported by scholarships UNKP-17-3-II New NartionNaL Ex-
CELLENCE PROGRAM OF THE MINISTRY OF HUMAN CAPACITIES, and Schnell Laszl6 Foundation. My
publishing was partially supported by the SRC program of Microsoft Research. I am thankful for the
Student Research Trainee program of McGill University.

Finally but most importantly, I would like to thank the support of my parents, my sister and my
grandmother for their help, support and encouragement.

iv

Koszonetnyilvanitas

Mindenekel6tt szeretnék koszonetet mondani konzulensemnek, Prof. Varré Dénielnek, aki iranymu-
tatasaval, szakértelmével és értékes, elé6remutato tanacsaival timogatott az elmult tiz évben, az egye-
temi tanulmanyaim kezdetétél a doktori végéig.

Halas vagyok tovabba minden korabbi és jelenlegi munkatarsamnak a Hibatlir6 Rendszerek Kuta-
tocsoportbdl és a Méréstechnika és Informacios Rendszerek Tanszékrél. Kiilon szeretnék kdszonetet
mondani Prof. Pataricza Andrasnak, Dr. Majzik Istvannak és Dr. Micskei Zoltannak a csoport veze-
téséért végzett aldozatos munkajukért. Szeretném tovabba megkdszonni az 6sszes tarsszerzémnek és
munkatarsamnak a kozos munkét: Barta Agnesnek, Bar Martonnak, Bergmann Gabornak, Debreceni
Csabanak, Farkas Rebekanak, Hegediis Abelnek, Horvath Akosnak, Izs6 Benedeknek, Marussy Kris-
téfnak, Nagy Andras Szabolcsnak, Rath Istvannak, Szarnyas Gabornak, Szatmari Zoltannak, Ujhelyi
Zoltannak, Voroés Andrasnak és mindenki mésnak a csoportombdl. Volt szerencsém tovabba szamos
rendkiviil tehetséges hallgatokkal is egytitt dolgoznom: Beké Mariaval, Hajdu Csabaval, Horvath Be-
nedekkel Konnerth Raimund-Andreasszal, Lengyel Adammal, Mayer Krisztiannal, Monory Annaval,
Terebesi Dénessel, Slyom Alexandraval, és még sok massal a tanszékiinkr6l, valamint Aren Babiki-
annal, Li Angival és Sebastian Pilarskival a kanadai McGill Egyetemrél.

Szeretném kdszonetet mondani a munkamat timogat6 kutatasi projekteknek. Munkamat részben
a MTA-BME Lendiilet Kiberfizikai Rendszerek Kutatocsoportban végeztem. Ezen kiviil tobb kutatasi
projekt is tAmogatta a munkamat:

« CERTIMOT (Design and Analysis Techniques for Certifiable Model Transformations, ERC_HU-

09-01-2010-0003),

« CONCERTO (Guaranteed Component Assembly with Round Trip Analysis for Energy Efficient

High-integrity Multi-Core Systems, ART-2012-333053),

« MONDO (Scalable Modelling and Model Management on the Cloud, EU ICT-611125),

« R3-COP (Resilient Reasoning Robotic Co-operating Systems, ART-100233),

« valamint Embraer repiill6gépgyarto vallalattal and Ericsson Hungaryval kézos projektek.

Ezen kivil kutatasomat tamogatta az EMBERI EROFORRASOK MINISZTERIUMA UNKP-17-3-III K6DSZA-
mU Uy NEMZETI KIVALOSAG PROGRAMJA és a Schnell Laszl6 Alapitvany. Publikdcidimat tAmogatta a
Microsoft Research SRC programja. Halas vagyok tovabba a kanadai McGill Egyetem kutatéi gyakor-
noki programjanak.

Végil, de nem utolsé sorban, szeretném megkoszonni csalddom, sziileim, testvérem és nagyma-
mam kitarté tdmogatasat és batoritasat.

Summary

Graph-based models are widely used in the development of complex, safety and business critical
systems like automotive, avionics and financial software. Advanced modeling environments based on
Domain Specific Languages (DSLs) (1) supports the development of models by continuously validating
them, (2) derives different views to highlight task-specific aspects of the model, (3) automates several
steps in the development (e.g. by code generators) and (4) provides mathematical analysis to check
the correctness of the underlying design (e.g. by model checkers). Thus they can significantly improve
the overall productivity of the development and quality of the product.

Despite the wide range of existing tool support, constructing a complex DSL and a modeling envi-
ronment is a tedious task, and - like any software artifacts — they are error-prone. First, to define the
structure of graph models of a language, a DSL is defined with a large number of complex, interacting
constraints (i.e. design rules), that can easily be formalized incorrectly. This could result in inconsis-
tent, incomplete or ambiguous languages. Moreover, errors in the implementation of the modeling
environment inject errors to the generated code and invalidate the results of any verification process.
Therefore, it is important to ensure the correctness of modeling tools themselves. As model-driven
tools are frequently used in critical systems design, those tools should be validated with the same level
of scrutiny as the underlying system as part of a software tool qualification process in order to pro-
vide trust in their output. Therefore software tool qualification raises several challenges for building
trusted DSL tools for a specific domain.

The objective of this thesis is to improve validation and testing support for DSLs and modeling
tools using automated model generation techniques. For this purpose, this thesis proposes a logic-
based approach that able precisely capture the definitions of DSLs as logic theorems. Those theorems
are analyzed by advanced logic solver methods in order to derive proofs or counter-examples for
expected language properties or to create a set of different models that can be used as test data for
modeling environments.

In my thesis, I present three main groups of contributions. (1) I propose an efficient logic solver
algorithm for the generation of graph-based models that reason directly over graph structures using
partial modeling and 3-valued logic with classic logic solving techniques. (2) I propose a translation
and validation techniques for DSL specifications to detect language level inconsistencies, incomplete-
ness, and ambiguity. (3) I propose an iterative, multi-step model generation approach that with three
applications. First, (3/A) iterative generation that improves the scalability of existing solver-based
model generation techniques. Next, (3/B) an iterative generation is able to measure and control the
diversity of the generated models thus improve the quality of test suites. And finally, (3/C) it is able
to incrementally resolve view model inconsistencies. I presented my results in the context of three
case studies: the validation of an avionics architecture modeling language, the testing of an industrial
statechart modeling environment, and view synchronization in a remote health monitoring system.

As a proof-of-concept demonstration of my conceptual results, I developed an open-source mod-
eling tool VIATRA Solver framework, that uses two popular logic solvers (Alloy and Z3), and fea-
tures the proposed graph solver algorithm, which scales 1-2 orders of magnitude better than exist-
ing solutions. The framework natively supports EMF-based (Eclipse Modeling Framework) modeling
languages with VIATRA graph patterns for validation and testing and does not require additional
theorem-proving skills.

Vi

Osszefoglal6

Megbizhat6 komplex rendszerek — autdk, repiilék vagy pénziigyi szoftverek — tervezése soran széles
korben alkalmaznak grafalapti modelleket. Szakteriilet-specifikus nyelvekre (Domain-Specific Langu-
age, DSL) épil6 fejlett modellez8eszkozok jelent6sen tamogatjak a fejlesztési folyamatot azaltal, hogy
(1) a fejlesztés alatt 4ll6 modelleket folyamatosan ellenérzik, (2) nézeti modellekkel kiemelik a modell
kiilonbozé fontos aspektusait, (3) fejlesztési lépéseket automatizalnak példaul automatikus kédgene-
ratorok alkalmazasaval, valamint (4) a tervek helyességét ellenérizhetévé tehetik kiilonb6z6 analizis
eszkozok (példaul modellellenérzék) alkalmazasaval. Modellez6eszk6zok alkalmazasaval tehat jobb
mindségl szoftverek készithet6k, varhatéan kevesebb idé alatt.

Azonban, mint barmely szoftver, maguk a modellez6eszkzok és modellezési nyelvek is tartalmaz-
nak hibdkat. Mindenekel6tt maguknak a nyelveknek a meghatarozasahoz hasznalt 6sszetett tervezési
szabalyok is lehetnek ellentmondasosak, tobbértelmtiek vagy hidnyosak. Tovabba a modellez6esz-
kozben talalhato hibak tovabbterjedhetnek a generalt kodba, ezaltal érvénytelenitve egy matematikai
preciz analizis eredményét. Ezért a modellez6eszkozok helyességének ellendrzése kiemelten fontos.
Ez killongsen érvényes a biztonsagkritikus rendszerek esetén, ahol a felhasznalt eszk6zok alkalmaza-
sahoz az eszk6z6knek ugyanolyan szigorua ellenérzésen kell atesnie, mint maganak a végterméknek.

Disszertaciéom célja modellezdeszk6zok és modellezényelvek ellenérzésének és tesztelésének ta-
mogatasa automatikus modellgeneralasi technikak segitségével. Munkam soran olyan logika-alapu
megkozelitést alkalmaztam, amely matematikai elméletek formajaban képes precizen reprezentalni
a vizsgalt szakteriilet-specifikus nyelvek graf-struktarajat. Ezek az elméletek matematikai kovetkez-
tetési modszerekkel elemezhetévé valnak, ezaltal bizonyitékot vagy ellenpéldat tudunk adni elvart
nyelvi tulajdonsagok teljesiilésére vagy megszegésére. Ezen felill, az automatikusan el6allitott helyes
modellek tesztbemenetként is hasznosithat6ak.

Disszertaciomban harom teriileten mutatok be j tudomanyos eredményeket. Els6ként készitet-
tem egy Ujszer(, hatékony modellgeneralasra alkalmas logikai kévetkeztetd algoritmust, amely ha-
romértéki parcialis modelleket és klasszikus logikai algoritmusokat 6tvozve kozvetleniil grafalapa
logikai struktirakon kévetkeztet. Masodjara, olyan transzformacios és ellen6rzési technikat javasol-
tam, amely logikai kovetkeztet8k felhasznalasaval képes nyelvi szintii ellentmondasok, hianyossagok
és tobbértelmiiségek felfedésére. Végiil harmadsorban olyan iterativ tobblépéses generalasi folyama-
tot javasoltam, amely nagyban javitja meglév6 kovetkeztetékre épiil6 tesztgeneratorok skalazhatosa-
gat, képes mérni és szabalyozni a generalt modellek diverzitasat ezzel javitani a generalt tesztkészlet
mindségét, és képes feloldani a nézeti modellekben megfogalmazott inkonzisztencidkat. Eredményeim
gyakorlati alkalmazhatosagat harom esettanulmany segitségével szemléltetem: egy repilégép archi-
tektara modellezényelv ellenbrzésével, egy ipari allapotgép modellezbeszkoz tesztelésével, és tavoli
egészségigyi feliigyeleti rendszer nézeti modelljeinek elemzésével.

Az elméleti eredményeimre épitve egy nyilt forraskodu szoftver prototipust is elkészitettem, és
publikusan elérhet6vé tettem a ViATRA Solver modellgenerator keretrendszerben, ami integraltan
hasznal két népszer(logikai kovetkeztetét (Alloyt és Z3-at), valamint tartalmazza az 4j grafalapu
kovetkeztets algoritmust, amelynek segitéségével 1-2 nagysagrenddel nagyobb modellek is elallit-
hatéak mint mas, logikai kovetkeztetésen alapuld eszkozokben. A keretrendszer kozvetleniil tamo-
gatja az EMF (Eclipse Modeling Framework) és VIATRA grafmintakon alapuldé modellezési nyelvek
ellenérzését.

vii

Contents

Introduction

1.1 Domain-specific modeling languages
1.2 Towards the validation of modeling environments
1.3 Challenges in model generation,
1.4 Researchmethod
1.5 Contribution overview and thesis structure

First order relational logic

2.1 Syntax of first order relational logic o oL
2.2 Semantics of relational logic L L
2.3 Restrictions of relational logic L
2.4 Extensions of relational logic L
25 Summary e e

Mapping of Domain-Specific Languages to Logic

3.1 Modeling preliminaries L
3.2 Transformation overview
3.3 Transforming metamodels and partial snapshots
3.4 Transforming constraints to first order logic
35 Summary

Graph Constraint Evaluation over Partial Models by Constraint Rewriting

4.1 Introduction e
4.2 Motivating example: Validation of partial models
43 Formalism of 3-valued partial models with interpreted equivalence and existence

44 Rewriting predicates
4.5 Transforming MAVO uncertainty to 3-valued partial models
4.6 Scalability evaluation
47 Relatedwork
48 Conclusion L

A Graph Solver for the Automated Generation of Models
5.1 Introduction

ix

O N B P

11
11
12
15
15
17

19
19
23
27
31
35

37
37
38

45
46
48
49
50

51

5.2 Modeling preliminaries L L L 52

5.3 Automated graph generation L L 54
54 Experimental evaluation o 63
55 Relatedwork 67
56 Conclusion e 68
6 Incremental Graph Model Generation with Logic Solvers 71
6.1 Introduction e 71
6.2 Preliminaries e 72
6.3 Incremental model generation by approximations 74
6.4 Measurements e e e 78
6.5 Relatedwork 80
6.6 Conclusion e 82
7 Diverse Graph Model Generation With Logic Solvers 83
7.1 Introduction e 83
7.2 Preliminaries e 84
7.3 Model diversity metrics for testing DSLtools 86
7.4 Evaluation 90
75 Relatedwork 94
7.6 Conclusion e 95
8 Change Propagation of View Models with Logic Solvers 97
8.1 Introduction 97
82 Viewmodels e 98
8.3 Backward change propagation by logicsolvers 101
8.4 Experimental evaluation 0 L Lo 105
85 Relatedwork 110
8.6 Conclusion 112
9 Validation of Complex Domain-Specific Languages 113
9.1 Introduction 113
9.2 Running example: Avionics modeling environment 114
9.3 Overview of theapproach 119
9.4 A casestudy on DSL validation 123
9.5 Runtime measurements e 128
9.6 Related Work. e 131
9.7 Conclusion 134
10 Summary of the Research Results 135
10.1 A graph solver for model generationo Lo 135
10.2 Language-level validation for domain-specific languages 137
10.3 TIterative model generation techniques for modeling tools 139
10.4 Futurework 141
Publications 143
Publications linked tothe theses 143
Additional publications (not linked to theses) 145

Bibliography 147

A Appendix 1
A.1 Transforming OCL invariants to first order logic 1
A2 Implicit equivalence check rewriting L L. 6
A3 Partialmodels 8
A4 Refinement operations e 10
A.5 Change partitioning of viewmodels Lo o Lo 13

xi

CHAPTER 1

Introduction

1.1 Domain-specific modeling languages

My thesis is motivated by the challenges in the development of complex, safety-critical systems such
as automotive, avionics or cyber-physical systems, which is characterized by a long development time
and strict safety standards (like DO-178C [Do1] or DO-330 [Do3]). Model-Based System Engineering
(MBSE) is a widely used technique in those application domains [WHR14], which facilitates the use of
models in different phases of design and on various levels of abstraction. Furthermore, MBSE promotes
the use of Domain-Specific (Modeling) Languages (DSLs) to precisely capture the main features of a
target domain, thus enabling the engineers to model their solutions with the concepts of the problem
domain. Additionally, advanced modeling environments can automate several development steps, with
a particular emphasis on verification and validation (V&V). Thus they can significantly improve the
overall productivity of the development and quality of the product.

A complex industrial modeling environment supports the development of models by continuously
evaluating consistency constraints to ensure that the models satisfy the design rules of the domain.
There is already efficient support for automatically validating constraints and design rules over large
model instances of the DSL using tools like Eclipse OCL [Ocl; Wil12; KPP09] or VIATRA [Ber+11;
Ber+10]. Modeling environments often incorporate the automated generation of various artifacts such
as source code, task specific views, or documentation by using code generation or model transforma-
tion techniques. Additionally, the environment may incorporate mathematical analysis techniques to
verify the correctness of the underlying design (e.g. by model checking).

Industrial modeling environments like Capella (by Thales), Artop, Yakindu (by Itemis), Magic-
Draw (by NoMagic) or Papyrus UML (by CEA) are frequently built on top of open source DSL frame-
works such as Xtext [Xte], or Sirius [Sir] built on top of model management frameworks such as
Eclipse Modeling Framework [Emf] to significantly simplify productivity of tool development by au-
tomating the production of rich editor features (e.g. syntax highlighting, auto-completion) to enhance
modeling for domain experts.

1.2 Towards the validation of modeling environments

However, the design of modeling environments for complex domain-specific languages is still a chal-
lenging task. As such tools are frequently used in critical systems design to detect conceptual flaws
of the system model early in the development process to decrease verification and validation (V&V)
costs, those tools should be validated with the same level of scrutiny as the underlying system as

1. INTRODUCTION

part of a software tool qualification process in order to provide trust in their output. Therefore, the
need for software tool qualification (e.g. defined in safety-related standards DO-330) raises several
challenges for building trusted DSL tools for a specific domain.

1.2.1 Architecture of a modeling environment

Architecturally, a modeling environment is composed of multiple components that need to be vali-
dated. First, the language specification of a DSL is based on a Metamodel (MM), which defines the main
concepts and relations of the language. The metamodel is extended by additional Well-Formedness
(WF) constraints to restrict the range of valid models. Moreover, industrial models are frequently ex-
tended by Derived Features (DF), which are calculated model elements offering shortcuts to access
or navigate models. All together MM, WF and DF specify the graph-based data structure of instance
models of the DSL (so-called abstract syntax). A modeling environment defines one or more concrete
textual or graphical representations for a model (concrete syntax), and supports the editing, saving
(serializing) and loading (parsing) of the models by providing advanced editors.

View models are a key concept in advanced modeling environments to provide viewpoint-specific
focus (e.g., power flow or communication architecture of a system) to engineers by deriving another
model (or diagram, table, etc.) which highlights relevant aspects of the system to help detect concep-
tual flaws. Typically, multiple views are defined for a given model (referred as source model), which
are refreshed automatically upon changes in the source model. The derivation and maintenance of
views have been extensively studied for a long time in database theory over relational knowledge
bases, while it has recently become a popular research topic in MBSE [Deb+14; Gho+15; MC13].

Additionally, a modeling environment incorporates several procedures that use valid models as
input, e.g. model transformations and code generators. Like any piece of software, those components
are not free from flaws.

1.2.2 Language level validation

In case of complex, standardized industrial domains (like ARINC 653 [ARI] for avionics or AUTOSAR
[AUT13] in automotive), the sheer complexity of the language specification and the models is a major
challenge in itself. (1) First, there are hundreds of well-formedness constraints and design rules defined
by those standards, and due to the lack of validation, there is no guarantee for their consistency (one
constraint may contradict another) or subsumability (one constraint may accidentally cover another).
(2) The specification of derived features can also be inconsistent (e.g. DF specification may contradict
another design rule), ambiguous or incomplete (DF specification implies more or fewer values than
expected). In summary, the consistency and unambiguity of a DSL specification have to be ensured.
The definition of such large DSLs is a very challenging task not only due to their size and complex-
ity, but also as we need to precisely understand the interactions between the additional design rules.
Declaring a large number of DFs is also challenging with respect to the safety-specific WF constraints.
In general, mathematical precise validation of DSL specifications has been attempted by only a
few approaches so far [JLB11; JS06], and even these approaches lack a systematic validation process.
Therefore, I have identified language-level validation as the first research question of my thesis.

Research Question 1: Language Validation. How to validate the consistency, completeness
and unambiguity of DSL specifications?

1.2. Towards the validation of modeling environments

1.2.3 Testing modeling environments

Even if the DSL specification is sound, the implementation of the modeling tool may contain errors.
The need for software tool qualification raises several challenges to build trusted DSL tools for a
specific domain which typically uses systematic testing methods for the modeling environment itself.
Such testing of modeling environments is significantly enhanced by the automated generation of valid
(or intentionally faulty) models as test inputs [Mou+09] for DSL modeling tools, model transformations
or code generators [Bro+06].

Testing of critical systems frequently uses coverage metrics like MC/DC [Hay+01] to assess the
thoroughness of a test suite and safety standards prescribe designated minimal test coverage with re-
spect them (e.g. 100% MC/DC coverage for components with SIL5-level criticality). However, existing
coverage metrics are dominantly developed for imperative source code, and they fail when applied
on testing of modeling environments, which are dominantly data-driven applications working with
complex graph structures (e.g. 100% MC/DC coverage can be achieved with a low number of triv-
ial examples while it still provides very little assurance in reality). Therefore, coverage metrics are
needed to objectively measure the quality of a test suite in such applications.

Research Question 2: Tool Testing. How to provide a test suite of instance models for a com-
plex DSL with designated coverage?

1.2.4 Backward view synchronization

When several views are derived from a source model in a complex modeling environment, such view
models are dominantly read-only representations derived by a unidirectional transformation from a
source model, and those views cannot be changed directly. When a view model needs to be changed,
the engineer is forced to edit and manually check the source model until the modified model corre-
sponds to the expected view model. Additionally, the effects of a source change need to be observed
in all other view models to avoid unintentional changes and to prevent the violation of structural
well-formedness (WF) constraints. My thesis focuses on the back propagation of view changes.

My goal was to add backward change propagation support to view models in the modeling en-
vironment, so upon a change in the view model, a set of candidates for corresponding source model
changes could be created.

Research Question 3: View Synchronization. How to propagate changes of a view model
back to the source model to restore consistency?

1.2.5 Graph model generation

All the three questions 1-3 lead to the challenge of model generation as an underlying technique: test
suite generation requires the generation of different instance models as test inputs, view synchro-
nization uses model generation to create source model change candidates, and language validation
requires the non-existence of counterexample models with undesired properties (like incompleteness
and ambiguity) [JS06]. Similarly, a sufficiently powerful solution for any of the previous Research
Questions, with proper parametrization, could be used as a general purpose graph model generator.
This leads to an unifying main research question of the thesis:

1. INTRODUCTION

Metamodel Error constraints: lidation & ficati K
_ S CIE Validation & Verification Tas T n T
AN -No T from E : 3 T =
n B - Multiple T from E ¢ \T4
Domain-Specific Modeling Language > Model Generator > (i&:zsteodr l(r:i(s)tnir;;:fe/\gsii:;)

Y
Background Logic Solver

Figure 1.1: Setup of automated model generation

Research Question 4: Graph-Model Generation. How to automatically generate valid in-
stance models for DSLs?

Figure 1.1 illustrates the use of model generation for various challenges of DSL environments
as proposed in the current thesis. The setup is based on a model generator that reads the definition
of the target Domain-Specific Modeling Language (typically defined by a metamodel and some well-
formedness constraints) to carry out designated validation and verification tasks (e.g. expected lan-
guage property, view model change or required test coverage) by producing certain instance models
(or proves that no such models can be constructed).

Automated graph model generation is also a prerequisite of several other research lines. Object-
oriented data structures can be represented as graphs of objects and pointers, and such, test generation
[Mil+07; MKO01] requires graph generation with different structures to discover bugs. Similarly, static
analysis and verification techniques like [Ren04; RSW04] are using graph consistency checking tech-
niques to ensure that certain invalid structures cannot emerge. Auto-generated graphs may also help
the testing and benchmarking in other domains like graph databases [Bag+17; Sza+17; Sza19], since
obtaining real graphs from business use cases is often difficult to due to the protection of intellectual
property rights.

1.3 Challenges in model generation

As both language level validation, testing and view synchronization (RQ1-3) are based on generation
of well-formed models (RQ4) and they imply similar inherent challenges. Figure 1.2 illustrates the
connections between those research questions and challenges.

The main difficulty lies in the complexity of a DSL specification: each generated model needs to
satisfy a set of complex, global, interacting structural constraints (a typical characteristic for DSLs).
This necessitates the use of advanced logic reasoning technique during generation with a background
logic solver, and a mapping of the DSL specification to (first order) logic and back. Although existing
logic solving tools and algorithms (like SMT [DMB08] or SAT-solvers [Jac02]) are getting more and
more powerful, their application imposes several challenges. In the following, I highlight four main
challenge groups for using logic solvers in (graph) model generation.

First, the complete specification of the target DSL needs to be automatically translated into a
formal language in order to represent model generation as a mathematical reasoning problem. The
language elements in a DSL specification are representable by sets and relations, and first order logic
with transitive closure may formalize most constraints that are needed in practice. Different constraint
languages (like OCL, graph patterns or graph predicates) attached to the modeling languages are

4

1.3. Challenges in model generation

Research Question 2: Tool Testing
————————————— How to provide a test suite of instance models
for a complex DSL with designated coverage?

Research Question 1: Language Validation
How to validate the consistency, completeness |———————- |
and unambiguity of DSL specifications?

Research Question 3: View Synchronization
jm———————o How to propagate changes of a view model
back to the source model to restore consistency?

Research Question 4: Model Generation
How to automatically generate valid
instance models for DSLs?

Challenge 1:Encoding] [Challenge 2: Abstraction Challenge 3:Scalability] [Challenge 4:Diversity

Figure 1.2: Relation between challenges and research questions

semantically close to first order logic, with possible extensions with higher-order language elements,
like counting, sum or other aggregates.

Model Generation Challenge 1: Encoding. How to encode DSL specifications as a logic prob-
lem where solutions of the logic problem represent valid models?

Language level validation (RQ1) gives particularly emphasis on the encoding to ensure that all lan-
guage elements are correctly and completely mapped to logic. Similarly, a model generator (RQ4)
need to support the logic problem created from a DSL.

Language level reasoning required for language validation (RQ1) is a challenging task as complete
analysis has to cover an infinite range of possible design models. Moreover, a DSL specification uses a
more expressive specification than first order logic, which is already undecidable. This necessitates the
use of sophisticated abstractions and bounded analysis techniques, which sacrifice soundness or com-
pleteness, but are still able to carry out the target verification task by proving a stronger assumption,
or giving counter-example to weaker one. Similarly, abstraction and approximation are key concepts
in logic solvers used for model generation (RQ4).

Model Generation Challenge 2: Abstraction. How to provide efficient abstractions for
language-level analysis of a DSL?

Even if an abstraction or encoding is sound, it may imply scalability challenges for model genera-
tion in practical application scenarios. As the metamodel of an industrial DSL may contain hundreds of
types and relations, any meaningful instance model can easily be of similar size. Unfortunately, model
generation cannot currently be achieved by a single direct call to the underlying (SAT/SMT) solver
[JLB11][C10] due to scalability issues. Our finding was that existing model generation approaches
based upon mappings to underlying SMT/SAT solvers could only scale to very small problems due
to the fact that the mapping introduces far too many Boolean variables to encode potential graph
nodes and edges that immediately explode the search space of the solver. Moreover, when rewriting
(language-level) well-formedness constraints to their equivalent Boolean formula over a particular
model, the size of this formula is grows rapidly with the size of the model. As such, evaluating a very
large formula already creates major challenges for solvers. Indeed, we found no published results in
related literature using logic solvers for graph model generation purposes that were able to derive
graphs with over 150 nodes. Therefore, existing solver-based generators using currently available

1. INTRODUCTION

logic solvers fail to derive non-trivial and useful models for complex DSLs (RQ4). This hinders the
use of model generators in practical tool testing and view synchronization scenarios (RQ2-3).

Model Generation Challenge 3: Scalability. How to derive large instance models for complex
DSLs?

Finally, existing logic solvers tend to retrieve simple, unrealistic models consisting of unconnected
islands, many isolated nodes and highly symmetric (copy-paste) fragments, which is problematic in a
real testing scenario (RQ4). In fact, test suites created by existing solvers often contain highly similar
(or even isomorphic) model sequences, which violates the common best practice of testing, i.e. to use a
diverse set of test inputs that cover various equivalence classes. Furthermore, there are no widely used
coverage metrics for measuring the diversity of graph-based models. Even preventing isomorphic
solution in a model generator is challenging, as it may necessitate computationally expensive graph
isomorphism checks.

Model Generation Challenge 4: Diversity. How to measure model diversity and generate a
diverse set of models?

Conversely, in bidirectional synchronization (RQ3), one of the main goal is to avoid unnecessary
changes into prevent information loss.

1.4 Research method

My research method has been aligned with the best practices of software engineering research. First,
all Research Questions 1-4 and Challenges 1-4 have been motivated by generalizing practical is-
sues gained in the context of industrial case studies. Moreover, the feasibility and usefulness of concep-
tual contributions have been demonstrated by developing prototype implementations (grouped into
the open source VIATRA Solver framework [C8]). I integrated my contributions into general-purpose
industrial modeling technologies (like EMF [Emf] and VIATRA [Ber+11; Ber+10]). Finally, I evaluated
the feasibility and scalability of my approach using the prototype implementation on several (scala-
bility) benchmarks derived from existing modeling environments and models of case studies. In my
thesis I use three case studies to illustrate the challenges and my solutions on language validation,
test generation, and view synchronization.

1.4.1 Avionics Architecture

An avionic DSL validation case study is taken from Trans-IMA [Hor+14] project (and used to answer
Research Question 1). Trans-IMA aims at defining a model-driven approach for the synthesis of
integrated Matlab Simulink models amenable to simulating the software and hardware architecture
of an airplane. The project aimed to (i) define a model-driven development process for allocating
software functions captured as Simulink models [Mat] over different hardware architectures and (ii)
develop domain-specific languages and tools for supporting the definition of the allocation process.
This development environment is built upon eight large metamodels, where complex Via-
TRA graph patterns were extensively used for capturing constraints and derived features. The DSL
contains 118 classes, 90 attributes, and 170 references, where 56 features were marked as derived
(about 20% of total) and each was specified by a corresponding model query. The design rules are de-
fined by 31 well-formedness constraints. In my work, I validated several expected language properties

1.4. Research method

for the Functional Architecture Model (FAM) fragment of the Trans-IMA DSL. A FAM represents an
abstraction of the avionics functions including their functional decomposition and their correspond-
ing information links (the data flow structure) from a Simulink model. An example functional archi-
tecture model is illustrated in Figure 1.3. The development of other popular standardized industrial
DSLs like AADL [SAE] and AUTOSAR [AUT13] and have similar challenges.

=] Chassis 1
]
W ..llF!S;.Ip;'JIY:-!
A v) 4
= PrecessingUnit 1 1=l ProcassingUnit 2 = ProcessingUnit 3
[wwosz] |

E — - = i r . |
| | CommunicationBridge | CommunicationBridgge E E Cormmunica tionS ridge 1
(—— S SO | N E— —
= Backplane
1k]
| DataBus 'O Mocule a DaiaBus ﬁ [C=taBus IO Module |
3] a

v i 2
Router AFDX Switch 1 Rouler AFDX Swich 2

Figure 1.3: Example chassis platform description from Trans-IMA [Hor+14]

1.4.2 Yakindu Statecharts

In my thesis, I used Yakindu Statecharts Tools [Yak] as an industrial case study for test generation
(used in Research Questions 2 and 4). Yakindu Statecharts Tools is an integrated modeling environ-
ment developed by Itemis AG for the specification and development of reactive, event-driven systems
based on the concept of statecharts captured in combined graphical and textual syntax. Yakindu si-
multaneously supports static validation of well-formedness constraints as well as simulation of (and
code generation from) statechart models. A sample statechart is illustrated in Figure 1.4.

Validation is crucial for domain-specific modeling tools to detect conceptual design flaws early
and ensure that malformed models do not get processed by tooling. Therefore missing validation
rules are considered as bugs of the editor. While Yakindu is a stable modeling tool, it is still possible to
develop model instances as corner cases which satisfy all (implemented) well-formedness constraints
of the language but the simulator or code generator crashes due to synchronization issues.

Server main region

interface server: R
in event workDone working
:) after5s/ 1.
internal: working process timer raise 2.
event timeout o> B
error timer

wait |timeout
o server.workDone
finish

server.workDone

Figure 1.4: Example Yakindu statechart with synchronizations

1. INTRODUCTION

1.4.3 Remote Healthcare System

My change propagation technique (Research Questions 3) is illustrated in a case study of a re-
mote health care system developed in the Concert ARTEMIS project [Con]. The Concerto ARTEMIS
research project proposed a reference multi-domain architectural framework for complex, highly con-
current, and multi-core critical systems. As a subproject, it developed a multi-view, hierarchical cross-
domain design environment for heterogeneous platform architectures. A view of a medical applica-
tion is illustrated in Figure 1.5, which presents a dataflow abstraction of an architecture for pulse and
blood pressure measurement environment controlled by a smartphone. However, this view is only a
read-only representation.

My task was to add backward change propagation support to the view modeling environment, so
upon a change on the dataflow abstraction, the framework would propose valid architectural changes.

v v v| & v vl =~ £ 2 [100% v| @ .o Palette)
NEOYON B g
Middleware Layer
Measurement Completed y Server
Scheduled Report Completed -
En_.l Sensor Layer ~‘) Sensor
L} ‘A E‘ﬂ %))5.000 Pressure %))Weight o Troeer
6 - L4) j [1 99
~ \ £ —

/
< < /
) \\ N\ /

TN \\\ rtiervel Laytral(e
N~ < \ xver g
[-

[
=
=

< >

Figure 1.5: Example view model of a remote measurement setup

1.5 Contribution overview and thesis structure
The results of my thesis are organized into three contribution groups.

Contribution group 1. I proposed a novel logic solver that operates directly on graph models. I
integrated existing SAT [Jac02; TJ07; LBP10; ES03] and SMT [DMBO08] solvers to the framework.
Contribution group 2. I proposed formal analysis techniques for the language-level validation
of domain-specific languages by mapping them to formal logic specifications.

Contribution group 3. I proposed iterative techniques for generating a diverse set of input
models with increasing model size and source model candidates using the output of logic solvers.

The results of my thesis are organized around the model generation setup, and illustrated in Fig-
ure 1.6). Contributions are highlighted in blue areas, solid lines denote transformations, dashed
lines are dependencies, and dotted lines connect the Contributions with Research Questions and
Challenges.

My first contribution group covers a model generation framework, addressing Research Question
4. The framework takes the formal description of a domain-specific language and a task task encoded

1.5. Contribution overview and thesis structure

as a logic problem, solves the problem with a background solver, and creates solutions representing
instance models. The framework (and the contribution group) features an highly efficient novel Graph
Solver algorithm, and integrates other popular background logic solvers (Z3 SMT solver [DMB08] and
Alloy [Jac02; TJ07] with two underlying SAT solvers [LBP10; ES03]).

Next, my second contribution group proposes an encoding (Challenge 1) of domain-specific mod-
eling languages (which covers EMF meta- and instance models, and VIATRA queries) as logic problems.
It supports abstraction techniques (Challenge 2) to over- and under-approximate constraints to a de-
cidable fragment of logic [PMB08]. It formulates several DSL validation tasks (Research Question
1) based on the encoding of the DSL elements, which can be checked with the underlying model
generator framework.

My third contribution group features iterative model generation techniques. It proposes the gen-
eration of models in multiple steps, reusing the previous solution(s) in the construction of the next.
For test input generation (Research Question 2), it proposes an incremental and diverse model gener-
ation techniques. In incremental model generation, each model is generated as a sequence of models
increasing in size where each generation step adds new elements to the existing models, thus im-
proving scalability (Challenge 3). For diverse model generation (Research Question 3), the thesis
proposes a shape-based [Ren04; RD06] distance metric to measure the diversity of models, and con-
trols the model generation by ensuring a minimal distance between each model (facing Challenge
4). For view model synchronization (Research Question 3), the thesis proposes a backward change
propagation technique that reuses the previous state of the source model (as a submodel) when it
generates source model candidates to restore consistency.

Domain-Specific

Test Generation
Backward Change Propagation
Languages A i
|
Model Generator
Graph Solver

Contribution 1.
A Graph Solver for
Model Generation

Contribution 2.
Formal Analyis of |

Contribution 3.
Iterative

Model Generation
for Modeling Tools

Generated Instance Models

Research Question 2:

How to provide a test suite of instance models
for a complex DSL with designated coverage?
Research Question 3:

How to propagate changes of a view model
back to the source model
to restore consistency?

Validation task |

Domain-Specific Modeling Language

Z3: SMT
Alloy: SAT

Research Question 1:
How to validate the
consistency, completeness and
unambiguity of DSL specifications?

- Research Question 4:
| challenge 1:Encoding | How to automatically generate [challenge 3:Scalabilty |

"""" valid instance models for DSLs? Tt

|Cha|lenge 2:Abstraction l | Challenge 4:Diversity I

Figure 1.6: Contribution overview

Figure 1.7 illustrates the structure of the thesis. The remaining chapters are structured as follows:

« Chapter 2 gives a concise overview of formal logic, and introduces the mathematical formalism
and notation I used in the rest of the thesis.

« Chapter 3 presents the modeling preliminaries and a transformation technique to map modeling
concepts to formal logic (Contribution group 2).

1. INTRODUCTION

Next, Chapter 4 proposes partial models as an extension of logic structures (Contribution
group 1).

This serves as the theoretical background for the graph solver (Contribution group 1) pre-
sented in Chapter 5.

In Chapter 6 proposes an incremental model generation technique (Contribution group 3) to
increase the scalability of model generators.

In Chapter 7 proposes diversity metrics to measure the quality of models in testing scenarios
(Contribution group 3).

In Chapter 8 introduces a change propagation technique using model generators (Contribu-
tion group 3).

Chapter 9 introduces various language validation techniques for DSLs (Contribution group
1) using model generation.

Finally, Chapter 10 summarizes the results of the thesis and formally states the Contributions
of my work.

In my thesis, I used three Case Studies as running examples I used Yakindu Statecharts as the main

case study for most of the thesis (from Chapter 3 to Chapter 7), Remote Healthcare Systems for Chap-
ter 8 and Avionics Architecture for Chapter 9.

| 1. Introduction |

| 2. First Order Relational Logic |

Contribution 1. A Graph Solver Contribution 2. Formal Analyis Contribution 3. Iterative Model Generation
for Model Generation Techniques for Domain-Specific Languages Techniques for Modeling Tools

3. Mapping of Domain-Specifc Languages |

to Logic
> 4. Graph Constraint Evaluation L,/A A *\ A| %
{|over Partial Models ! + T r

\
‘\\ 5. A Graph Solver for the | % X Case Study 1:
Automated Generation of Consistent Models | ‘\\ \ \\ Yakindu Statecharts
\\\ \\\ 6. Incremental Graph Model Generation
N AN with Logic Solvers

with Logic Solvers

Case Study 2:
Remote Healthcare
System
Case Study 3:
Avionics Architecture

. Change Propagation of View Models
with Logic Solvers

\\] 7. Diverse Graph Model Generation l_
\
~

9. Validation of Complex |
Domain-Specific Languages |

| 10. Summary of the Research Results |

Figure 1.7: Thesis structure with Contributions, Case Studies and dependencies between the chap-

ters

10

CHAPTER 2

First order relational logic

The precise analysis of domain-specific languages necessitates the application of formal mathemat-
ical methods. This chapter gives an overview of the mathematical notation used in the thesis. The
thesis uses a relational variation of first order (relational) logic (FOL) as the main form of formal rep-
resentation, which is able to cover the key features of DSLs. First, Section 2.1 introduces the syntax
of first order relational logic with transitive closure. Then, Section 2.2 defines the precise semantics
of a logic expression, theorems and logic models, including approximations of logic expressions and
theorems. Next, Section 2.3 defines two possible restrictions of FOL (bounded analysis and effectively
propositional logic), and Section 2.4 extends the description power of relational logic with functions
and constants (without changing the expression power). Finally, Section 2.5 concludes the chapter.
The notation of the chapter is based on papers [C5] and [C6], but follows classic logic introduc-
tions like [MM16]. Similar syntactical and semantical variations of relational logic are used in query
languages [VB07] formal methods [RSW04] and model generation approaches [TJ07; KJS11].

2.1 Syntax of first order relational logic

A logic language is defined over a signature with a vocabulary of relational symbols and an arity
function.

Definition 1 (Vocabulary of Relational Logic) A signature is a (3,a) pair, where ¥ =
{Ri1,....R,} is a nonempty, finite set of relation symbols called vocabulary, and a : ¥ — N is
an arity function.

Relational logic expressions of (3, a) are inductively constructed using logic true and false values
(1 and 0 respectively), an infinite sequence of variable symbols (vy,vs,... € V), relation applica-
tion (R(:, - - -, -)), equivalence (- ~ -) and inequivalence (distinct(-, - - - , -)), standard logic connectives
(negation: —-, and: - A -, or: - V -, implication: - = - and logic equivalence - < -), logic quantifiers
(exists: 3 and forall: V), transitive closure over binary relations (R (-, -)).

Definition 2 (Syntax of Relational Logic) An expression of (2, a) is defined recursively using
relational symbols R € 3, variable symbols v € V and logic connectives:

11

2. FIRST ORDER RELATIONAL LOGIC

(expry == 1]0
| R((term), ..., (term))
a(R)
(term) ~ (term)
distinct({term), . . ., (term))
~(expr)

|

|

|

| (expr) A (expr)
| Cexpr) v (expr)
| (expr) = (expr)
| (expr) & (expr)
| Fou: (expr)

| Vo : (expr)

| R*({term), (termy))
(term) == o

logic true and false values
relation application, R € 3

term equivalence

term distinctness

logic negation

logic and

logic or

logic implication

logic equivalence

existential quantifier,v € V
universal quantifier,v € V
transitive closure, R € 3, a(R) = 2
variable symbolv € V

Additionally, we use parentheses (-) to group expressions. We use the standard precedence of logic:

(‘)’ R(" Tt 9 ')7 R+('7 ‘)’ diStinCt('7 Tt b ‘)’ _|5 /\’ V’ :9 QQ N? 37 V’

In a logic expression the same variable can occur in multiple times, which needs special attention:

Definition 3 (Bound and Free variables) An occurrence o of a variable symbol v is bound by a
quantified expression v : ¢’ orVv : ¢, if (1) ¢ contains that occurrence o, and (2) ¢ does not contain
any quantified subexpression with v that contains the occurrenceo (3v : ...o...orVou:...0...).If
an occurrence of a variable symbol v is not bounded then it is free. If an expression has free variable

symbol then it is open, otherwise it is closed.

Logic expressions create logic predicates and formulae.

Definition 4 (Predicates and Formulae) An expression ¢ with free variables vy, . . ., v, is called
predicate, and denoted with ¢(vy, . . ., vy). A closed expression ¢ is called formula.

2.2 Semantics of relational logic

The semantic of a logic expression is evaluated over of logic structure, which is defined with a base

set and an interpretation function.

Definition 5 (Logic Structure) A logic structure M of a signature (3, a) is a structure M =

(Om, Ip), where:

e Oy is the nonempty base set of individuals in the model (i.e. the objects)

e Im(R) : OX/;R) — {0, 1} provides a logic interpretation function for allR € X.

When discussing a logic structure, 0; = o0, denotes the equality of two individuals in set O, and
v1 ~ vy is used as a logic expression representing the equality of variable values. Two logic structures
are considered equivalent, if their base set can be mapped to each other in a way that they give the

same interpretation.

12

2.2. Semantics of relational logic

Definition 6 (Structure morphism, isomorphism) Logic structures M = (O, Ipy) and N =
(ON, IN) defined over signature (%, a). Function m : Oy — Ol is called a structure morphism, if

Yoi,...0n € O : Zyi(R) (01, - . ., 0,) = IN(R)(m(01), . . ., m(0y)) n = a(R)

for every R € 3. Structures M and N are equivalent, if there are two morphisms m; : Op — On
and my : Oy — Oy

A logic predicate can be evaluated on a logic structure with a variable binding. A variable binding
maps each free variables of an expression to an object of a logic structure.

Definition 7 (Variable Binding) A variable binding of predicate ¢(vy, . .., vy) is a mapping Z :
{v1,...,vn} = Oyp from variables to objects in M.

In the following definition, min and max takes the numeric minimum and maximum values of 0
and 1. Furthermore, an extension of a function f : A — B with a pair a — b is denoted by f,a — b,
which denotes a function (f,a +— b) : AU {a} — B U {b}, where:

b ifx=a
f(x) otherwise

(f,aHb)(X)={

The semantics of logic expression is defined by a function [-]. with range {0, 1}. A predicate
@(v1, ..., vy) is evaluated on logic structure M along a variable binding Z in accordance with the
semantic rules of the following definition.

Definition 8 (Semantics of Logic Expressions) The semantic of predicate ¢(v1, . . .,v,) over a
logic structure M and variable binding Z is denoted by [¢(vy, . . ., vn)]]g, and defined as follows:

(1Y =1
o1 =0
[R: (@i, o)Ly = Iu(R)Z(@;), .. ., Z(v;))
M . 1 ifZ(vy) = Z(v)
[or~]z = 0 otherwise
[distinct(vy, . . .,vn)]]g = min{[-(v; ~ vj)]]g :1<i<j<n}
[-el7 =1~ el

[o1 A <pz]]§4 = min([[q)l]]?, [[‘Pz]]g)
[o:1 Vv <pz]]§4 = maX([[wl]]?, [[‘Pz]]g)
[o:1 = @217 = [-o1 V @213
[o1 © @1 = [(g1 = @2) A (92 = @)Y

[To: (p]]%’f : max{[[(p]]g{v,_)x :x € Op}
[Vo: o]l = min{l[olly .. :x € Op)
v max([RGon o)1,
[R* (o1, v2)llz = maxE[[Hzml,Z. ..,My : R(vy,m) A ... AR(m,, vz)]]g :n € Nt}

The semantics of R (vy, v) is defined for all positive length n € N*, but for finite models, checking
only interval n € [1;|0]] is sufficient.

13

2. FIRST ORDER RELATIONAL LOGIC

2.2.1 Theories and models

Next, we define theories as a collection of formulae.

Definition 9 (Theory, Axioms) A theory7T = {¢1, @2, ...} is a (possibly infinite) set of formulae.
Formulae @1, @2, ... are referred as axioms of theory T~

Then, we define when a logic structure satisfies a theory.

Definition 10 (Model) A logic structure M satisfies a formula ¢ (denoted by M |= o) if []]™ = 1.
Similarly, a logic structure M satisfies a theory T (denoted by M |= T) if M |= ¢ forall ¢ € T.
Such an M is called the model of the formula or theory. If a structure M does not satisfies (or, in other
words, violates) a formula ¢ or theory T it is denoted by M = ¢ and M | T . The (possibly infinite)
set of models that satisfies a theory T is denoted by Mg

An important characterization of a theory is that it satisfiable by or not.

Definition 11 (Consistency, Inconsistency) A theory T is consistent, if there is a model M
which satisfies T : M |= T". Otherwise, T is inconsistent.

Semantic consequence is defined with consistency.

Definition 12 (Semantic Consequence) A formula ¢ is a semantic consequence of theory T
(denoted as T |=) if there is no model M for which M |= 7 and M |~ ¢.

In other words, if a model satisfies a theory, it satisfies all semantic consequences. It is important
to note that for an inconsistent theory 7~ every ¢ is a semantic consequence.

2.2.2 Approximations

Definition 13 (Approximations of Predicates) Predicate ¢U(vy,...,v,) underapproximates
(similarly ¢°(vy, . . .,v,) overapproximates) a predicate ¢(vy, . ..,vy,) if it satisfies the following
implications for every evaluation:

Vvl,...,v,,:@U(vl,...,vn):go(vl,...,vn)

Vvl,...,vn:(p(vl,...,vn)=>(po(vl,...,vn)

As a trivial example, constant ¢©(vy, . ..,v,) = 1 predicate is always a good overapproximation,
and ¢Y(vy,...,v,) = 0 underapproximates every predicate. A formula also approximates itself. So
the strategy of our mapping is to express most of formulae in the target designated logic fragment
language, and approximate the inexpressible features. An axiom system 7 can be also approximated
to 7Y or 79 if every axiom is approximated in it. Approximating axiom systems allows us to reason
over problems that otherwise would be undecidable.

14

2.3. Restrictions of relational logic

Theorem 1 (Approximated Axiom systems) If7V and 7© are under- and overapprocimated
axiom systems, and ¢(vy, . . ., vy,) is a predicate, then

TV Ee=TFo
TOEo=T o
Additionally:

7Y satisfiable = T satisfiable
70 unsatisfiable = T unsatisfiable

2.3 Restrictions of relational logic

Because FOL problems are undecidable in general, SMT and SAT solvers can use one or a combination
of multiple background theories, therefore they can reason over a certain set of logic problems. This
paper uses two kinds of restrictions of relational logic with existing decision procedure: bounded
analysis and effectively proposal logic [PMBO08].

First, bounded analysis (BA) deals with models only with a specific number of objects. Solvers like
Alloy [TJ07] with SAT solvers [LBP10; ES03] and Z3 [DMBO08] allow bounded analysis.

Definition 14 (Bounded analysis) Analysis with bounded size s of a theory T deals with models
M, where (1) M |= T, and (2) |Op| = s. In other words, T~ contains two formulae:

Omin:=301, ..., s : distinct(vy, . .., Us)
Omax:=YV1, - . ., Us, Us11 : —distinct(vy, . . ., Us, Ust1)

Another background theory is effectively propositional logic (EPR) [PMB08] as it provides logical
formulae that can cover the large set of DSL language features yet provide efficient reasoning ca-
pabilities over a potentially infinite range of models. For example, Z3 contains background theorem
[GMO09] to reason over effectively propositional logic.

Definition 15 (Effectively propositional logic) Effectively propositional logic is a fragment of
first order relational logic, where each formulae ¢ of a theory T is defined in the following form:

’
dey,...,exVaq,....,am @' (e1,. .., €n,a1,...,am), 0<nm

and ¢’ does not contain quantifier or transitive closure.

2.4 Extensions of relational logic

Classic first order logic may also incorporate functions, constants and types beside relations. In the
following, I show that those extensions can be reduced to the relational definition of first order logic.

An n-ary function f defines a total mapping of n elements to a single target. A nullary function
is called a constant. Function symbols are also used as terms in logic expression with the following
syntax:

15

2. FIRST ORDER RELATIONAL LOGIC

(term) == f({term),...,(term)) Function application, f is n-ary function symbol

n
| ¢ Constant value, c is a constant symbol

Function symbols and function applications can be reduced to relation symbols and relational
applications. First, an n-ary function f can be modelled as relation Ry with arity a(Rf) = n + 1. In
order to ensure the functional property of the relations, the following additional assertions need to
be added to the axioms:

Total: VU1, ... Ut 0psr t Re(v1, ..., Un, Unt1)
Single Target: YO, .. Uny Ung1, Uy g
(Re(v1, -+ s Uy Ung1) ARp(U1, .o, U, 0, 1) = (Vnt1 ~ 0,4)

In case of constant symbol c, the assertions simplified to the following expressions:

Total: Jv : R (v)
Single Target: Vu,v" : (R:(v) A R.(v")) = (v ~ v’)

In accordance, logic expressions need to be rewritten to relational logic expression, which is car-
ried out by replacing function applications and constant values with the corresponding relations.

1. In an expression, only subexpressions R(:,---,-) and - ~ - contain function applications or
constant values, thus we search for those subexpressions and handle them independently as
follows.

2. Let ¢ be alogic expression R(-, - - - , -) or - ~ - which contains function applications fi (], .. ., t}),
cees fu@1 ., t}’) and constant symbols cy, ..., ¢,. All function application and constant value
terms are replaced with (newly introduced) variables vy, ..., v, and v, ..., v.,, respectively,
which creates a relational expression qo’(vfl, e Uf Vs e s Ve,,)-

3. Then, ¢ is is replaced with the following expression:

introducing variables to replace terms with replacing terms with variables

" _ . 4
o' = FVf, e Vfs Veps e o3 Ve o @ (Ufs e Vs Veps v o5 V) A

Ry, ot o) A ARp, (8.t 05) A Rey(ve) A ... AR, (ve,,)

binding variables vy, . . . v, to functions binding variables v¢,, . . . v¢,, to constants

Example 1. Let parent be an unary function, and root a constant. The following logic expression
means that the parent of the root is itself: p:=parent(root) ~ root.

In order to represent this problem in relational logic, parent and root is replaced with Rpgyen; binary
and R,y unary relation, and the following assertions needs to be added to the problem:

Vo @ Jouy Rparent(vl’ v2) Yoy, vy, Ué : (Rparent(vl, vz) A Rparent(vls Ué)) = Uy ~ Ué

Jv: Rroot(v) Yo, v’ : (Rroot(v) A Rroat(vl)) = Uy ~ Ué

16

2.5. Summary

The relational logic equivalent of ¢ is the following

(p’::ﬂvl, Vg, U3 : Rparent(vle UZ) A Rroot(vl) A Rroot(US) ANV ~ Us

2.5 Summary

This chapter introduced the formalism first order relational logic (FOL), which will be used as the basic
notation through the thesis. We showed that this notation is equivalent with classic notation of first
order logic using constants and functions. Moreover, it introduced two restricted, efficiently analyz-
able fragments of FOL: bounded analysis (BA) and effectively propositional logic (EPR). However, the
theory graph patterns (GP) in ViIATRA [VB07] or the OCL language [Ocl] (OCL) are more expressive
than first order relational logic (FOL). Therefore, certain constraints such as recursive patterns, tran-
sitive closures, set cardinalities and check expressions cannot be directly compiled into FOL, which
needs the applications of approximations. The expressiveness of the different constraint languages
and logic fragments can be summarized as follows:

BA, EPR < FOL < GP, OCL.

Next, Chapter 3 introduce a mapping technique to represent modeling artifacts to FOL symbols and
formulae, which will be used in the rest of the paper to automatically solve different modeling prob-
lems with automated reasoning.

17

CHAPTER 3

Mapping of Domain-Specific
Languages to Logic

Complex domain-specific languages necessitate a combination of different specification techniques.
The abstract syntax of the DSL is usually captured by a metamodel. To create an advanced model-
ing environment, the metamodel can be augmented with well-formedness constraints (or design rules),
which capture additional restrictions any well-formed instance model needs to respect. Such con-
straints can be defined by model queries or as OCL invariants.

This chapter defines the translation of a DSL to first order (relational) logic. The chapter is struc-
tured as follows: first, Section 3.1 introduces the modeling concepts of EMF [Emf] and VIATRA query
language [Var+16; VB07]. Moreover, it introduces Yakindu Statecharts as the main case study of the
thesis. Next, Section 3.2 presents the overview of the translation technique. Then Section 3.3 presents
the mapping of EMF metamodels, Section 3.4 the mapping of ViaTraA queries. Our OCL [Ocl] transla-
tion translation technique is also included in Section A.1, although not the contribution of this thesis.
Finally, summarizes the chapter. The chapter is based on publications [C9] and [J2].

3.1 Modeling preliminaries

This section introduces the language of EMF metamodeling language [Emf] and VIATRA query lan-
guage [Var+16; VB07], and illustrates the Yakindu Statechart [Yak] case study.

3.1.1 Metamodeling

A metamodel MM = (Danr, Smm) defines the main concepts, relations of the target domain (Dpgy),
and specifies the basic structure of the models (Sys). The thesis uses the Eclipse Modeling Framework
(EMF) [Emf] for domain modeling, which is used by many industrial modeling tools including Capella
(Thales), Artop, Yakindu (Itemis), MagicDraw (NoMagic) and Papyrus. Thus systematically generating
test models for tool certification provides an immediate application with high practical relevance. In
EMF, a metamodel is defined by the following domain:

Dy = (CISMM, Datapyg, Enumpgyg, Lityy, litMM, RefMM, AZTI”MM>

In a metamodel MM, Clsyp represents the set of EClasses (which are simply referred to as classes)
that can be instantiated to EObjects (or objects) in an instance model. Additionally, a metamodel refers

19

3. MAPPING OoF DOMAIN-SPECIFIC LANGUAGES TO LoGic

to a set of predefined data types Datay, which includes primitive types like Elnt (integers), EString
(strings), or introduce custom EEnum types (enumerated types) Enumyg with predefined set of literal
elements Lityps. The metamodel Clsygyy specifies the set of literals of an enumerated type with function
litay :© Enumpgpy — 28 for each literal | € Lityy, there is exactly one enumerated type E €
Enumypyy where | € litap(E). Relations between the classes are captured with a set of EReferences
(references) Ref ;. Finally, the relations between classes and data types are captured by EAttributes
(or attributes) Attramy. Sets Clsyv, Datay, Ref g, Attramg, Enumpg and Litagy are finite and disjoint.
An EMF metamodel MM = (D, Spm) also specifies several structural constraints in Sy

ref ref attr attr min max
Smm = (Supyup> absyin, STCy g T8 0ines STV T8 M mulyyy, mulyir, inva, contan), where:

« Relation sup,; € Clsyn X Clsy specifies a generalization between two classes to express that
a more specific (child) class has every structural feature of the more general (parent) class. In
EMF, multiple inheritance is supported, but loops are forbidden:

=3, ¢a. .., Cnm1, Cn € Clsyr = supypg(crs c2) Ao A supypg(Cnt, cn) A supypg(cn, c1)

o Relation absyps € Clsaps select some of the classes as abstract, which means it is disallowed to
have direct instances.

« Functions src;j&, trglr\?;/l : Ref s — Clsap selects the source and target types of the references.

« Function src]‘(/% 1 Attrags — Clspyy selects the container class of the attribute, and Attrypy :

Ref yus — Datapy selects the value type.

. Functions mulli" : Ref ;U Attrapy — N and mullls¥ : Ref 5, U Attrapy — N* U {x} spec-

ifies lower and upper multiplicity bounds to the references and attributes, typically written in
lower..upper form. Multiplicity * denotes unlimited upper multiplicity.

» Two parallel but opposite directional inverse references can be defined as inverses of each other

to specify that they always occur in pairs with relation invans C Ref ;X Ref - Relation invyy
is symmetric, and the source and target types of inverse relations have to be the opposite:

Vri,r2 € Ref \p 1 invan(ry, r2) & inva(ra, ry)

Vri,r2 € Ref \p 2 invam(ri, 12) = [srcﬁ&(rl) = trg;\ffﬂ(rz) A trg]r&];/l(rl) = src]r\f&(rz)]

« EMF instance models are arranged into a strict containment hierarchy, which is a directed tree
along relations marked by the set contyns C Ref ;-

Example 2. A metamodel extracted from Yakindu is illustrated in Figure 3.1. A Statechart consists
of Regions, which in turn contain Vertexes and Transitions. An abstract state Vertex is further
refined into RegularStates (like State) and PseudoStates like Entry and Synchronization states.
The source and target states of a transition are identified by the source and target references.

20

3.1. Modeling preliminaries

[0..*] incomingTransitions [1..1] target

Q Transition m};] Vertex Q Region
[1..*] vertices

[0..*] outgoingTransitions | [1..1] source ? .#] regions :E

3

EQ Pseudostate EQ RegularState m};] CompositeElement
[) |
B Entry | B Synchronization E] Statechart
(| _

Figure 3.1: Metamodel extract from Yakindu state machines

3.1.2 Instance models

An instance model of a metamodel MM are graph-based data structures that use the types and re-
lations introduced in MM. This thesis uses logic structures (see Section 2.2) to capture this graph-
structure, which are defined over a signature (X, ayn) derived from the metamodel:

o Xam:=Clsyms U Datappy U Enumpgpg U Litpypg U RefMM U Attrym

1 if s € Clspps U Datappg U Enumppg U Litypy
2 ifse RefMM U Attrym

o apm(s) = {

In a logic structure M = (Op, Zy) representation a model, Oy denotes the objects and values
of primitive data types (i.e. the nodes of the graph structure), and 7); represents both the types of
the objects and the relations between them (i.e. both node labels and edges with edge labels). The
precise representation technique of the instance model as a logic structure follows the mapping of a
metamodel to logic theorem, and will be introduced accordingly in Section 3.3.

Example 3. Figure 3.2 illustrates a simple statechart model with a single state and an entry tran-
sition using concrete syntax of Yakindu, and as a logic structure. The model corresponds to the
metamodel in illustrated in Figure 3.1. Model M = (O, Zy) contains four objects (denoted by
boxes): Oy = {r, e, s, t}. The interpretation of unary relations in 7, are represented as node labels,
e.g. Region=1 in node r means that Zy;(Region)(r) = 1, missing labels are considered 0. Binary
relations are denoted with edges, e.g. Tjs(vertices)(r, e) = 1, and missing edges are also considered
false values (e.g. Zy(vertices)(e, r) = 0).

3.1.3 Model queries

Model queries are frequently captured by graph patterns (GP) [VB07; Ber+11], which is an expressive
formalism used for various purposes in model-driven development alternatively for standard OCL
constraints [Ocl]. A graph pattern is a graph-like structure representing a condition (or constraint)
matched against a typically large instance model.

A model query q(p;, . ..,p,) = def is defined by a name q, symbolic parameters p,,...,p,, and
conditions (or constraints) over the parameters (captured by def). A match m of q(p;,...,p,) over
model M maps each symbolic parameter p; to a model element (object, enum literal or primitive)

21

3. MAPPING OoF DOMAIN-SPECIFIC LANGUAGES TO LoGic

M
s e r vertices e
ion= 2 Entry=1
Regllon—1 Vertex=1
Ver‘t;ces source
S t
- t
State=1 <€ —
Vertex=1| target [Transition=1

Figure 3.2: Simple statechart model with concrete syntax (left) and as a logic structure (right)

from the target model M, which satisfies the conditions of def. The task of the query evaluation
on a model is to produce each match that satisfies this condition. VIATRA offers a textual language
describing graph patterns as a set of constraints. The following definition summarizes the grammar of
the language, the complete query language is described in [Ber+11], while relevant language features
will be introduced on demand in several examples below adapted from [C9][J2].

Definition 16 (Syntax of Graph Patterns) A graph pattern is defined as follows:

(pattern) = (annotation) pattern(name) ((params)) (bodies)
(params) ::= (param) | (param), {params)

(paramy) ::= (var) | (var):(EClassifier)

(bodies) ::= {{conlist)} | {{conlist)} or (bodies)

(conlist) ::= (constraint) ; | (constraint); {constlist)

(constraint) ::= (classifier) | (path) | (equality) |(call) | (check)

(classifier) == (C) ({var)) C € Clsyrm
(path) == (C) . (featlist) ({var) ,{var)) C € Clsym
(featlist) == (A)|{R)|(R) . (featlist) A € Attrym,R € Ref yu

(equality) = (vary==(var)|(var)!=(var)
(cally ::= £ind (name) ((binding)) |
neg find (name) ((binding)) |
find (name) +((binding))
(binding) ::= (var) | (var),(binding)
(check) = check ({boolexp))

(annotation) := @Constraint|/@QueryBasedFeaturel¢

A graph pattern is identified with a unique name and specified with a parameter list and some
bodies. The parameters refer to objects, enum literals or primitive types where the type of a parameter
can be explicitly defined. The bodies specify constraints over the parameters. A pattern may have
multiple bodies with constraints, and may introduce additional local variables beside the parameters.
If a variable is used only once it is specified as an anonymous variable with ’_> as the first character
in its name. A pattern with multiple bodies means a disjunction (or), thus a valid match necessitates
that all the constraints are satisfied by a mapping of those variables for at least one body.

The following types of constraints are supported:

5

« Classifier constraint: checks if a variable is an instance of an EClass.

22

3.2. Transformation overview

« Path constraint: requires a specific reference, an attribute, or a path of EReference and
EAttribute sequence between two variables.

« Equality constraint: specifies that two variables have to be mapped to the same model ele-
ment.

« Pattern call constraint: enables the composition of multiple patterns. The positive pattern call
refers to another pattern and specifies that the called pattern must be satisfied in the context
of the actual parameters. Additionally, a pattern may be composed negatively (neg keyword),
which means that the target negative pattern is disallowed to have a valid match along the
actual parameters. Finally, it is possible to compute the transitive closure of a two-parameter
pattern by the + symbol.

« Check constraint: evaluates a specific attribute expression on the variables of the pattern and
accept matches only if the result of attribute condition is true. In this paper, the basic arithmetic
and logic operators are covered.

In VIATRA, it is possible to mark the patterns with @Constraint annotation to use them as ill-
formedness patterns (i.e. as negation of well-formedness constraints), or make them define the values
of derived features with the @QueryBasedFeature annotation.

By default, the result of a model query expressed as a graph pattern is the set of all matches
with different values for the pattern parameter variables. However, by binding parameter variables to
specific model elements or attribute values it is possible to filter the returned values. This allows the
use of the same pattern for getting all possible matches and for checking whether a selected match is
present in the result set.

Example 4. Figure 3.3 illustrates five graph patterns defined using both graphical and tex-
tual syntax of ViIATRA. The first pattern transition(t,src,trg) defines a relation between
two Vertices which are connected via a Transition using source and target references. Refer-
ring to this pattern, three well-formedness constraint is defined concerning Entry states: if any
of them has a match, then the model is malformed. First, incomingToEntry(t, e) selects in-
valid Transitions that are leading to an Entry (by referring to the transition pattern using
the find language construct). Next, noOutgoingTransitionFromEntry(e) matches to Entry
states that does not have any outgoing Transition (by negatively referring to the transition
using the neg find). Pattern multipleTransitionFromEntry(e,t1,t2) selects Entries with
multiple outgoing Transition (with two find expressions), that are not equal (!=). Finally,
SynchronizedVerticesInSameRegion defines a complex error pattern, where a Synchroniza-
tion uses two Vertices from the same Region (and not synchronizing parallel vertices). The pattern
covers both cases where the Vertices are the source or the target of the Synchronization (denoted
by the or of two bodies).

3.2 Transformation overview

We now discuss the details of transforming DSL artifacts to first order logic formulae to be pro-
cessed by solvers. Due to its excessive length, the details of the transformation is split into three
sections, and we first present some theoretical foundations and the detailed mapping of metamodels
and partial snapshots in Section 3.3 followed by transformation of the constraint languages into FOL
in Section 3.4.

23

3. MAPPING OoF DOMAIN-SPECIFIC LANGUAGES TO LoGic

transition(t,src,trg)

pattern transition(t,src,trg) {
Transition.source (t,src);
Transition.target(t,trg);

}

incomingToEntry(t,e:Entry)
target

@Constraint
pattern incomingToEntry(t, e:Entry) {

source find transition(t,_,e);
}
noOutgoingTransitionFromEntry(e)
@Constraint

sourcej
pattern noOutgoingTransitionFromEntry(e:Entry) {

neg find transition(_,e,_);
}

Transition

NEG

multipleTransFromEntry(e,t1,t2)
@Constraint

pattern multipleTransitionFromEntry(e:Entry,t1,t2) {
find transition(tl,e,_);
find transition(t2,e,_);

tl = t2;
}
SynchronizedVerticesInSameRegion
@Constraint
source source. pattern SynchronizedVerticesInSameRegion (

s:Synchronization,vl,v2) {

find transition(t,vil,s);

find transition(t,v2,s);
* Region.vertices(r,vl);

rj;;;rj Region.vertices (r,v2);

verticesl o lvertices vl 1= v2;

R } oor {
find transition(t,s,vl);
find transition(t,s,v2);
Region.vertices(r,vl);
Region.vertices(r,v2);
vi !'= v2;

tar et

- Region -
vertices| fertices

Figure 3.3: Example graph patterns defined with graphical and ViATRA syntax

24

3.2. Transformation overview

.~ ModellingTool Reasoning | Result |
| Metamodels Search SAT
| 5 T Parameters M
i t
erived Features o— ONCAT
| Constraints _ 4
Unk
| Snapshots n r_;own

Figure 3.4: Functional overview of the approach

3.2.1 Functional overview of the transformation

This section provides a high-level, functional overview of the DSL analysis approach using an under-
lying logic solver. Our approach aims to analyze the DSL specification of modeling tools by mapping
them into a set of logic symbols ¥, and a first order logic theorem 7, which can be processed by ad-
vanced reasoning applications such as SMT solvers or SAT solvers. The outcome of a reasoning problem
is either Satisfiable or Unsatisfiable. If the problem is satisfiable, the solver constructs an output (or
completed) model M |= 7~ (which is interpreted as Witness or Counterexample depending on the task),
while an unsatisfiable result means a Contradiction. Because certain validation tasks are undecidable
in FOL it is also possible that validation terminates with an Unknown answer or a timeout. Finally,
the results of the reasoning needs to be traced back and interpreted in modeling terms as attributes of
the DSLs. Linking the independent reasoning tool to the modeling tool allows the DSL developer to
make mathematically precise deductions over the developed languages and models including different
validation techniques and test generation scenarios.

The validations are initiated and executed in well-defined context, which defines 7 for the model
generation run. This context can be customized during model generation by selecting (or de-selecting)
certain DSL artifacts from the following list. As a result, the output model M retrieved during DSL
validation needs to respect the context.

« Metamodels: The set of domain classes allowed to be instantiated for constructing models
can be restricted by explicitly selecting classes and structural features of a metamodel MM.
By default, each class from each metamodel is used in the analysis. Then M has to satisfy the
constraints of this (possibly pruned) metamodel: M |= MM.

« Derived Features: The values of the derived features have to be correctly evaluated with re-
spect to their definition yielding unique and complete results (denoted as M |= DF).

« Constraints: The output model has to satisfy the selected well-formedness constraints: M |=
WEF, thus certain constraints can be relaxed or strengthened for a reasoning process.

« Partial Snapshots: The output model M has to combine partial snapshots according to their
semantic parameters, denoted as M |= PS. Partial snapshots act as explicit assumptions (or proof
obligations) in a validation scenario, so by default, no PS is passed to the solver.

+ Search Parameters: Additionally, the user may define some reasoning-specific input parame-
ters:

— Scope: The number of objects used in the construction of an output model can be restricted
by an integer number (defined by |Ou| < size). By default, size = *, which means that the
analysis covers all each possible model regardless of its size.

25

3. MAPPING OoF DOMAIN-SPECIFIC LANGUAGES TO LoGic

— Approximation level: Some DSL property (such as the acyclicity of the containment
hierarchy) cannot be represented in FOL. The method is customizable with the level of
approximation (see Section 3.2.3), which allows to set the limit of approximation level.
Higher approximation level will reduce the possibility of false positives.

The constraints serving as the context of DSL validation are summarized as 7 = MM UDFU WF U
PS, and it defines a (possibly infinite or empty) set of models Mg = {M : M |= T, |Op| = size}. The
logic problem is translated to the input format of the selected logic solver in order to automatically
create instances.

3.2.2 Foundations of the transformation

The transformation takes a DSL context as input to create a set of logic symbols X, and a set of
formulae 7~ over X, which is satisfiable if and only if the original DSL context was consistent. If the 7~
is satisfiable then by definition there is an interpretation M |= 7". Additionally, we back-annotate the
logic structures M derived as a result of the validation process to an actual instance model (or partial
snapshot) of the DSL, formally:

If the reasoning tool finds the axiom system satisfiable an example interpretation will be created
that explicitly defines a (symbolic) value for every uninterpreted feature of the axiom system (e.g.
how many objects are there in the model, which ones are linked with a reference or what are the
matches of the graph patterns). By querying the metamodel-specific attributes of this logic model, an
EMF instance model will be created for back-annotation purposes.

3.2.3 Approximation techniques

The constraints in 7~ may contain expressions which cannot be processed or effectively handled by
the underlying solver thus approximation techniques have to be applied. The use of approximations
is an integral part of the proposed approach, which is handled in the validation process as Figure 3.5
illustrates it. Based on the Approximation Parameters, under- and over-approximations are applied
on the logic problems during the transformation to create stronger or weaker conditions by adding,
removing or modifying formulae. The modified problem is expected to be solved more efficiently by
the target logic reasoner, and the result can be Satisfiable with a model (which is only a Candidate
Model of the original problem), Unsatisfiable or Unknown. Because of the approximations, an output
of this modified problem needs some additional analysis:

« If an underapproximated problem is satisfiable, then the original problem is satisfiable too, and
the candidate model (output of the modified problem) is acceptable for the original problem.

o If an overapproximated problem is unsatisfiable, then the original problem is unsatisfiable too.

« Butif an underapproximated problem is unsatisfiable, then it is uncertain if the original problem
has contradictions so the result is unknown.

« If an overapproximated problem is satisfiable, then the candidate model might be a false positive
which does not satisfy the original problem, so additional validation with the original con-
straints is necessary. Structural correctness, OCL and VIATRA constraints can be easily checked
on a candidate instance model by dedicated language level validation tools (like ViATRA or OCL
interpreters). If the validation is successful, then the candidate model is valid in the context of
the original problem, otherwise the process fails with unknown.

26

3.3. Transforming metamodels and partial snapshots

Reasoning . Result Postprocessing

Approximation T e ————r

parameters M ___9‘.’9[.-m-
- Unknown [« -=== =
Mapping ? DS

UNSAT under !
4

Figure 3.5: Reasoning with approximated constraints

Classifier Constant symbols Type Predicate
EObjects - Object(-)
EEnum type E with literals lit(E) = l;,..., 1, l, .., 1, E(-)
EBoolean false, true Boolean(-)
Elnt ...,-1,0,+1,... Integer(-)
EDouble, EFloat 0.0,0.1,... Real(+)
EString meomat "aa"... String(:)

Table 3.1: Mapping of EMF data types

« If the theorem prover provides a model which is formally correct but does not expected in real
scenarios (due to implicit WF-constraints), then it is a spurious counterexample. To handle those
irrelevant cases, the counterexample is generalized into a partial snapshot supplied to the solver
in consecutive validation runs.

By using abstraction in the validation process complex language elements can handled in the
validation even if they cannot directly handled by the solver.

3.3 Transforming metamodels and partial snapshots

This section describes the mapping of a metamodel MM = (D, Spur), and represent models as logic
structures.

3.3.1 Objects and Primitive Values

In EMF, instance models are graph structures represented by of EObjects and primitive values (strings,
integers) as nodes, and EReferences links and EAttribute values as edges. First, EObjects are represented
with a predicate Object. Additionally, primitive data types d € Datayy are represented with a pre-
defined domain of constants and a type predicate. VIATRA Solver supports the basic EMF data types,
and they are mapped to a set of elements in accordance with Table 3.1.

3.3.1.1 Classes

Every class in a Clsypy is transformed to unary characteristic predicate symbol.

EMF | C € Clsym
FOL ‘ C(-), Vv : C(v) = Object(v)

27

3. MAPPING OoF DOMAIN-SPECIFIC LANGUAGES TO LoGic

| U Transition | | EU Vertex |< | U Region
EMF () | J ()
Yo :
‘ Transition Vertex Region
FOL — — :
Transition | (Transition(o) A —Vertex(o) A -—Region(o))V
Region | (—Transition(o) A Vertex(o)) A Region(o))

Figure 3.6: Mapping type hierarchy

For example, class State is transformed to predicate State(-), and State(v) is true if v is an instance of
State. In a model M, [[C(v)]]™,, is 1 then the object o is an instance of class C.

V0

3.3.1.2 Type hierarchy

In many cases, an object is an instance of multiple classes due to the generalization relation between
the classes, and the existence of abstract classes which do not have direct instances. A simple way
to represent the type hierarchy is using a table where the columns represent the possible classes and
the rows the concrete (non-abstract) classes. A cell represents a literal whether the type in the row is
compatible with the type in the column.

Vo : Object(o) = v /\ [C(0) & sup,p,(C.S)]

C GCISA,iM Se ClSMM
Céabsym

An extract of the transformation of class hierarchy is shown in Figure 3.6.

3.3.2 References and Attributes

References of the metamodels define the directed edges between the instance objects. Attributes of
a metamodel are the properties of the classes with built-in type. For EMF models, we allow directed
loops for references, and disallow parallel edges of the same type between the same objects. In such
a case, edges can be treated as relations (in the mathematical sense).

EMF | R € Ref | A € Attrap
FOL | R(G.) | AGY)

In a model M, if [R(vy, vy)|M is 1, then there is a link of C from object o0; to object os.

V1H01,02—02

Similarly, if [A(vy, vz)]]jzf 01,050, 18 1, then object o; has an attribute A value of 0;.

3.3.2.1 Type compliance

In order to ensure the type compliance, type information needs to be attached to the two relation ends.
Attributes are transformed in the same way as relations, but the second parameter (i.e. the target) of
the parameter defines the data type of the attribute.

EMF ‘ R € Ref . C1 = srcjr\f&(R), Cy = trgy (R) ‘ A € Attryy, C = sreiv (A), D = trgd (A)
FOL ‘ Vs, t: R(s, t) = (Cq(s) A Cy(1)) ‘ Yo, v:A(o,v) = (C(0) A D(v))

28

3.3. Transforming metamodels and partial snapshots

5 Transition [0.#] outgoingTransitions [1..1] source B Vertex
EMF
Decl: outgoingTransitions(, -), source(-, -)
TC: Vs, t : (outgoingTransitions(s,t) = (Vertex(s) A Transition(t))
FOL Vs, t : (source(s, t) = (Transition(s) A Vertex(t))
Mul-Upper: Vs, t1, 2 : (source(s, t1) A source(s, t2)) = t; =ty
Mul-Lower: Vs : Transition(s) = 3t : source(s, t)
INV: Vs, t : source(s, t) © outgoingTransitions(t, s)

Figure 3.7: Mapping references

3.3.2.2 Multiplicity

By default, references and attributes with 0.+ multiplicity are modeled with relations. However,
with explicit multiplicity restrictions, further assertions are required. A reference or attribute R with
mulyyy(R)..mulyf (R) multiplicity, the lower bound means that every object is in relation with at
least muly/y,(R) different one, which is checked using an existential quantifier (if mul};},(R) > 0).
EMF ‘ R e Refypp,m = mulA"}Ij\’}(R),m >0,S= src;\ZM(R), T= trg;ZM(R)
FOL | Vs:S(s) = (3tr, ..., Ly : distinct(ty, ..., 1x) AR(s, 1) A ... AR(s, 1))

The upper bound m means that there are no more than m different target elements being in relation
with the object, which is prescribed using a universal quantifier.

EMF | R € Refypp m = mullX(R), m # *, S = src] (R), T = rgidh (R)

FOL | Vs, t1 ..oy by tmer : (R(s,01) Ao ARGS, tn) ARG, ting)) = ~distinet(ty, . . ., b, tms1)

For example, the transformation of source reference of the Transition class visible in Figure 3.7,
creates constraint to restrict the upper bound multiplicity to 1.

3.3.2.3 Inverse edges

Inverse edges in metamodels express in that if there is a relation R; from the object s to the target ¢
then there has to be an inverse relation R, from ¢ to o. The inverse relationship between source and
outgoingReferences references is illustrated in Figure 3.7 at line INV.

EMF | (Ry,Ry) € invapy
FOL | Vs, t:Ri(s,t) © Ra(t,s)

3.3.2.4 Containment

The objects of an EMF model are arranged in a directed tree hierarchy along the containment edges.
This relationship is formalized by multiple formulae.

1. First the containment relation is defined as the union of the containment-edge relations:

contains(-, -), Vs, t : contains(s, t) & \/ R(s, t)

Reconty

29

3. MAPPING OoF DOMAIN-SPECIFIC LANGUAGES TO LoGic

2. The top of the containment hierarchy is called root of the model, which is declared as an unary
predicate, which is true for exactly one object.

root(+), 3r : root(r) A Object(r), Vri, 1y : root(ry) A root(ry) = r1 ~ ro

3. The root object does not have a parent.

Vp, r : root(r) = —contains(p, r)

4. Every other object has at least one parent:
Vo : Object(o) = (root(o) V (3p : contains(p, 0))
5. Every object has at most one parent:
Ve, p1, p2 : (contains(p, ¢) A contains(ps, ¢)) = (p1 ~ p2)

6. The tree hierarchy also requires acyclicity which means that any object is unreachable from
itself along a path of containment edges.

Yo : =contains* (o, 0)

3.3.2.5 Expression power of metamodel constructs

Table 3.2 summarises the transformed features of the metamodel. It also presents which property is
expressible in FOL or EPR or BA (as defined in Section 2.3).

Features of the metamodel | FOL | EPR | BA
Unlimited # of EObjects
EClasses
Class hierarchy

EEnums
EReferences
EAttributes

Multiplicity upper bound

[+ [+ |+ |+

Multiplicity lower bound

[+ |+ |+ |+ +]+

Inverse edges

[+ [+ |+]|+ |+ +]+

Containment hierarchy + -
+: Expressible, —: Inexpressible

Table 3.2: Expressing metamodel features in FOL

3.3.3 Transformation of instance models as partial snapshots

Existing instance models can be incorporated to the theory of model generation to ensure that solu-
tions contain a specific submodel. Such submodels are called partial snapshots.

The basic approach of transforming partial snapshots into FOL is to create a statement to ex-
press that the output logic structure needs to contain the partial snapshot as a substructure. Let

30

3.4. Transforming constraints to first order logic

P = (Op, Ip) denote a model used as a partial model. First, each object is is represented by a unique
variable r : Op — V, so if 0; # 0, then r(o;) # r(0y). Next, Ip is encoded as as set of expressions.
Class expressions are encoded to expressions ¢ in the following way:

PS | [C@)h ., =1

U0

FOL ‘ C(r(0))

References and attributes values are mapped similarly to expressions (pfef and (p‘?”’ :

PS ‘ [[R(Ul, 02)]]51l—>01s’02’—>02 =1 ‘ [[A(U’ d)]]SHO =1
FOL ‘ R(r(o1), r(02)) A(r(o),d)

Therefore, in summary, a constraint enforcing the presence of a partial model P = {(Op, Ip), where
Op ={o01,...,0,} is constructed in the following way:

Ar(oy), . . ., r(oy) : distinct(r(oy), . . ., r(0y)) A /\ qoiClass A /\ qofef A /\ (p’,?m
i J k

Therefore PS objects are transformed into existentially quantified variables, and the structure
of the PS is defined defined over those variables. When every feature of the PS is transformed, the
generated statement is added to the set of axioms derived for a DSL context to express the occurrence
or the absence of the PS structure. The partial snapshots are transformed independently to FOL, each
of them has to be satisfied separately, and traceability information needs to be produced for each of
them.

Mapping a partial snapshot to the theory is mainly driven by how to transform instance models
to corresponding formulae which are included in the set of axioms for a DSL context. In general,
the metamodel and the constraints of the language define universally quantified formulae over all
model elements. Instance models enable to efficiently configure the validation process using large
existentially quantified properties

Features of the PS FOL | EPR | BA
Instance Objects + + +
Abstract or Concrete Types + + +
Filled References + + +
Filled Attributes + + +

+: Expressible, —: Inexpressible

Table 3.3: Mapping partial snaptshots to FOL

3.4 Transforming constraints to first order logic

This subsection describes how graph patternsin ViaTrA language can be transformed to first order
logic formulae.

3.4.1 Structure of graph queries

A graph query Q consists of a list of symbolic parameters as header and a content that specifies logical
conditions over the parameters. The parameter list of the query Q is a fix sized vector of variables

31

3. MAPPING OoF DOMAIN-SPECIFIC LANGUAGES TO LoGic

Declaration Bodies Constraints

C1:find transition(t,vl,s);
Co:find transition(t,v2,s);
VQL }():tzfr?ﬂ??mh} { bl Yor{ bz T C3:Region.vertices(r,vl);

Y C4:Region.vertices (r,v2);

Csivl !'= v2;

synch(s, vy, v;) &

FOL | synch(s, 1, v) bi(s,v1,v2) V ba(s, v1,v3)

by=3t,r:ciAcg A...Acs

Figure 3.8: Example pattern structure transformation

denoted as py, ... pn. In order to represent a query Q in the axiom system, their match set of each
pattern is transformed to a relation symbol Q, where the arity of relation is equal to the number

of parameters: a(Q) = n. The value of predicate Q(:,--- ,-) is 1 in logic structure M for a specific
assignment parameters Z : {py, ..., pn} — O exactly when Z constitutes a match:
vQL ‘ pattern Q (p1,...,pn) ‘ Q has a match Z in M

Q('v' o ,‘),G(Q) =n

FOL V1o ospn : Qp1s - - ., pn) © constraint over (py, . .., pn)

[Q@s. ... p)]Y =1

In VIATRA, the constraint of a query is specified by disjunction of bodies denoted by the or key-
word. A match satisfies the query condition if it satisfies the condition defined by one of the queries
bodies, which are defined the disjunction conditions in the query body.

VQL ‘ pattern Q (p1,...,pn){b1}or...or{b,}
FOL [Q(p1s---.pn) © Bi(p1s .. s pn) VooV bu(p1s - ...)

The query body is defined by a list of constraints, where the condition is the conjunction of the
constraints. A body may introduce additional existentially quantified local variables. (A variable might
be introduced for a single use in a constraint, in this case the variable is specified as anonymous with

s

_’ as the first character in its name.)

vQL ‘ {ci(pars, vars); ... cp(pars,vars);}
FOL ‘ bi(p1,....pn) © Tvars A\ <i<, cj(pars, vars)

Example 5. Figure 3.8 illustrates the mapping of pattern transition with the parameter list
t,src,trg. The matches of this pattern are defined by the predicate in Declaration column of
Figure 3.8. Pattern transition specifies two bodies which is illustrated at the in Bodies column
of Figure 3.8. Both bodies has five-five constraint, which are mapped to a conjunction.

The following subsection defines the transformation for each supported type of constraints.

3.4.2 Constraint Mapping

Classifier constraints define the type of the objects that are bound to a variable. A graph constraint
can be easily compiled to a type predicate as follows:

32

3.4. Transforming constraints to first order logic

VaL | (C)(w); | v:(C)
FOL| C() | C(v)

Path constraints define that there is a path consisting of a sequence of references of corresponding
types that leads from a source object to a target object (identified by pattern variables). In the most
simple case, a path constraint consists of navigating along a single reference or attribute, which is
transformed in the following way:

vQL ‘ (Cy.(R)(src,trg); | (C).(A)(src,trg);
FOL ‘ R(sre, trg) ‘ A(sre, trg)

For complex paths, we introduce implicit object variables as the inner nodes of the path, thus the
expression can be compiled into a conjunction of simple reference predicates form the first variable
through the inner ones to the last.

vQL ‘ (C).(Ry).....(Ru—p) . (Fp) (src. trg) ;, Fp is either in Ref ;,, or Attramy
FOL ‘301, .. Un—1 : Ri(sre, 01) A [Ag<i<n—a Ri(0i-1,0:)] A Fr(op-1, trg)

Equality and non-equality of two individuals can be simply defined as FOL equality:

VQL‘ a==b; ‘ al=b;
FOL‘ a~b ‘ distinct(a, b)

Pattern call constraints enable the creation by calling elementary ones. The following list pro-
vides the transformation rules for each kind of transformation, and an example result of a negative
pattern call is presented in the Pattern call column of Figure 3.9.

+ A positive call defines that the substituted parameters have to create a match of the referred
pattern.

+ Negative calls may introduce new (in this case universally quantified) variables. A negative
pattern call defines that the target pattern should not have a match for the substituted old
variables with for any possible substitution of the new parameters.

« Transitive closure is an advanced language element of the VIATRA pattern language. The transi-
tive closure of a two-parameter GP matches on the pair (ey, e,,) if there is a sequence ey, ey, . . . ey,
of model elements where the pattern matches every pair (e;, e;+1).

vVQL ‘ find (Q) (v1,...,v,); | neg find (Q) (vy1,...,vy); | £ind (Q) +(vy,v2);

FOL Q(vy,...,vn) V...,vi...:=Qvy,...,vn) Q* (v1, v2)
—_———
new

Example 6. Figure 3.9 illustrates four example constraint transformations.

33

3. MAPPING OoF DOMAIN-SPECIFIC LANGUAGES TO LoGic

Classifier Path Equivalence Pattern call
VQL |e:Entry |Entry(e);|Trans.source(t,src);| tl != t2; |neg find t(_,e,_);
FOL Entry(e) source(t, src) =(t; ~ t) | Youi,vs : “R(vy, €,07)

Figure 3.9: Example constraints

Transitive closure approximation The transitive closure of a pattern can only be approximated
in FOL. The essence of this approximation is to generate a sequence of predicates p; by unrolling its
definition so that each predicate p; checks for matches of length i. At depth i, a predicate checks if
there is a match exactly at length i or recursively checks for a match at depth i + 1 by using predicate
pi+1. At maximal depth n, the predicate is overapproximated by true (1) or underapproximated by

false (0).

Example 7. For example, let us define an overapproximation for length 2 of the transitie call of
connected:
Transitive pattern:

pattern connected(src,trg) {
Transition.source(t,src);
Transition.target(t,trg);
}

Transitive approximations:

+,0=2 _ . +,0=1
: g_or(zszeclted(src’ trg) = Reonnected(sTC, trg) V Am = (Reonnected(sTC, M1) A Rcon ected(m’ trg))

< ,0=0
1:R30'5§%t€ J(s7¢, tr8) = Reonnected(sTe, trg) V- Am = (Reonnected(STC, M1) A R;nnecte ,(m. 1rg))
O:RC ’nnected(src’ trg) = Reonnected (ST, trg) V 3m : (Reonnected(sre, my) A 1)

0

Overapproximated pattern specification:
R* (This, P) = R"9=% (This, P)

connected connected

Check expression By the use of check constraint it is available to call imperative (Java-like) xBase
expressions to be evaluated on the variables of the pattern. A check constraints specifies that the result
of the evaluation have to be true for each valid match. This paper discusses the translation of basic
arithmetic and logic operators, which are simply translated to the corresponding logic expression.

VQL‘ a+b‘ a—b‘ a*b‘ a/4 a==b‘ a&&4 al |4 la
FOL‘a+b‘a—b‘a-b‘a/b‘a~b‘a/\b‘avb‘—'a

3.4.3 Patterns for advanced DSL constructs

Graph patterns are used in different ways to specify restrictions on the structure of the DSL by well-
formedness (or ill- formedness) constraints or defining derived features.

+ In VIATRA, well-formedness is defined by error patterns (using the @Constraint keyword) are
defined as a statement that the model is free from matches of this pattern:

vVQL ‘ @Constraint pattern(q) (vi,...,v,)
FOL ‘ Yo, ..., 0 : 7Ry(v1, ..., Un)

34

3.5. Summary

Features of model query | FOL EPR BA
DF | WF
Classifier constraint + + + +
Path constraint + - + +
Acyclic pattern call + - + +
Negative pattern call + - + +
Transitive closure + - A +
Arbitrary call graph + - - +
Aggregate (eg. Count, Sum) | A - - +
Check (for algebra) - - - -
+: Expressible, —: Inexpressible, A: Approximable

Table 3.4: Expressing Ecore and VIATRA language features in logic language

« Predicates for derived features state that features evaluate to the value exactly when the speci-
fying pattern has a match on the given object and the value.

@QueryBasedFeature (feature=(F))
vQL

pattern (q) (vy,v;), F € Ref, or F € Attrapy
FOL ‘ V’Ul, Vg - Rq(’Ul, ’02) =4 F(’Ul, ’02)

3.4.4 Expression power of graph patterns

Table 3.4 shows an overview on which feature can be translated to FOL, EPR or BA when using them
as well-formedness constraints or as derived features.

3.5 Summary

This chapter presented a transformation technique from a DSL specification to a logic theory. The
presented technique supports the translation of EMF metamodels and innovatively incorporates graph
predicates (of VIATRA) capturing derived features and well-formedness rules. In summary, a DSL can
be translated to a signature X = {Cy,...,C,, Ry, ..., Ry, Qq, ..., Qo }, where:

« aunary relation symbol C; (1 < i < n) is defined for each EClass,
+ a binary relation symbol R; (1 < j < m) is derived for each EReference (or EAttribute).
« an n-ary relation symbol Qi (1 < k < 0) is derived for each graph predicate ¢y.

The theory of a DSL (denoted as DSL) is summarized as axioms over X derived from the structural
constraints of the metamodel Sy, the definition of the graph predicates ¢y, . . ., ¢,, the definitions of
the derived features DF and well-formedness constraints WF, and optionally, the definition of initial
partial snapshots PS. Therefore, a logic structure M represent a valid instance model of DSL if:

M = MM A DF A WF A PS.

In the following, this generic transformation technique will be used to generate instance models
by logic solvers.

35

CHAPTER 4'

Graph Constraint Evaluation over
Partial Models by Constraint Rewriting

4.1 Introduction

During the early phase of development as well as in case of software product line engineering, the
level of uncertainty represented in the models is still high; it gradually decreases as more and more
design decisions are made. To support uncertainty during modeling, a rich formalism of partial models
has been proposed in [FSC12a] which marks model elements with four special annotations (namely,
may, set, variable and open) with well defined semantics. During the design, these partial models can
then be concretized into possible design candidates [SFC12][C10].

However, evaluating well-formedness constraints over partial models is a challenging task. While
existing graph pattern matching techniques provide efficient support for checking well-formedness
constraints over regular model instances [KPP09; NNZ00; Ujh+15; Bar+15], SMT/SAT solvers have
been needed so far to evaluate the same constraints over partial models, which have major scalability
problems [C10]. In general, a a graph generation problem for n nodes (objects) for a metamodel with
#C concepts (classes) and #R relations (references) is represented with O(#C - n + #R - n®) number of
Boolean variables. This causes a huge state-space explosion even for relatively small models (25.000-
65.000 variables for 50-80 nodes with 10 concepts and 10 relations). Moreover, complex, quantified
well-formedness constraints need to be evaluated on those variables.

Our objective is to evaluate well-formedness constraints over partial models by graph pattern
matching instead of SAT/SMT solving, which poses several conceptual challenges. First, a single node
in a graph constraint may be matched to zero or more nodes in a concretization of a partial model.
Moreover, graph constraints need to be evaluated over partial models with open world semantics as
new elements may be added to the model during concretization.

In the chapter, we propose (i) a new partial modeling formalism based on 3-valued logic [Kle+52],
(i) a mapping of a popular partial modelling technique called MAVO [FSC12a] into 3-valued partial
models, and (iii) a novel technique that rewrites the original graph constraints (to be matched over
partial models) into two graph constraints to be matched on 3-valued partial models. One constraint
will identify matches that must exist in all concretizations of the partial model while the other con-
straint will identify matches that may exist. Although the complexity of the pattern increases by the
proposed rewrite, we can still rely upon efficient existing graph pattern matching techniques [Ber+11]
that can scale up to millions of graph elements [Sza+17], which is a major practical benefit compared
to SAT solvers. As a result, engineers can detect if concretizations of a partial model will (surely)

37

4. GrRAPH CONSTRAINT EVALUATION OVER PARTIAL MODELS BY CONSTRAINT REWRITING

Partial Model Example Concretization
Open money = money
t Service ? m Service
Ready | money Select| ¢oject change drink Ready |money Select _ selectA ... drink
[SET] Filling N g hasChange :
TODO o selectB GiveBack:J Filling | o
)
drinkTaken N L .e Init ‘ ‘
[MAY] Finish noChange filled
[VAR] Finish | of Finish
TakeDrink
[MAY] ‘
[MAY] I

Figure 4.1: A partial statechart model and a sample concretization.

violate or may (potentially) violate a well-formedness constraint which helps them gradually to re-
solve uncertainty. Our approach is built on top of mainstream modeling technologies: partial models
are represented in Eclipse Modeling Framework [Emf] annotated in accordance with [FSC12a], well-
formedness constraints are captured as graph queries [Ber+11].

The rest of this chapter is structured as follows: Section 4.2 summarizes core modeling concepts of
partial models and queries in the context of a motivating example. Section 4.3 provides an overview
on 3-valued partial models with a graph constraint evaluation technique. Section 4.6 provides ini-
tial scalability evaluation of the approach, Section 4.7 overviews related approaches available in the
literature. Finally, Section 4.8 concludes the paper. Proofs for this chapter are collected in Section A.3.

4.2 Motivating example: Validation of partial models

A partial Yakindu Statechart [Yak] model of a coffee machine is illustrated on the left part of Figure 4.1
together with a sample concrete model on the right. Initially, the machine starts in state Ready and
after inserting coins by money events, a drink can be selected in state Select. While multiple concrete
drink options may be available in the concrete model (like selectA and selectB), but in the partial
model each one is represented by a generic select event. After the selection, the machine starts filling
coffee, and gives back the change in state Service. The change management region is missing in the
partial model, while a drink preparation region already contains some details. As the developer is
uncertain about the initial state in this region, a placeholder state Init is created. In the partial model,
it is undecided if it is required to wait until the previous drink is taken (in state TakeDrink), or the
machine can enter its initial Ready state immediately. These uncertainties are captured by special
annotations introduced in [FSC12a] such as may (elements can be omitted), var (elements that can be
merged), set (representing sets of elements) or open (new elements can be added).

The Yakindu IDE checks several well-formedness rules on the statecharts. Here, we highlight two:

+ Cy: Each region shall have exactly one entry, which has a transition to a state in the same region.

« Cy: The target and source states of a synchronization shall be contained in the same parent
state.

Both constraints can be defined (e.g. in OCL [Ocl] or graph constraints [Ber+11]) and checked over
complete models, but our paper focuses on detecting (potential and certain) conceptual errors (marked

by E1-4 in Figure 4.1) in partial models.

38

4.3. Formalism of 3-valued partial models with interpreted equivalence and existence

noOutgoing synchSameRegion] nOOUthing(e):z
Entry(e) A =3¢, trg : from(t, e) A to(t, tr
- :Transmon B verti synC{l(S;meRegiong(s):zEltl(, tg,)Ul, ’02,(7' : 7
el e [ssynctronizain | l rRegion| Synchronization(s) A from(t;, v1) A to(ty, s)A
from Vem from(ty, v3) A to(ta, s) A vertices(r, v1) A vertices(r, vg)A
-t ~ by

Figure 4.2: Sample graph patterns for statecharts with their equivalent logic formula

E1 marks that an entry state is missing from region change, thus violating C;. However, as the
model is under construction, it can be repaired in a later stage. The other region (marked by E2)
already contains an entry state, thus the WF constraint is currently satisfied, but it can potentially
be violated in a future refinement by connecting it to a state located in a different region. E3 shows
evidence of an invalid synchronization of parallel states Finish and its parent Service violating C,.
This error will be present in all possible concretizations (or completions) of the partial model, e.g. as
E5 in Figure 4.1. Finally, E4 marks a possible error for synchronizing two target states that are not
parallel (TakeDrink and Ready if all may elements are preserved).

To capture the erroneous case as a pattern match, the WF constraints C; and C; from the Yakindu
documentation need to be reformulated as follows:

1. @14: There is an entry state without an outgoing transition.
2. @1p: There is an entry state with a transition to a vertex in a different region.

3. @2: The target and source states of a synchronization are contained in different regions of the
same parent state.

Graph patterns and the corresponding logic formulae for ¢;, and ¢, are depicted in Figure 4.2. With
a negative condition (marked by NEG) in noOutgoing, Entry states can be detected without any
outgoing transitions. Moreover pattern synchSameRegion searches for synchronizations between
vertices v; and v; which are in the same region.

4.3 Formalism of 3-valued partial models with interpreted
equivalence and existence

Partial modeling [FSC12a; JLB11][J2] is a generic technique to introduce uncertainty into instance
models. Semantically, one abstract partial models represents a range of possible instance models,
which are called concretizations. During the development, the level of uncertainty can be gradually re-
duced by refinements, which results in partial model with less concretizations. Next, the thesis presents
an extended logic structure formalism, which includes the interpretation of existence and equivalence.
Next, we introduce a novel 3-valued partial modeling formalism which allows the explicit modeling of
uncertainty. Finally, we give a method to evaluate graph predicates on (the representation of) partial
models.

4.3.1 3-Valued Logic

In this section 3-valued logic [Kle+52; RSW04] is used to explicitly represent unspecified or unknown
properties of the models with a third % truth value (beside 1 and 0 which means a value must be true

39

4. GrRAPH CONSTRAINT EVALUATION OVER PARTIAL MODELS BY CONSTRAINT REWRITING

or false). During a refinement, % properties are gradually refined to either 0 or 1. This refinement is
defined by an information ordering relation X C Y, which specifies that either X = % and Y is refined
to a more specific Tor 0,or X =Y.

XCY=X=%V(X=Y)

Information ordering X E Y has two important properties: first, if we know that X = 1 then it can be
deduced that Y must be 1, and secondly, if Y = 1then X > % (i.e. 1 or %). Those two properties will be
used to approximate possible values of a concrete model by checking the property on a partial model.

4.3.2 Signature of interpreted equivalence and existence

In Section 2.1 symbols ~ and 3 are introduced as part of logic. In this section, we extend the signature
and by explicitly represent the existence (¢) and equivalence (~) of objects as relations. This will later
allow us to represent richer structures, where the interpretation of ¢ will control the evaluation of
Jov : ¢ and Vo : ¢ expressions, and the interpretation of ~ will control the evaluation of v; ~ v; and
distinct(vy, . . ., v,) expressions.

Definition 17 (Signature of Interpreted ~ and £ Symbols) Given a signature (;a). An ex-
tended signature with interpreted equivalence and existence symbols means a signature (denoted
with (37¢,a~ %)), where

X78=X U {~, e} and a” ¢ :=a, (~— 2), (e > 1).
So, in a logic problem derived from a DSL specification the signature would be

ZNS={~9€’C1"-'7Cn’R19-"’Rm9Q]"'-’Q0}:

where a unary predicate symbol C; (1 < i < n) is defined for each EClass, and a binary predicate
symbol R; (1 < j < m) is derived for each EReference (or EAttribute) and Qy for each graph pattern p;
(1 < k < 0). Moreover, interpreted ~ introduce an equivalence relation over objects, and ¢ predicate
to denote the existence relation of an object in a given model.

4.3.3 Partial models with 3-valued logic and interpreted ~ and ¢ symbols

This section introduces a partial modeling formalism based on interpreted 3-valued logic and inter-
preted ~ and ¢ symbols.

Definition 18 (Partial Model) A partial model over a signature (£~ ¢,a~¢) is a 3-valued logic
structure P = (Op, Ip), where:

e Op is the nonempty base set of individuals in the model (i.e. the symbolic objects)

e Ip(R) : O;(R) — {0, 1, %} provides a 3-valued interpretation function for allR € £~°.

For the newly introduced ~ and ¢ symbols, however, we assume some regularity properties:

40

4.3. Formalism of 3-valued partial models with interpreted equivalence and existence

Definition 19 (Regular Structures with Interpreted ~ and £) A logic structure
M = (Oum,Iy) defined over a signature (X7¢,a~¢) is regular, if Iy satisfies the following
constraints:

R1: Yo € Opr : Ip(~)(0,0) > 0 (~ is reflexive).
R2: Yoy, 05 € Opp 2 Iy(~)(01, 02) = Ip(~)(02,01) (~ is symmetric)
R3: Yo1,02 € Opp : (01 # 02) = (Ipy(~)(01,02) < 1) (~ respects transitivity)

R4: Yo € Op : Ip(e)(0) > 0 (model does not contain non-existing objects)

This implies that if there are no % values in a regular structure Oyy, then ~ will be the same as =, and
¢ is always 1.

Theorem 2 (Unique Interpretation of ~ and ¢ in Regular Structures) If a regular M =
(Oum, Im) of (7%, a~%) is 2-valued structure, then Ip(~) and Ij(e) are defined uniquely up to
isomorphism:

1 ifo; =0y

and Ip(e)(0):=1
0 otherwise

Iy(~)(01,02):= {

Therefore, for regular structures without % values, there is a one-to-one mapping between regular
logic structures of interpreted and uninterpreted equivalence and existence.
In the context of DSLs, 3-valued partial modeling enables advanced modeling features:

« Uncertain Types. Ip gives a 3-valued interpretation to each EClass symbol C; in X: 7p(C;) :
Op — {1,0, %}, where an % value represents a case where it is unknown if an object has a type
C or not.

« Uncertain References. Ip gives a 3-valued interpretation to each EReference symbol R; in X
Ip(Rj) : Op X Op — {1,0, %}. An uncertain % value represent possible references.

« Uncertain Equivalence. Ip gives a 3-valued interpretation for the equivalence relation Zp(~) :
Op X Op — {1,0, %}. An uncertain % value relation between two objects means that the object
might be equals and they can be potentially merged. For an object o where 0 ~p 0 = % it means
that the object may represent multiple different objects, and can be split later on.

« Uncertain Existence. Ip gives a 3-valued interpretation for the existence relation Jp(¢) : Op —
{1,0, %}, where an % value represents objects that may be removed from the model.

Example 8. Figure 4.3 illustrates three partial models, where P; shows a submodel of the coffee
machine from Figure 6.1. The objects are represented with nodes labelled with a unique name of its
class. Solid and dashed lines represent references with 1 value and % references respectively, and
missing edges represent 0 values. For example, in P1 state Init must be the target of transition 1,
and Filling and Finish are potential targets. Uncertain % equivalences are also marked by dashed
line with an = symbol. In P1 this means that state Init may be merged to states Filling and Finish,
or 12 may be split into multiple objects between Filling and Finish.

41

4. GrRAPH CONSTRAINT EVALUATION OVER PARTIAL MODELS BY CONSTRAINT REWRITING

refine

1
P1

source =
e:Entry target Fi\ling:Sta(eHtZ:Transilionl
source = Sour‘c,e/::/farget target|
t1:Transition Init:State [— — — —| Finish:State
N target

,,,,,,,,,,,,,,,,,,,,,,

refine

Figure 4.3: Example 3-valued partial model with refinements

4.3.4 Refinement and concretization

By resolving some uncertainty, a partial model P can be refined to a more concrete partial model Q.

Definition 20 (Refinement) A refinement from P = (Op, Ip) to Q = (Og, Ip) over signature
(2~¢;a™%) is defined by a refinement morphism function ref : Op — 292. A valid refinement ref
respects the information order for all relation symbols R € 7%, n = a~*(R):

Vpi,....pn € Op,q1 € ref(p1), ..., qn € ref(pn) : Ip(R)(P1s - - . pn) C Zo(R)(q1s - - - qn)

Existing objects in P must have non-empty refinements, and all objects in Q are refined from an
object in P:

Vp € Op : [Ip(e)(p) = 1] = [ref (p) # 0], Vqe Op :3p € Op : q € ref(p)

If there is such a refinement morphism, then Q is the refinement of P (denoted as P E Q).

In the context of DSLs ref respects the information order of type, reference, equivalence and
existence predicates.

Example 9. Figure 4.3 illustrates two partial models P2 and P3 as possible refinements of P1. P2
represents a refinement scenario where Init and Filling are mapped to the same objects FillingInit,
and the equivalence between the two objects are refined to 1 from %. Simultaneously, the possible
equivalence between Fillinglnit and Finish must be refined to 0 to satisfy the information order,
because [[v; ~ 02]]511n—>Filling,v2»—>Finish was 0. In P2 the equivalence on Transition ¢2 is refined to 1
from }, and mapped to a single object. P3 represents another valid refinement, where the Init and
Finish are merged, and ¢2 is refined into two different objects t21 and t22, where 22 still represents

a set of objects.

If a refinement P C Q resolves all uncertainty, and there are no % values in a partial model Q =
(O, Ip),and Q is regular, then Q represents a concrete (simple) instance model M = (O, Iyr) where
Om = Og and Iy = Ip, which is called concretization and marked with P.

Example 10. As P2 in Figure 4.3 does not contain any % values, it can be interpreted as concretiza-
tion of P1.

42

4.3. Formalism of 3-valued partial models with interpreted equivalence and existence

4.3.5 Evaluating predicates on 3-valued partial models

The main goal of partial models is to evaluate graph predicates on them in order to check possible
evaluations on all possible concretizations. Evaluating a predicate over a partial model may have
multiple outcomes: a predicate may (%), must (1) or cannot (0) have a match depending on whether
the partial model can possibly be concretized in a way to fulfill the condition of the predicate.

For three-valued partial models we use restricted syntax of first order logic predicates, that does
not uses implicit equivalence checks. Informally, implicit equivalence means that a match has to sub-
stitute the same value for each occurrence of the same variable, which is similar to unification found
in logic programming languages (like Prolog [Wie+12] or Datalog [CGT90]).

Definition 21 (Implicit equivalence check) An expression ¢ contains implicit equivalence
check of two different variable occurrences o1 and 0, if (1) 01 and o, are both used in expressions
other than equivalence checks (- ~ -), and

(2/a) both o, and o, are free in ¢, or

(2/b) 0, and o, are bound by the same quantified expression.

This restriction is necessitated by the introduction of interpreted equivalence symbols (~). However,
this restriction is only a formal one, because as discussed in Section A.2, implicit equivalence checks
can be easily eliminated from any first order predicate by introducing new variables.

Example 11. For example in predicate noOutgoing(e) in Figure 5.2 the expression from(t, e) A
to(t, trg) implicitly states that the value of the two t is the same. Our technique requires the explicit
notation of equivalences, which can be achieved by rewriting each variable occurrence (except for
those in equality constraints) to a new variable, and explicitly defining the equivalence between the
new variables, by creating a logically equivalent expression. For example, the previous expression
is changed to from(ty, e) A to(ts, trg) Aty ~ ts.

Otherwise, we do not restrict the language of 3-valued expressions

Definition 22 (Syntax of 3-valued relational logic) If¢(v, ..., v,) is a 3-valued logic expres-
sion over a signature (X~¢, a” %), if:

e ¢(vy,...,vy) is a (standard) logic expression over (X~¢,a™~ %), and
e o(vy, . ..,0vy) is free of implicit equivalence checks.
Semantically, a 3-valued predicate ¢(vy, . .., v,) of 27¢;a™¢ can be directly evaluated on a partial
model M along a variable binding Z, which is a mapping Z : {vy,...,v,} — O from variables to

objects in M. However, in this case, the range of the interpretation function [-]|. is {0, %, 1}, and the
interpretation of ~, 3 and V expressions are controlled by the interpretation of ~ and ¢ in J3;.

Definition 23 (Semantics of 3-valued relational logic) The semantics of a 3-valued predicate
¢(v1, . .., vy) over a 3-valued logic structure M over signature (X~ ¢;a~) and variable binding Z is
denoted by [¢(vy, . . ., vn)]]g , and defined as follows (differences to standard 2-valued semantics are
highlighted with »):

43

4. GrRAPH CONSTRAINT EVALUATION OVER PARTIAL MODELS BY CONSTRAINT REWRITING

[0 == 1
[0] := 0
[R: (i, ...,)Y = Tn(R)NZ ;) . . ., Z(v;))
> [o1 ~ v21% = Tu(~)Z(01), Z(v2))
[distinct(vy, . . .,vn)]]g = min{[[-(v; ~ vj)]]g :1<i<j<n}

[=elly =1 lolz

o1 A @213 := min([:175. [9215)
o1 V @213 := max([:175. [217)
[o1 = @212 = [-¢1 V @215

[o1 © @15 = [(¢1 = ¢2) A (92 = 1)y

> [Fo: (p]]g = max{[¢(v) A (p]]]gv,_)o 10 € Oyp}
> [Vo : (p]]]g = min{[[-e(v) V ¢l7 ., : 0 € Om}
> [e@)]Y = Im(e)(Z(v))

. m . max([R(v ,)14,
[R* (01, v2)7 = max{[[HI}nl, .. fmn : R(v,my) A ... A R(mp, Uz)]]g[:n € N'}

Representing equivalence and existence in a logic structure allows us to represent partial struc-
tures. However, in case of regular 2-valued structures, all predicates yields the same truth value.

Theorem 3 (Equivalent Semantics of Interpreted and Uninterpreted ~ and) Let M =
(Om, Inm) be a logic structure over (T, a), and a regular (3-valued) logic structure M’ = (O, Inr)
over (X7¢,a~ %) with no % values, where Oy = Opp and Ip(s) = Iyp(s) for each s € 3. Then, for
each predicate ¢(vy, . . ., v,) and variable binding Z : {vy,...,v,} — Op (Which is also a valid
binding M) the truth value of ¢ is equal:

[o(vr, . . ., o)1 = [@(vr, . . .,)Y

Additionally, the truth value of the expression follows the E information ordering (proof in Sec-
tion A.3) , which has two important consequences:

Theorem 4 (Forward concretization) Let ¢ be a logic expression, and P and Q partial models
where P C Q. If [¢]]F = 1, then [e]l€ = 1. Similarly, if [¢]lF = 0, then [e]€ = o.

Consequently, in each M concretization of a partial model P, where P C M, and [¢]|F = 1 ([¢]* = 0)
then [o]™ = 1 ([¢]" = 0).

Theorem 5 (Backward concretization) Let ¢ be a logic expression, and P and Q partial models
where P C Q. If [¢]|© = 1, then [¢]® = 1. Similarly, if [¢]|€ = 0 then [¢]" < %.

Therefore, if an error predicate evaluates to 1, then it identifies an invalid partial model that cannot be
repaired in any concretization. If it evaluates to % it highlights possible ways to inject errors. A 0 value
can prove that an error cannot occur in the concretizations. This approach provides a conservative
approximation for 1 and 0 values, where inaccurate cases are considered as %. In other words, the
match result is approximated in the direction of }, which also includes the unknown cases. That is a
safe compromise in many application areas such as model validation.

44

4.4. Rewriting predicates

4.4 Rewriting predicates

In the previous section we defined the resolution rules for evaluating a graph predicate over a 3-valued
partial model, which can result in three possible values: 1, %, or 0. However, traditional query engines
support only 2-valued pattern evaluation on 2-valued structures. Therefore, to use efficient graph
pattern matching engines like introduced in [Ber+11], we introduce a predicates rewriting technique
to calculate 3-valued predicate using two 2-valued predicates called must and may predicates, and
combining them into 3 truth values. A predicate must[¢] is a must predicate of ¢, if [[must[(p]]]g =1
when [[q)]]g = 1, otherwise [[must[go]]]g = 0. Similarly a predicate may[¢] is a may predicate of ¢, if
[mayle]lly = 1 when [[¢]l5 > %, otherwise [may[¢]]% = 0.

4.4.1 Atomic must and may expressions

Atomic expressions C(v), R(vy, v2), £(v) and v; ~ v, are replaced with (¢ > %) and (¢ = 1) 2-valued
predicates in order to round % values up or down for maximizing the result for may[¢] predicates, or
to minimize the result for must[¢] predicates. For relation symbols R € X~¢ (R(vy, . ..,v,) = %) and
(R(vy, . . .,v,) = 1) expressions are evaluated trivially on a partial model by numerical comparison:

1 if [Roy,. .., o050 = %
ReX e [Ry,...,v,) 2 = [R(oy %
0 otherwise
1 if[R(oy,. ... P_
Re3 4 [R(vy,...,vn) = 1]]1;:: if [[(01. o)l
0 otherwise

4.4.2 Complex must and may expressions

Finally, may and must predicates are constructed from complex expression ¢ by recursively rewriting
all subexpressions. It is important to highlight that the rewriting rule of the negated expressions —¢
(and @1 = ¢2) changes the modality of the inner expression from may to must and vica versa.

Definition 24 (Rewriting of must[-] and may][-] predicates) Let ¢(vy,...,v,) be a 3-valued
logic predicate over signature (X~ ¢, a~¢). Then must[¢(vy, . . .,v,)] and may[p(vy, . . .,v,)] is con-
structed according to the following rewriting rules. An atomic expression ¢ is replaced with numerical
comparisons as follows:

may[R(vy, . ..,vn)] i=R(vy, .. .,vn) = % must{R(vy,...,v,)] 5=R(vy,...,0) =1 REX
mayle(v)] == e(v) > % must[e(v)] == e(v) = 1
may[v ~ vz] 5= (V1 ~ v2) 2 % must[vy ~ va] 5= (v ~ v2) =1

Next, complex expressions can be rewritten recursively:

may[distinct(vy, . . ., vp)]5=7 A\ <icjcn must[og ~ vs]
must[distinct(vy, . . ., vp)]5=7 N1 <cicjcn maylvr ~ 2]

45

4. GrRAPH CONSTRAINT EVALUATION OVER PARTIAL MODELS BY CONSTRAINT REWRITING

may[=¢] == —must[¢] must[—g] == =may|¢]
may[g1 A ¢2] = may[e1] A mayle:] must[@1 A @z] = must[p1] A must[¢z]
mayle1 V @z2] = may[e:] vV may[e:] must[1 V 2] = must[e1] vV must[p]
may[e1 = @2] == must[p1] = may[e:] must[gr = @2] = mayle:] = must[@,]
maylg1 & ¢2] == mayle1] & mayle.] must[g; © @] == must[¢:] © must][e;]
may[Jv : @] == Jov : may[e(v)] A may[p] must[Jo :] == v : must[e(v)] A must[p]
may[VYv : ¢] ::= Vv : may[-e(v)] V may[p] must[VYov : ¢] := Vo : must[—e(v)] V must][¢]

may[R-'—(Ul’ UZ)]:::R:;‘;ay(vl’ UZ)r Wlth Rmay(av b):::ma)/[R(a’ b)]
must[R*(vq, v2)]::=R}, ,;(V1, V2), With Rpyys(a, b)::=must[R(a, b)]

Example 12. The following example illustrates the rewriting steps of an example graph previously
introduced in Figure 5.2 into a may predicate.

original pattern: noOutgoing(e):=Entry(e) A =3¢, trg : from(t, e) A to(t, trg)
may pattern: may[noOutgoing(e)]:=may[Entry(e)] A may[—3t,trg : from(t, e) A to(t, trg)] =

may[Entry(e)] A =3t, trg : must[e(t)] A must[e(trg)] A must[from(t, e)] A must[to(t, trg)] =
(Entry(e) = %) A =3t, trg : (e(t) = 1) A (e(trg) = 1) A (from(t, e) = 1) A (to(t, trg) = 1)

must[-] and may[-] predicates are constructed in a way that they always under- and over-
approximate the truth-value of a predicate.

Theorem 6 (Relation of must[-] and may[-]) For each 3-valued expression ¢ and partial model
P the following statements hold:

P

[l = 1 & [must[p]]l; =1

lelz2% o [maylell; =1
As a consequence:

[maylellZ = [must[]1

Finally, may[¢] and must[¢] predicates are traditional 2-valued predicates, which can be combined
to encode 3 possible truth values:

. If [must[p]], = 1and [may[e]]5 = 1 then [¢]5 = 1

. If[[must[q)]]]g =0and IImay[go]]]g = 1 then [[(p]]g =%

. If[[must[(p]]]g =0 and [[may[(p]]]g 0 then [[(p]]? =0

4.5 Transforming MAVO uncertainty to 3-valued partial models

MAVO uncertainty (which stands for May-Abstract-Variable-Open world) is a well-known and user-
friendly partial modeling formalism [FSC12a; SFC12; SCG12] with several use-cases and tool support
[BCE15]. In the following we present a mapping of MAVO partial models to 3-valued partial models,
enabling the evaluation of graph constraints on it.

46

4.5. Transforming MAVO uncertainty to 3-valued partial models

MAVO specifies partial models with a concrete instance model B called base model, and intro-
duces uncertainty annotations on the objects and references of B. The transformation starts with the
mapping of the base model, then the annotations are transformed separately.

Base Model. First, a logic structure P = (Op, Ip) of X is created from the base model B, where
Op:=0g, and Ip:=1Ip.

Mapping of May. In MAVO, may annotation marks uncertainty about the existence of an object or
reference. For each object o marked by may, uncertain existence can be expressed by Zp(¢)(0):=%. For
each reference R, it holds that if a link between oy and o0 is marked by may, then Zp(R)(01, 02):=}.
Mapping of Abstract. Abstract objects marked by set annotation marks uncertainty about the num-
ber of elements represented by an object. In 3-valued partiality, this can be represented by uncertain
equivalence: for each object o marked by set, Zp(~)(o, 0):=}.

Mapping of Variable. var annotation marks uncertainty about the distinctness of an object from an-
other (which is not necessarily marked by var). In MAVO, objects with the same type are compatible
for merging. Additionally, a var annotation implicitly specifies that the incoming and outgoing refer-
ences of the compatible objects may be added to each other. For example, in the partial model in Fig-
ure 6.1, each incoming reference to Init may be redirected to Filling upon a merge. So for each object
o1 marked by var, and for each object 0, with the same class predicate values (Zp(C)(01) = Zp(C)(02)
for each C) holds that:

« Ip(~)(01,02):=Y%, meaning that 0; and 0, may be merged

« for each incoming reference R from another object src to o; holds that: if Zp(R)(src, 02) = 0 then
Ip(R)(src, 02):=%. The outgoing references are handled similarly.

Mapping of Open. open is a global property of a MAVO partial model which marks uncertainty
about the completeness of the model. If a model is open, then it can be extended by new objects and
references in a refinement. Otherwise, only the existing elements can be resolved. In 3-valued partial
models, this can be represented in the following way:

« anew object other is added to Op, which represents the new objects.
« Ip(~)(other, other) = %, so other represent a set of objects.

« Ip(¢)(other) = %, so new objects are not necessarily added.

« for each class C: Zp(C)(other) = %, so other represents all types.

« for each reference R and each object pair o1, 02: if Zp(R)(01, 02) = 0, then Zp(R)(01, 02):=%. There-
fore new references can be added.

Cleaning of the Partial Model. During the translation of uncertainty annotations, new } references
are added to the partial model without considering the structural constraints imposed by the target
metamodel. Therefore, in order to exclude malformed instances from the analysis, when a % reference
is added during the translation, (1) the ending types, (2) the multiplicity, (3) the containment hierar-
chy and (4) possible inverse relations are checked. If a possible reference would violate a structural
constraint, then it is not added to P, so the precision of the approach can be increased by excluding
invalid extensions only.

47

4. GrRAPH CONSTRAINT EVALUATION OVER PARTIAL MODELS BY CONSTRAINT REWRITING

Local Search #0bj = 157 #Ref= 604 #0Obj=347 #Ref=1340 #0bj=1765 #Ref=6904
Incremental Open Closed Open Closed Open Closed
Valid Invalid| Valid Invalid| Valid Invalid | Valid Invalid| Valid Invalid| Valid Invalid
Connected- must| 1.40 136 | 1.39 137 | 1.79 1.96 | 1.73 2.07 | 28.41 68.97 | 27.96 68.71
Segments may| 1.47 - 57.62 - 1.93 - - - - - - -
must| 1.40 1.30 | 1.35 1.45 | 1.72 192 | 1.74 2.20 | 25.28 70.70| 26.79 70.23
RouteSensor
may| 1.45 148 | 1.46 164 | 1.62 7.53 | 1.82 14.60| 15.88 - 19.20 -
Semaphore- must| 1.67 1.54 | 1.68 1.68 | 4.18 3.77 | 4.19 3.18 - - - -
Neighbor may| 1.49 - 46.93 - 2.80 - - - - - - -
. must| 1.79 1.69 | 1.81 1.68 | 850 4.66 | 8.87 4.41 - - - -
SwitchSet
may| 1.88 8.86 | 4.14 - 8.62 - |117.79 - - - - -
Switch- must| 1.21 126 | 1.22 134 | 141 170 | 1.55 1.70 | 14.63 32.50 | 16.72 35.71
Monitored may| 1.13 1.11 | 1.06 1.12 | 1.27 130 | 1.31 1.30 | 12.55 31.30| 12.46 29.22

4.6 Scalability evaluation

Table 4.1: Evaluation time of validation patterns on partial models (in sec)

We carried out an initial scalability evaluation' of our approach using 3 models (with 157, 347 and 1765
objects, respectively) and 5 queries available from the open TrainBenchmark [Sza+17]. We generated
randomly assigned MAVO annotations for 5% of the model elements (e.g. with 7, 17, 88 uncertainties
respectively). We evaluated the performance of (1) each graph query individually for (2) both may-
and must-patterns (may/must) using (3) two pattern matching strategies (incremental/local-search)
with (4) open world or closed world assumption (open/closed) after an optional (5) fault injection step
(valid/invalid) to introduce some constraint violations. We measured the execution time for evaluating
the queries in seconds with a timeout of 2 minutes using a laptop computer (CPU: Intel Core-i5-
m310M, MEM: 16GB, OS: Windows 10 Pro). Our experiments were executed 10 times and the median
of execution time is reported in Table 4.1 (table entries with a dash denote a timeout).

Our main observations can be summarized as follows:

« Pattern matching over partial models is complex. To position our experimental results, it is worth

highlighting that most solutions of the Train Benchmark [Sza+17] evaluate graph queries for
regular models very fast (scales up to millions of objects) for all these cases thus pattern matching
over partial models must likely be in a different complexity class.

Fast inconsistency detection for must-matches. The detection of a must-match over partial models
is fast for both case of closed world and with open world assumption, especially, when using
local-search graph pattern matching. It is also in line with previous observations in [J2] using
SMT-solvers.

Scalable detection of may-matches with closed world assumption. Our approach may identify
potential inconsistencies (i.e. may-matches) over partial models with closed world semantics
containing more than 1500 objects using incremental pattern matching. It is more than one
order of magnitude increase compared to previous results reported in [Fam+13; FSC12a] using
Alloy.

detailed description at https://github.com/FTSRG/publication-pages/wiki/

Graph-Constraint-Evaluation-over-Partial-Models-by-Constraint-Rewriting

https://github.com/FTSRG/publication-pages/wiki/Graph-Constraint-Evaluation-over-Partial-Models-by-Constraint-Rewriting
https://github.com/FTSRG/publication-pages/wiki/Graph-Constraint-Evaluation-over-Partial-Models-by-Constraint-Rewriting

4.7. Related work

« Full match set of may-matches and open world is impractical. As a negative result, calculating
the full match set of graph patterns for may-matches and open world assumption frequently
resulted in a timeout for models over 160 objects due to the excessively large size of the match
set. For practical analysis, we believe that open annotation in MAVO should be restricted to be
defined in the context of specific model elements.

« Selection of graph pattern matching strategy. In case of timeouts, we observed that large match
sets caused problems for an incremental evaluation strategy while the lack of matches caused
problems for local-search strategy.

4.7 Related work

Analysis of Uncertain/Partial Models. Uncertain models [FSC12a] provide user-friendly lan-
guages for defining partial models. Such models document semantic variation points generically by
annotations on a regular instance model. Most analysis of uncertain models focuses on the generation
of possible concrete models or the refinement of partial models. Potential concrete models compli-
ant with an uncertain model can be synthesized by the Alloy Analyzer and its back-end SAT solvers
[SFC12; SCG12], or refined by graph transformation rules [Sal+15].

Approaches [FSC12b; Fam+13] analyse possible matching and execution of model transformation
rules on partial models by using a SAT solver (MathSAT4) or by automated graph approximation
(referred to as “lifting”), or by graph query engines [C5]. The main difference is that their approach
inspects possible partitions of a finite concrete model while we instead aim at (potentially infinite
number of) extensions of a partial model. As a further difference, we use existing graph query en-
gine instead of a SAT solver, which has a very positive effect on scalability (17 objects and 14 may
annotations reported in [Fam+13] vs. over 1700 objects with 88 MAVO annotations in our paper).

Verification of Model Transformations. There are several formal methods that aim to evaluate
graph patterns on abstract graph models (by either abstract interpretation [RD06; RZ12], or predicate
abstraction [RSW04]) in order to detect possibly invalid concretizations. Those techniques typically
employ techniques called pre-matching to create may-matches that are further analyzed. In [Rad+15]
graph constraints are mapped to a type structure in order to differentiate objects that satisfy a spe-
cific predicate from objects that do not which could be used in our technique to further increase the
precision of the matches.

In the previous cases an abstract graph similarly represents a range of possible models, and graph
patterns are evaluated on abstract models to analyze their concretization. However, all of those tech-
nique expect a restricted structure in the abstract model, which is not available in partial models that
are created by the developer.

Logic Solver Approaches. There are several approaches that map a (complete) initial instance
model and WF constraints into a logic problem, which are solved by underlying CSP/SAT/SMT-
solvers. In principle, the satisfaction of well-formedness constraints over a partial model (i.e. may-
and must-matches) could be reformulated also using these techniques, although the same challenge
has not been addressed so far. Complete frameworks with standalone specification languages include
Formula [JLB11] (which uses Z3 SMT- solver [MB08]), Alloy [Jac02] (which relies on SAT solvers) and
Clafer [Bak+16] or a combination of solvers [J2].

There are several approaches to validate models enriched with OCL constraints [GBR05] by rely-
ing upon different back-end logic-based approaches such as constraint logic programming [CCR07;

49

4. GrRAPH CONSTRAINT EVALUATION OVER PARTIAL MODELS BY CONSTRAINT REWRITING

CCRO08], SAT-based model finders (like Alloy) [SAB09; KHG11], first-order logic [BKS02] or higher-
order logic [BW07]. As a common issue of such SAT/SMT-based approaches, the scalability is limited
to small models.

4.8 Conclusion

In this chapter, I proposed a technique to evaluate graph queries capturing constraints over partial
models. Since a partial model may be extended by the designer in future refinement steps, we defined
may- and must-matches of a graph query correspondingly to denote potential and real violations of
constraints. We also defined conservative approximations of may- and must-matches by rewriting of
graph patterns in accordance with MAVO semantics.

Our initial scalability evaluation using the open Train Benchmark [Sza+17] shows that (1) finding
real constraint violations over partial models is fast; (2) identifying potential inconsistencies with
either open world or closed world assumption may scale for partial models with over 1500 model
elements (which is one order of magnitude larger than reported in previous papers).

Although we motivated our work to check well-formedness constraints over uncertain models,
our current results provide a key milestone for model generation, which aims at the automated gen-
eration of scalable and consistent domain-specific graph models (aka a graph-based model finder).
Since the actual validation of complex graph constraints consumes significant amount of time in ex-
isting SAT/SMT-solvers, our current approach (which exploits efficient checking of graph constraints)
nicely complements traditional logic solving techniques on complex graph structures.

50

CHAPTER 5

A Graph Solver for the Automated
Generation of Models

5.1 Introduction

This chapter aims to provide a model generation technique to automatically generate well-formed
graph models of a specification defined by (1) a metamodel (graph schema), (2) a set of well-
formedness (WF) constraints expressed in first-order graph logic with transitive closure and option-
ally (3) an initial model fragment. Existing approaches like [Ana+10; JS07; KHG11; CCR08; BEC12;
Bak+16][J2] map the instance generation problem of consistent graph models into logic solvers such
as Alloy [TJ07; Mil+15], SMT-solvers [MB08], SAT-solvers or constraint solvers when the efficiency of
graph model generation depends on the scalability and performance of back-end logic solvers, which
primarily excel in finding inconsistencies in complex specifications. However, the generation of models
as a side-effect of the proof construction is much less efficient.

In fact, these solvers guarantee neither scalability [C10] nor diversity [JSS13] when they need to
generate well-formed graph instances of a specification — regardless of how smart the mapping is
from a high-level graph model to the underlying logic solver. From a practical perspective, while the
specification of complex industrial modeling tools may contain hundreds of classes (in their meta-
model) and WF constraints, no existing model generation technique could derive a consistent graph
that contains at least one object from each class.

We propose a novel automatic generation technique to derive consistent domain-specific graph
models for specifications by exploiting and innovatively combining a multitude of advanced graph-
based and core SAT-solving techniques.

1. We formulate model generation as a refinement of partial models [Sal+15][C5] where initial
abstract model fragments are gradually refined and concretized during exploration.

2. We provide partial model refinement rules as decision and unit propagation steps by following
core SAT-solving techniques.

3. We use incremental graph query evaluation of the VIATRA engine [Ujh+15] to efficiently eval-
uate violations of constraints over partial models during model generation [C5].

4. We integrate shape analysis as state encoding [RD06; Ren04; RSW04] for graphs to efficiently
detect if two partial models should be treated as equivalent during exploration.

51

5. A GRAPH SOLVER FOR THE AUTOMATED GENERATION OF MODELS

PO P1 P2 P3
vertices & ¢ vertices 8 ¢ vertices S r vertices &
Entry=1 Entry=1 Entry=1 Region=1 Entry=1
\/ert:x= source ﬂ\/eArte><=1 source ﬂ\/ert<-3><=1 9 Vertex=1
! vertices target / ! * vertices target /
! Ny ! | source Ny 4
L iour‘c: A new [0.7] ! b new [0.."]
vertices ar‘lge source” . h A 1 source”’ = I
AN ! = target Entry=7% A | = target Entry=72 A = i
! = t‘g Region=Y; - ! = t‘g Region=Y; ~ source =| vertices source
! vertices ! giey, ; } vertices ! giaey, ;
i Nal Transition=% L~ | Nal Transition=% L~
. Vertex="2 Vertex="2
vertices new [0..1] vertices A targe‘t vertices s
source T gy, N ,/ source target | ,/ source
target Region=% K target N K target
vertices ~
s 2> | State=%2 , S target S t - t
State=1 Sy Transition="% L~ State=1 ™ State=1 - State=1 —
Vertex=1|«q—-S0UrCe __ "7l vertex=1; Vertex=1 MJ Vertex=1 target MJ Vertex=1| target [Transition=1
target
Decision: add t to e as source Decision: select s as target for t IConcretization|
- Propagate: remove other source - Propagate: remove other targets Remove all %

Figure 5.1: Sample partial models with uncertain elements and their refinement

5. We exploit rule-based design space exploration [HHV15] to drive the generation process directly
over graph shapes using an objective function approximating the distance from a solution.

We evaluate the scalability of our approach using 6 tests sets of four domains (including industrial
DSLs) and compare its performance with the well-known Alloy Analyzer [TJ07].

To our best knowledge, our framework is one of the first attempts to automatically generate con-
sistent models by operating natively over (typed and attributed) graphs. Moreover, according to our
scalability experiments, it is capable of generating consistent graph models of 1-2 orders of magnitude
larger (with 500-6000 nodes) compared to models derived by Alloy and the generated model suite is
also more diverse [C10]. As such, our graph solver can serve as a back-end where Alloy was used
previously for model generation purposes in testing and benchmarking scenarios.

The chapter is structured as follows: Section 5.2 reviews the conceptual background for refinement
of partial models. Our model generation framework is discussed in Section 5.3. Section 5.4 provides
scalability measurements and compares our approach to Alloy, a popular solver-based model gener-
ator. Finally, Section 5.5 collects the related work and Section 5.6 concludes the chapter. This chapter
is based on paper [C6] and book chapter [B14]. Proofs for this chapter are collected in Section A.4.

5.2 Modeling preliminaries

5.2.1 Partial models

Our model generation technique will be illustrated by automatically generating test inputs for Yakindu
Statecharts Tools [Yak]. For the generation, we use 3-valued partial models as introduced in Chapter 4.

Example 13.

Four partial models are illustrated in Figure 5.1. As a notation guide, (1) the truth value of a type
predicate is denoted by labels on nodes, where missing labels are treated as 0 values, while (2) ref-
erence predicate values 1 and % are represented by edges with solid and dashed lines (respectively),
while missing edges between two objects represent 0 values for a predicate, (3) existence predicate
values 1 and % are represented by nodes with solid and dashed borders, respectively, while objects
with 0 existence values are simply not depicted. Finally, (4) uncertain % equivalences are marked
by dashed line with an ~ symbol. Otherwise, each node represents a single, unique object (i.e. for

52

5.2. Modeling preliminaries

noOutgoing
. noOutgoing(e):=
sour‘ceT NEG

——ftarget— Entry(e) A =3ty, t2, €1, s : source(ty, e1) A target(ty, s) Ae ~ ey Aty ~ by
Transition=1 State=1

Figure 5.2: Sample statechart WF constraint as graph query

all object o: [[o ~ o] = 1 and for all different objects 0; and 0,: [[o; ~ 02] = 0).

In Py (on the left side of Figure 5.1), object r is of type Region but not of type State:
[[Region(v)]]iLr = 1and [[State(r)]]i?_,r = 0. In case of object new, all type predicate are }5, which
means that the object may represent any type of objects. In P, there is a certain vertices reference
between r and s and r and e, and a possible reference between r and new or as a self-loop of new.
Nodes r,e and s represent objects that must exist, and new represent possible objects which may
exist or they might be removed later from the model. Node new may also represent multiple objects

(note the self-loop edge ~), which can later be refined into multiple distinct model elements.

During the refinement from partial model P to Q (denoted by P C Q) uncertainty of a partial
model is resolved gradually. Finally, if a 3-valued partial model P only contains 1 and 0 values (and
no % values), and P is regular and there are no ~ relations between different objects (i.e. all equivalent
nodes are merged), then P represents a traditional instance model.

Example 14. Figure 5.1 illustrates two refinement steps from Py to P,. In P; object new is split

into two different objects: new and t of Py, where [[v; ~ UZ]]IZ?Hnew,vgl—)new = % is refined to

P P P .

o1 ~ UZ]]U?;—)new,vth =0, [[or ~ U2]]z)?}—)t,z)2l—)l’ = 1and [[o; ~ UZ]]U(l)n—mew,vz»—»new = %. Addition-

ally, [[e(v)]]g‘,)_,new = % is refined to [[E(U)]]Si_)t = 1, and [[Transition(v)]]th = Y% is refined to
P,

[Transition(v)]l,.,; = 1, thus creating a new Transition object ¢, while all other % type predicates
are refined to 0. Finally, source predicates are refined to 1 with e as target, and to 0 with all other

objects as target.

In step P; to P,, possible target predicates are refined to 1 with s as target object, and to 0 with e
and new as target objects. Note that refinement step P; C P, will illustrate the decision rule while
P, E P; will illustrate the unit propagation rule later in Section 5.3.3. Ps is a concretization of Py,
which is also a refinement P, C Ps.

5.2.2 Defining constraints over partial models

As illustrated in Section 3.2, domain-specific WF constraints are captured either by standard OCL
constraints [Ocl] or by graph patterns (GP), which are translated to first order logic.

Example 15. The Yakindu documentation states several constraints for statecharts that can be
formalized as graph predicates [C10]. For instance, constraint noOutgoing(e) in Figure 5.2 (depicted
as a graph pattern and a graph predicate) detects an entry state e without an outgoing transition.
The explicit use of equality constraints e ~ e; and #; ~ £, is responsible for performing a natural
join operation over the edges as predicates. As a result, the same formula can be evaluated with
both 2-valued and 3-valued interpretation.

53

5. A GRAPH SOLVER FOR THE AUTOMATED GENERATION OF MODELS

Using these properties, we define a monotonous derivation sequence of valid partial models which
(1) starts from the most abstract partial model where all constraints are evaluated to %, which partial
model (2) is gradually refined into more and more concrete partial models (with less number of predi-
cates evaluating to %). Refinement steps are continued until a concretized graph model of a designated
scope eventually satisfies all WF constraints with 2-valued interpretation. Our graph generation ap-
proach will derive instance models along refinements. As such, partial models will gradually become
more and more concrete after each refinement step which implies that checking WF constraints on
partial models also becomes more precise. The practical benefit compared to consecutive calls to back-
end solvers [C10] is that the complex model finding problem can be divided into a sequence of small
decisions while WF constraints can be checked (approximately) on intermediate solutions.

5.3 Automated graph generation

In this chapter, we propose a general and automated graph model generation approach which takes a
domain specified by (I;) a vocabulary X defined by a metamodel, and () a theorem 7 defined by a set
of well-formedness constraints {—wprF s, oWF} and (I3) a search scope (i.e. minimal and maximal
number of nodes in a solution graph) and (O) generates a consistent (valid) concrete logic structure
M where M |= 7 as output.

The model generation framework gradually refines partial models by rule-based design space ex-
ploration (DSE) [HHV15] into a well-formed instance model which complies to the metamodel and all
WF constraints are satisfied, if such a concrete model exists within the given search scope. During ex-
ploration, our framework simultaneously operates on (concrete) instance models and WF constraints
as well as (abstract) partial models and approximated WF constraints introduced in Chapter 3 by ap-
plying refinement rules. Refinement rules are defined as graph transformation rules [ERK99][C5] ma-
nipulating directly over partial models with 3-valued interpretations by concretizing a single atomic
uncertain % value in each step.

Refinement rules are grouped into two categories: (1) Decision rules are derived from X to reduce
the number of valid concretizations of a partial model (i.e. new information is added) while (2) Unit
propagation rules are derived from 7 to propagate the consequences of previous decisions in order to
simplify a solution candidate without excluding potential solutions.

Model generation is initiated from an initial partial model provided as input by an engineer, or
from the most abstract partial model Py = (Op,, Ip,), where all predicates are unknown, i.e. (1) there is
a single (abstract) object Op, = {new}; (2) Zp,(¢)(new) = % and Ip,(~)(new, new) = % thus this object
may represent multiple possible objects of the concrete models; (3) for all class relation symbols R € X
(i.e. all C classes, all R references and all A attributes in a DSL) Zp (R)(new, . .., new) = %.

5.3.1 Refinement operations for partial models

We define refinement operations Op to refine partial models by simultaneously growing the size of
the models while reducing uncertainty in a way that each finite and consistent instance model is
guaranteed to be derived in finite steps.

« concretize(p, val): if the atomic predicate p (which is either C;(0), R;j(ok,0;) or o ~ 0;) has a %
value in the pre-state partial model P, then it can be refined in the post-state Q to val which is
either a 1 or 0 value. As an effect of the rule, the level of uncertainty will be reduced.

54

5.3. Automated graph generation

« splitAndConnect(o, mode): if o is an object with [o ~ o]’ = % in the pre-state, then a new object
new is introduced in the post state by splitting o in accordance with the semantics defined by
the following two modes:

— at-least-two: [new ~ new]|C = %, [[o ~ 0]|C = %, [new ~ o]|¢ = 0, [e(new)]|€ = 1;

— at-most-two: [new ~ new]| = 1, o ~ o] = 1, [new ~ o]]° = 1, [e(new)]© = 1;

In each case, Op = Op U {new}, and we copy all incoming and outgoing binary relations of
o to new in Q by keeping their original values in P. Furthermore, all class predicates remain
unaltered.

On the technical level, these refinement operations could be easily captured by means of algebraic
graph transformation rules [Ehr+06] over typed graphs. However, for efficiency reasons, several ele-
mentary operations may need to be combined into compound rules. Thererfore, specifying refinement
operations by graph transformation rules will be investigated in a future paper.

Example 16. Refinement P, C Ps (in Figure 5.3) is a result of applying refinement operation
splitAndConnect(o, mode) on object new3 and in at-least-two mode, splitting new3 to e and new4
copying all incoming and outgoing references. Next, in Pg, the type of object e is refined to Entry
and Vertex, the % equivalence is refined to 1, and references incompatible with Entry or Vertex are
refined to 0. Note that in Ps it is ensured that Region r has an Entry, thus satisfying WF constraint
noEntryInRegion. In P; the type of object new4 is refined to Transition, the incompatible references
are removed similarly, but the % self equivalence remain unchanged. Therefore, in Ps object new4
can split into two separate Transitions: t1 and 2 with the same source and target options. Refine-
ment Py C Py C Py denotes a possible refinement path, where the target of ¢1 is directed to an
Entry, thus violating WF constraint incomingToEntry. Note that this violation can be detected ear-
lier in an unfinished partial model Py. Refinement P;; T P, denotes the consecutive application of
six concretize(p, val) operations on uncertain source and target edges leading out of ¢1 and ¢2 in
Py1, resulting in a valid model.

Note that these refinement operations may result in a partial model that is unsatisfiable. For in-
stance, if all class predicates evaluate to 0 for an object o of the partial model P, i.e. [C(o)]F = o, then
no instance models will correspond to it as most metamodeling techniques require that each element
has exactly or at least one type. Similarly, if we violate the reflexivity of ~, i.e. [[o ~ o]]F = 0, then
the partial model cannot be concretized into a valid instance model. But at least, one can show that
these refinement operations ensure a refinement relation between the partial models of its pre-state
and post-state.

Theorem 7 (Refinement operations ensure refinement) Let P be a partial model and op be

a refinement operation. If Q is the partial model obtained by executing op on P (formally, P 2, Q)
then P C Q.

5.3.2 Consistency of model generation by refinement operations

Next we formulate and prove the consistency of model generation when it is carried out by a sequence
of refinement steps from the most generic partial model P, using the previous refinement operations.
We aim to show soundness (i.e. if a model is derivable along an open derivation sequence then it

55

5. A GRAPH SOLVER FOR THE AUTOMATED GENERATION OF MODELS

PO P4 . .~ P5 ; P6
source [‘ver‘tlce ¥ > [‘vertlces
target e e < £
vertices Region=1 Entry="% o~ source Region=1 Entry=1
TN o §eg\0_n1=“/z target . Vertex=1
¥ vertices tate="; vertices vertices AT
ow . Transition=Y | - N source | |
Entry=: source o Vertex=Y2 N t " ! I vertices
y="s target ; \ T— source i \ arget | |
Region="2 vertices vertices :{ ‘A¢ target vertices \ I
State=%; 3 source " L vertices LY
Transl(lr:n=‘/z vertices new . target new S A
Vertex=% Entry=Y \ - Entry="2 " source " source
~ A Region=") K Region=Y; target farget
= s State: / < State=% vertices = vertices
State=1 T iti 4 State=1 Transition=" | _- State=1 T iti o |
Vertex=1| source | Vertex=% Vertex=1| source | Vertex=% Vertex=1| source | Vertex=Y%
target N A target N A target N E
"N
P9 P10
L vertices £] vertices e
gl Entry=1 Region=1 Entry=1
¥ Vertex=1 Vertex=1
vertices 7 targe;t ! vertices target
i
i
|
1 —
P8 i
. P7 [| Transition=1
[‘Vertlce . vertices—>| e % source

Ld e Region=1 Entry=1 g~ source target source

Region=1 Entry=1 Vertex=1 a 5

Vertex=1 source A source

vertices farget ‘A State=1 ("taﬁget"’ E— State=1 [«—target
7 ! Vertex=1 ransition= Vertex=1

vertices source

source target

target i P11 P12

%
/" source i . vertices—>| = [- | vertices .

S target | Region=1 Entry=1 Region=1 Entry=1
State=1 [€-—--—— 4 new4 ‘ S source Vertex=1 Vertex=1
Vertex=1| source | Transition=1_| State=1 [<=~¢5noet ” i g i

target T~ A Vertex=1 vertices // ! vertices
R source ,/ 1 T
, !
source —
target target | _Transition=1 source
i
i
! source
— S |47 S 2
State=1 (-~ 2710 <8~ State=1 ——
Vertex=1 8 Vertex=1[€—target Transition=1

Figure 5.3: Refinement of partial models

is consistent), finite completeness (i.e. each finite consistent model can be derived along some open
derivation sequence), and a concept of incrementality.

Many tableaux based theorem provers build on the concept of closed branches with a contra-
dictory set of formulae. We adapt an analogous concept for closed derivation sequences over graph
derivations in [Ehr+06]. Informally, refinement is not worth being continued as a WF constraint is
surely violated due to a match of a graph pattern in case of a closed derivation sequence. Consequently,
all consistent instance models will be derived along open derivation sequences.

Definition 25 (Closed vs. open derivation sequence) A finite derivation sequence of refine-

ment operations ops; . . .;0py leading from the most generic partial model P, to the partial model
Py (denoted as Py POk, Py) is closed wrt. a graph predicate ¢ if ¢ has a match in Py, formally,

P
[l = 1.
A derivation sequence is open if it is not closed, i.e. Py is a partial model derived by a finite derivation

op1;-.-;0Pk)
sequence Py L, Pi with [[(p]]Pk < k.

Note that a single match of ¢ makes a derivation sequence to be closed, while an open derivation
sequence requires that [¢]|"* < 1% which, by definition, disallows a match with [¢]]** < 1.

56

5.3. Automated graph generation

Example 17. Derivation sequence Py —> Py depicted in Figure 5.3 is closed for
¢ = incomingToEntry(v) as the corresponding graph pattern has a match in Py, ie.

IIincomingToEntry(v)]]};?_) . = 1. Therefore, P;y can be avoided as the same match would still ex-
ist. On the other hand, derivation sequence Py — Py; is open for ¢ = incomingToEntry(v) as

incoming ToEntry(v) is evaluated to % in all partial models Py, . . ., Py;.

As a consequence of approximations, an open derivation sequence ensures that any prefix of the
same derivation sequence is also open.

. . 0p1;..-;0P
Corollary 1 (Prefixes of open derivation sequences are open) Let P, T P bean
open derivation sequence of refinement operations wrt. ¢. Then for each 0 < i < k, [¢]"" < 5.

The soundness of model generation informally states that if a concrete model M is derived along
an open derivation sequence then M is consistent, i.e. no graph predicate of WF constraints has a
match.

Corollary 2 (Soundness of model generation) Let P, AN Py be a finite and open

derivation sequence of refinement operations wrt. ¢. If Py is a concrete instance model M (i.e. P = M)
then M is consistent (i.e. [= 0).

Effectively, once a concrete instance model M is reached during model generation along an open
derivation sequence, checking the WF constraints on M by using traditional (2-valued) graph pattern
matching techniques ensures the soundness of model generation as 3-valued and 2-valued evaluation
of the same graph pattern should coincide.

Next, we show that any finite instance model can be derived by a finite derivation sequence.

Theorem 8 (Finiteness of model generation) For any finite instance model M, there exists a

]] Op1;---:0Pk . . g
finite derivation sequence P, T P of refinement operations starting from the most generic

partial model Py leading to Py = M.

Our completeness theorem states that any consistent instance model is derivable along open
derivation sequences where no constraints are violated (under-approximation). Thus it allows to elim-
inate all derivation sequences where an graph predicate ¢ evaluates to 1 on any intermediate partial
model P; as such partial model cannot be further refined to a well-formed concrete instance model
due to the properties of under-approximation. Moreover, a derivation sequence leading to a consistent
model needs to be open wrt. all constraints, i.e. refinement can be terminated if any graph pattern has
a match.

Theorem 9 (Completeness of model generation) For any finite and consistent instance model

5 : : . . Op1;---;0Pk
M with [@]M = 0, there exists a finite open derivation sequence P, = b of refinement

operations wrt. ¢ starting from the most generic partial model Py and leading to P, = M.

Unsurprisingly, graph model generation still remains undecidable in general as there is no guar-
antee that a derivation sequence leading to Py where [¢]|’* = % can be refined later to a consistent
instance model M. However, the graph model finding problem is decidable for a finite scope, which

57

5. A GRAPH SOLVER FOR THE AUTOMATED GENERATION OF MODELS

is an a priori upper bound on the size of the model. Informally, since the size of partial models is
gradually growing during refinement, we can stop if the size of a partial model exceeds the target
scope or if a constraint is already violated.

Theorem 10 (Decidability of model generation in finite scope) Given a graph predicate ¢
and a scope n € N, it is decidable to check if a concrete instance model M exists with |Oy| < n
where [[(p]]M = 0.

This finite decidability theorem is analogous with formal guarantees provided by the Alloy An-
alyzer [TJ07] that is used by many mapping-based model generation approaches. Alloy aims to syn-
thesize small counterexamples for a relational specification, while our refinement calculus provides
the same for typed graphs without parallel edges for the given refinement operations.

However, our construction has extra benefits compared to Alloy (and other SAT-solver based
techniques) when exceeding the target scope. First, all candidate partial models (with constraints
evaluated to %) derived up to a certain scope are reusable for finding consistent models of a larger
scope, thus search can be incrementally continued. Moreover, if a constraint violation is found with
a given scope, then no consistent models exist at all.

Corollary 3 (Incrementality of model generation) Let us assume that no consistent models
M" exist for scope n, but there exists a larger consistent model M™ of size m (where m > n) with

OPi+1;---30

[[qo]]Mm = 0. Then M™ is derivable by a finite derivation sequence P! b P where P! =

M™ starting from a partial model P} of size n.

Corollary 4 (Completeness of refutation) If all derivation sequences are closed for a given
scope n, but no consistent model M" exists for scope n for which [o]]™" = 0, then no consistent
models exist at all.

While these theorems aim to establish the theoretical foundations of a model generator frame-
work, it provides no direct practical insight on the exploration itself, i.e. how to efficiently provide
derivation sequences that likely lead to consistent models. Nevertheless, we have an initial prototype
implementation of such a model generator which is also used as part of the experimental evaluation.

5.3.3 Decision rules

Next, we define decision rules for the efficient generation of models.

Decision rules (see Figure 5.4) define various refinement operations to concretize information in
partial models to construct possible solutions. They are derived from the vocabulary X of the meta-
model, where each predicate symbol C; and R; represents a Class and Reference. In general, decision
rules are responsible for (1) introducing new objects by splitting the abstract new object or (2) rewrit-
ing an % value to 1 as detailed by (the scheme of) four decision rule classes.

« Rule addRoot(C) selects a non-abstract class C (see the precondition in the left hand side) if no
other roots have been created (denoted by NEG) to ensure that the model has a single root (as
required by EMF). Its effect (prescribed by the right hand side) is to split the initial new object
by creating a new root as an instance of C, which acts as a root element for the containment
hierarchy and all self-loop references on new are extended to both objects.

58

5.3. Automated graph generation

addRoot(C) addChild(Cp,R¢,Cc)
C: non-abstract Cc: non-abstract,
copy all R; R¢: containment from Cp to C¢
NEG RN copy all R; and R;
1
root _parent_ _parent |---—
c=1 CP=1 > cp=1 (€ |
— [)
T IRj R31 |
Riy 1 R Rcl RiIRj Ri1 |~ /RERA T Ri
______ ~ Y v Y Y ¥ ¥ Rk Y
new i ;?j new i i ""/ new NI/ new _{€—-__child
L O L | O L] CC2% | \\l CC2% b-»| cc=1
A . A Rk A TRCAT Rk RKA

addType(C) addReference(R)
C: non-abstract R: non-containment
source source
cs=1 cs=1
0 o
C=% c=1 R R
4 Y
_target | target
cT=1 cT=1

Figure 5.4: Decision rules for graph model generation

« Rule addChild(Cp,R¢,Cc) selects an existing parent object of type Cp, the new object with a
non-abstract type Cc, and a containment reference R¢ from parent to new. Upon execution, it
splits new into a new object child of type C¢ connected to parent via R¢, thus unfolding a new
object along the containment hierarchy. During the unfolding step, all outgoing R;, incoming
R; and loop Ry references of new are extended (copied) to child.

« Finally, two rules addType(C) and addReference(R) refine uncertain % classes and references in
the partial model. In the latter case, the rule requires that the types of the endpoints are already
fixed appropriately.

Example 18. The refinement step Py C P; in Figure 5.1 introduces a new object ¢ by applying the
decision rule addChild (of Figure 5.4), which changes % values of transition(t) and source(t, e) to 1.

5.3.4 Unit propagation rules

Unit propagation rules are responsible for refining unspecified elements in a partial model without
excluding any valid solution to simplify the partial model propagating the consequences of previously
applied decision rules. Unit propagation rules are applied repeatedly right after a decision rule is
applied. They are derived from the structural constraints (1)-(6) introduced in Section 5.2.2. In general,
unit propagation rules rewrite % elements to 0 (or 1) if a 1 (or 0) value would contradict to a constraint.
Figure 5.5 illustrates (the scheme of) unit propagation rules used in this chapter.

59

5. A GRAPH SOLVER FOR THE AUTOMATED GENERATION OF MODELS

propTH*(C,Cs) propTH=(C’,C) propTCFrom(C,R) propTCT°(R,C)
Cs: supertype of C C’ and C has R is from C Risto C
has no common source source source source
c=0
o o non-abstract subtype
c=1 c=1 R R
Ccs=% Ccs=1 4 (
o o target target target target
= c=1 c=0
c=% Cc=0
propMULUPP¢T(R) propINV*(R,Ry) propINV~(R,R;)
Risto C R is inverse of Ry R is inverse of Ry

m R source source source source source source

other

_ <

omem | R Art Art |'"R1 |_ R
N Ry Ry Ry || NEs|| InEG

target target target target target B target
propCON?zParent(R R) propCONLoP(R)
R and R¢: containments R: containment
parent parent parent parent parent parent
\ i
R\ RC RC Ry +
child child child]| <ot child
NEG

Figure 5.5: Unit propagation rules for graph model generation

« Type hierarchy (TH) is maintained by two rules: propTH*(C,C;) propagates a positive (1) type
predicate of C to a supertype Cg; propTH™(C’,C) rewrites a % type predicate value to 0 for type
C if the object already has an incompatible type C’ where C and C’ do not have a common
subclass (all classes are considered to be subclasses of themselves).

« Type compliance (TC) is checked by two rules: propTCf7°™(C,R) and propTCT°(R,C). Both rules
remove possible references if the types of the reference end-points are incompatible.

« Rule propMULYP?P¢"(R) checks the upper multiplicity (MUL) of a reference, and removes all
possible additional links if the upper limit is reached.

« The Inverse (INV) structural constraint is checked two rules: propINV*(R,R;) and
propINV~(R,R;) which set a R predicate value to 1 or 0 if an inverse R; value is already
set.

« To ensure Containment hierarchy (CON), first decision rules enforce that each non-root object
y]
has a parent. Then, additional possible incoming containment references are removed by unit
propagation rule propCONZP‘"e”t(R,Rc). Finally, propCO NLo°P(R) removes possible reference
predicates that would create a loop in the containment hierarchy.

Decision and unit propagation rules are in close analogy with the DLL62 algorithm of traditional
SAT-solvers [DLL62]: values of variables are graph elements in our case (instead of Boolean values),

60

5.3. Automated graph generation

complex graph predicates are evaluated (instead of conjunctive normal formulae), and the state space
of graphs needs to be continuously stored during exploration (instead of a search tree).

Example 19. Refinement step P; C P, is a result of a decision rule addChild to set the % value of
target(t, s) to 1 followed by a unit propagation rule propMULUPP¢" (target) which aims to prevent
the partial model from violating an upper multiplicity constraint by setting % values of target(t, e)
and target(t, new) to 0 as a direct consequence of the previous decision rule.

As a preprocessing step, decision and propagation rules are derived. Moreover, under-
approximated (must) predicates are synthesized from graph predicates in accordance with [C5] to
detect unresolvable WF constraints early in a partial solution.

5.3.5 Exploration

During exploration (see Figure 5.6), refinement rules are repeatedly applied driven by an objective
function and a rule selection strategy. As such, the size of partial models is continuously growing up
to the designated scope, while the number of uncertainties and constraint violations in these partial
models are decreasing to ensure that the process converges to consistent instance models. Now we
discuss the steps of the model generation process.

4) Already Explored?
True

0. Initialization
+Decision Rules
+Propagation Rules
+Under-App. Predicates

6.A) Concretization 6.B) Concrete match?

False

1) Select And Execute 2) Fire all 3) Calculate
unexplored Degcision Rule Unit Propagation Rules State Code

i

7) Approximate Distance and |
Add Explored State to State Space

Drop State True

Figure 5.6: Exploration strategy for automated model generation

(1) After initializing the search with an initial partial model, an unexplored decision rule is selected
and applied to derive a new (refined) partial model along a partial model refinement step (Sec-
tion 4.3). The role of these refinement rules is in direct analogy with the decision steps in SAT
solvers.

(2) After executing a decision rule, our framework executes all possible unit propagation rules on the
partial solution to propagate the consequence of the decision, thus further refining the partial
model. This step is again in direct analogy with SAT solvers, but it is carried out by incremental,
change-driven model transformation rules [Ber+12] to improve efficiency.

(3) To prevent traversing the same (graph) state twice, a state code is calculated and stored for the
new partial model by using graph isomorphism checks over graph shapes [Ren04]. Graph shapes
abstract from node identities, but they efficiently identify if two graphs can be distinguished by
the neighborhood (i.e. incoming and outgoing edges) of a node.

(4) Had the new state been already explored, the partial model is dropped and a new refinement
rule is applied (1).

5) If anew partial model is reached, then our framework checks if it satisfies all under-approximated
p pp
must) constraints by partial evaluation of these constraints [C5] using an incremental graph
Yy P g grap
query engine [Ujh+15]. If an under-approximated constraint is violated by the partial model

61

5. A GRAPH SOLVER FOR THE AUTOMATED GENERATION OF MODELS

then an inconsistency is detected, thus the partial model can never be refined into a well-formed
instance model so it can be dropped (1).

(6) Next the partial model is concretized into an instance model by removing all uncertainties and
all the original WF constraints are checked on this candidate model by the incremental graph
query engine to detect inconsistencies. If no violations are found, then the instance model is
stored as a solution, and the exploration may terminate (if designated model scope is reached)
or continue to find other solutions (1). Note that checking the original WF constraints on a
concretized model guarantees the correctness of our solver.

(7) Finally, our framework approximates the distance for a solution by an objective function, adds
the current partial model to the exploration path and continues refinement from a new unex-
plored decision refinement. For each partial model, this objective function is calculated as the
sum of constraint violations and the number of missing objects wrt. a designated size.

For selecting the next match where a decision rule is to be applied, we use a combined exploration
strategy with best-first search heuristic, backtracking, backjumping and random restarts in an advanced
design space exploration framework [HHV15]. The search selects the best candidate wrt. the objective
function, then it randomly fires (with uniform distribution) an enabled decision rule, subsequently, it
fires all possible unit propagation rules. If no further decision rules can be applied, then it backtracks
to continue along the previous partial model candidate. At each step, the exploration may backjump
to the best model candidate found so far during the exploration. Finally, the search is occasionally
restarted from a randomly chosen intermediate model candidate. Such a random restart is a common
technique in SAT-solvers to avoid local optima.

Our framework operates directly over graph models and the exploration itself is driven on such
a high-level. Thus, it combines the advantages of multiple advanced graph-based techniques with core
SAT-solving techniques to tackle the scalability problems of existing mapping-based approaches:

+ The approximated and the original of WF constraints are efficiently evaluated over partial mod-
els (in (5) and (6.B)) using incremental graph query evaluation techniques [Ujh+15].

« Refinement rules are divided into decision (1) and unit propagation rules (2) as facilitated by
core SAT-solving algorithms.

« Isomorphic states are detected during exploration (3) by combining shape analysis techniques
[Ren04; RSW04].

+ Our framework has full control over the graph generation process (1,7) via rule-based DSE
techniques [HHV15].

Example 20. Figure 5.3 depicts two sequences of partial model refinement steps deriving two
instance models P;y and P;:

POIZ...EP4EP5EP6EP7EPBEP9I;P10and

POE...EP4EP5|;P6;P7EP8;P11 Eplz.

Taking refinement step P, £ Ps as an illustration, object new3 (in P,) is refined into e and new4

(in Ps) where [[u; ~ 02]]5?,_) e.oyonews = 0 to represent two different objects in the concrete in-

62

5.4. Experimental evaluation

stance models. Moreover, all incoming and outgoing edges of new3 are copied in e and new4. The
final refinement step P;; £ P;; concretizes uncertain source and target references into concrete
references.

On the other hand derivation sequence Py E ... C Py depicted in Figure 5.3 leads to an unsatisfiable
partial model, where well-formedness constraint is violated: [[incomingToEntry(v)]]g‘f_) . = 1(itmust

exist). Therefore, Pyy can be avoided by dropping Py as the same match would still exist.

5.3.6 Strengths and limitations

Our approach operates on connected sparse graphs with edges as relations (i.e. no edge identities
and no parallel edges of a type) as underlying data model, which is less expressive than full relational
algebra in case of Alloy. As a current technical limitation, our graph generation approach is showcased
for EMF metamodels and models, which are widely used in industrial modeling tools, but it could be
easily adapted to other graph formalisms. The expressive power of graph predicates used for capturing
WF constraints is equivalent to first order logic with transitive closure over binary predicates.

Our solver efficiently handles complex structural graph constraints defined in first order logic with
transitive closure. However, it includes only enumerations as attribute values but excludes strings,
integers, etc. Such attribute values could be handled in the future by calling external solvers (e.g.
SMT-solvers) during the exploration or as a post-processing step.

While the decision procedure of our graph solver provides stronger completeness guarantees than
Alloy within a bounded scope, it does not provide an unsatisfiable core (i.e. minimal contradictory
set of formulae) to highlight contradiction between WF constraints, which is supported by many SAT
and SMT-solvers.

5.4 Experimental evaluation

We carried out an experimental evaluation of generating consistent instance models to address the
following research questions:

RQ1 How does our graph solver scale (in time and model size) when generating consistent models
of increasing size?

RQ2 How does our approach scale (in time and model size) compared to the widely used model finder
Alloy [T]J07]?

RQ3 How do the different steps of the exploration influence performance of the graph solver?

Selected DSLs for evaluation. As model generation for DSLs still lacks systematically con-
structed performance benchmarks, we evaluated our approach in the context of 6 test sets of four
different domains. First (1) a small File System (FS) example was taken from the Alloy documentation
[All]. Ecore, the meta-metamodeling language of EMF [Emf], has been used as a case study by differ-
ent approaches [Ana+10; Buit+12; KHG11; Soe+10][J2][C10] using Alloy as a background solver for
model generation purposes. Our measurements also cover two DSLs that were developed in indus-
trial projects, namely, (3) Yakindu [Yak] and (4) Functional Architecture Model (FAM) developed for
avionics [Heg+16]. Due to their complexity, domains (3) and (4) are split into two cases: we generate
models first with only general metamodel constraints (w/o WF), and then in the presence of extra WF
constraints (with WF). In addition to their direct practical relevance, these DSLs have already been
used in the context of model generation in numerous papers [Gon+12][J2][C10] in the past.

63

5. A GRAPH SOLVER FOR THE AUTOMATED GENERATION OF MODELS

10 __ 200
© £ 150
. REARN: -
= = 50 _
o o 8238238238 o oo oo o o o
Lﬁ o Lﬂ n O uwn n O n O n O un n O
— - N N NN o <l‘ < wn — = N N m N‘r Q' < wn
Model Size (#Objects) Model Size (#Objects)
@ Initialisation @Refinement @ Initialisation @ Refinement
O State Coding O Exploration O State Coding O Exploration
a Graph Solver: FAM b Graph Solver: Yakindu
10 __ 40
0 “ 30
))
5 iiiiig o QQQQ
£, mEEHE S) mm E % E E
o 0O 0O 00000 9o ook o o o
n O n o .n O 1n O 1n O N n O
T N NN N \—| H N N m rn <f' < un
Model Size (#Objects) Model Size (#Objects)
M Initialisation @ Refinement @ Initialisation @Refinement
@ State Coding O Exploration O State Coding O Exploration
¢ Graph Solver: FS d Graph Solver: Ecore

Figure 5.7: Distribution of generation time

Problem size Largest model (#Objects)
#Class | #Ref | #WF. || GS | Sat4] | MiniSat
FAM+WF 9 15 23 6250 58 61
FAM-WF 9 15 15 7000 87 92
Yak+WF 10 6 25 1000 - -
Yak-WF 10 6 5 7250 86 90
FS 4 4 7 4750 87 89
Ecore 19 33 24 2000 38 41

Table 5.1: Comp.: Maximal model size

Benchmarking setup. To measure scalability, we set up a timeout of 3 minutes for each model
generation run with increasing model size. For each measurement point, model generation was exe-
cuted 30 times and the median of the runs were taken. To account for warm-up effects and memory
handling of the Java 8 virtual machine, we added an extra 20 runs before the actual measurements
and called the garbage collector explicitly between runs. As a baseline of comparison, Alloy Analyzer
V4.2 (the latest stable version available at the Alloy download site) was used with two underlying SAT
solver libraries: Sat4] (default in Alloy) and MiniSAT (recommended by Alloy). All measurements were
executed on an average desktop computer! with 12 GB heap size.

Experimental results. For RQ1 we evaluate the execution time of our approach for the four
domains by increasing the target model size from 50 to 500 objects (with a step size of 50 new objects),

LCPU: Intel Core-i5-m310M, MEM: 16GB, OS: Windows 10 Pro.

64

5.4. Experimental evaluation

20 40 20
2 X2 2
g 10 £ 20 g 10 /
= = =
5 =£Z =3 5 M. 3
z O z O z O
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Model Size (#Objects) Model Size (#Objects) Model Size (#Objects)
—@— Graph Solver —— Alloy+Sat4j —@— Graph Solver == Alloy+Sat4]j —@— Graph Solver —i— Alloy+Sat4j
—&— Alloy+MiniSat —&— Alloy+MiniSat —&— Alloy+MiniSat
a Comparison: FAM w/o WF b Comparison: FAM with WF ¢ Comparison: Yakindu w/o WF
20 10 40
«£ 2 £
g 10 M.’H g 5 g 20
= = =
o c c
g 0 g 0 2 0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Model Size (#Objects) Model Size (#0bjects) Model Size (#Objects)
—@— Graph Solver —#i— Alloy+Sat4j —@— Graph Solver —— Alloy+Sat4j —@— Graph Solver —— Alloy+Sat4j
—&— Alloy+MiniSat —&— Alloy+MiniSat —— Alloy+Minisat
d Comparison: Yakindu with WF e Comparison: FS with WF f Comparison: Ecore with WF

Figure 5.8: Runtime comparison with increasing model size

and measuring (in 5.7a- 5.7d) the total execution time. As a key observation, our approach is able to
generate consistent models with 500 elements for all four domains within 10 seconds for FAM and FS,
within 40 seconds for Ecore and 3 minutes for Yakindu. As a stress test, we also managed to generate
even larger consistent models (1000 objects for Yakindu, 7000 objects for FAM, 4750 objects for FS and
2000 objects for Ecore, see Table 5.1) in 20 minutes (as a median of 10 measurements).

For RQ2, we compare model generation time of our Graph Solver with Alloy for small model sizes
(from 5 to 50 objects, step size of 5 new objects) for the 6 test cases. As a baseline, we use a state-of-
the-art EMF-to-Alloy mapping technique [But+12; KHG11; Soe+10][J2][C10] and tool to obtain Alloy
specifications for the Yakindu, FAM and Ecore domains, and the original Alloy specification is used
for FS. According to the results (see 5.8a-5.8f and Table 5.1), our approach scales much better as it
generates models 1-2 orders of magnitude larger than Alloy could handle regardless of the back-end
SAT solver which only had little impact on scalability. This is in line with previous measurements
for Alloy in [J2][C10]). Alloy dominantly ran out of memory when mapping input specification into
a SAT problem which results in over 6 million variables and several million clauses when aiming to
generate a model with 40-90 objects.

Note that the Alloy Analyzer is not primarily targeted to generate models but to check the con-
sistency of a relational specification within a given scope and synthesize small counterexamples. In
fact, Alloy had a smaller runtime for very small models, thus the warm-up cost of our graph solver
is higher. However, our graph solver is able to generate much larger graph models even for all four
domains with similar consistency guarantees as Alloy.

For RQ3, we also measured (in 5.7a- 5.7d) how much time is spent in the different phases of
model generation by our graph solver (see Figure 5.6) such as initialization, partial model refinement,
state encoding and exploration. The preprocessing phase (1.5 seconds for FS, 4 seconds for Ecore, 2

65

5. A GRAPH SOLVER FOR THE AUTOMATED GENERATION OF MODELS

seconds for FAM and 4 seconds for Yakindu) is a one-time penalty which is is proportional to the
complexity of the metamodel and the WF constraints, thus we expect it to be negligible for model
generation in case of other domains. Refinement is the dominant phase in the Yakindu and FS cases,
while state encoding is dominant for Ecore. These results show that future research should primarily
improve on refinement by providing a better transformation engine or refinement rules.

Quality of generated models. The quality of the generated models can be investigated from
different aspects. To ensure correctness, all WF constraints were checked on each generated graph in-
stance by using an external tool, the VIATRA graph query engine [Var+16]. To assess diversity when
a sequence of models are generated by the proposed graph solver (within similar scope), each model
is guaranteed to be non-isomorphic by the state codes (Step (4) in Figure 5.6) or by a distance metric
[C11] in case of repeated calls to the solver, which offers increased diversity compared to Alloy [C11].
Systematically assessing the realistic nature of models is a more complex task [Sza+16] which neces-
sitates to obtain a large set of real models authored by engineers. Our graph solver ensures that only
enumeration values can be isolated nodes in a graph otherwise all graphs are connected by default,
i.e. all regular nodes are arranged into a containment hierarchy. In order to assure connectedness,
Alloy requires an extra constraint to capture this concept, thus by default, our solution appears to be
more realistic. In addition, [Sza+16][B14] contain an in-depth investigation of realistic models for the
Yakindu domain. All generated models are available at [Vs].

Threats to validity. In order to strengthen internal validity, our experiments include an extensive
warm-up phase prior to the actual measurements to decrease the fluctuation of runtime results caused
by the JVM (instead of the natural fluctuation of solver runtimes). We used default setups for running
Alloy and our graph solver, i.e. no extra hints and performance optimizations were provided in the
two approaches. Domain-specific fine tunings may improve scalability in some cases but it would
simultaneously decrease the general-purpose nature of these solvers.

To address external validity, our measurements cover 6 test cases including 3 industrial domains
(Ecore, Yakindu, FAM) with complex structural WF constraints, thus our experimental scalability re-
sults for our graph solver are likely generalizable to other domains of similar size and complexity
within the limitations of Section 5.3.6. In case of simple WF constraints, the difference between the
performance characteristics of Alloy and our graph solver may be smaller. Since the performance of
Alloy depends on the backend SAT-solver, our measurements already included two state-of-the-art
solvers (SAT4] and MiniSAT). Thus the large scalability difference in the size of generated models can
likely be attributed to our graph solver.

Summary. Our graph solver provides a strong platform for generating consistent graph models
which are 1-2 orders of magnitude larger (with similar or higher quality) than derived by mapping
based approaches using Alloy with an underlying SAT-solver. Such a difference in scalability can only
partly be dedicated to our conceptually different approach which combines several advanced graph
techniques to improve performance instead of fine-tuning a mapping. However, it likely indicates
fundamental shortcomings of existing mapping based approaches. Based on in-depth profiling we
suspect that representing each potential edge between a pair of nodes as a separate Boolean variable
blows up the state space for sparse graph with only linear number of edges. Moreover, SAT-solvers
have major problems in evaluating complex predicates over larger graph models [B14] where graph
query evaluation was particularly efficient [Ujh+15].

66

5.5. Related work

Logic |Uncertain | Rule- |Iterative | Symbolic
Solvers| Models |Based

» Partial Snapshot + ++ - + -

2] Local Constraints + - +

5[Global Constraints + - - T T

@ Metamodel + + + ¥

E Well-formed + - - ¥

g Scalable - - ++ +/- -

Decidability - + + - /-

Table 5.2: Comparison of related approaches

5.5 Related work

We compare our solution with existing model generation techniques with respect to the characteris-
tics of inputs and output results in Table 6.1. As for inputs, the model generation can be (1) initiated
from a partial snapshot. Additionally, an approach may support (2) local and (3) global constraints as
WF constraints: a local constraint accesses only the attributes and the outgoing references of an ob-
ject, while a global constraint specifies a complex structural pattern. Local constraints are frequently
attached to objects (e.g. in UML class diagrams), while global constraints are widely used in DSLs.
As outputs, the generated models may (i) be metamodel-compliant (ii) satisfy all well-formedness con-
straints of the language. We consider a technique (iii) scalable if there is no hard limit on the model
size (as demonstrated in the respective papers). Finally, a model generation approach may be (iv) de-
cidable which always terminates with a result. Our comparison excludes approaches like which do
not guarantee metamodel- compliance of generated instance models.

Logic Solver Approaches. Several approaches map a model generation problem into a logic
problem, which is solved by underlying SAT/SMT-solvers. Complete frameworks with standalone
specification languages include Formula [JLB11] (which uses Z3 SMT- solver [MB08]), Alloy [Jac02]
(which relies on SAT solvers like Sat4j [LBP10]) and Clafer [Bak+16] (using reasoners like Alloy).

There are several approaches aiming to validate standardized engineering models enriched with
OCL constraints [GBR05] by relying upon different back-end logic-based approaches such as con-
straint logic programming [CCR07; CCR08; BC12], SAT-based model finders (like Alloy) [SABO09;
Ana+10; But+12; KHG11; Soe+10][J2][C10], CSP solvers [Gon+12] first-order logic [BKS02], construc-
tive query containment [Que+12], higher-order logic [BW07; GRR09], or rewriting logics [CE08]. Par-
tial snapshots and WF constraints can be uniformly represented as constraints [J2]. Growing models
are supported in [JS07][C10] for a limited set of constraints.

Scalability of all these approaches are limited to small models / counter-examples. Furthermore,
these approaches are either a priori bounded (where the search space needs to be restricted explic-
itly) or they have decidability issues. As our approach is independent from the actual mapping of
constraints to logic formulae, it could potentially be integrated with most of the above techniques by
complementing or replacing the back-end solvers.

Uncertain Models. Partial models are similar to uncertain models, which offer a rich specification
language [FSC12a; SC15] amenable to analysis. They a more user-friendly language compared to 3-
valued interpretations, but without handling additional WF constraints. Potential concrete models
compliant with an uncertain model can be synthesized by the Alloy Analyzer [SFC12], or refined
by graph transformation rules [Sal+15]. Each concrete model is derived in a single step, thus their
approach is not iterative like ours. Scalability analysis is omitted from these papers, but refinement
of uncertain models is always decidable, thus termination is guaranteed.

67

5. A GRAPH SOLVER FOR THE AUTOMATED GENERATION OF MODELS

Approaches like [Fam+13] analyze possible matches and executions of model transformation rules
on partial models by using a SAT solver (MathSAT4) or by automated graph approximation (referred
to as “lifting”), or by graph query engines with [C5]. As a key difference, our approach carries out
model refinement while simultaneously evaluating graph query evaluation.

Rule-based Instance Generators. A different class of model generators relies on rule-based
synthesis driven by randomized, statistical or metamodel coverage information for testing purposes
[Bro+06; FSB04a; Ali+16]. Some approaches support the calculation of effective metamodels [Sen+09],
but partial snapshots are excluded from input specifications. Moreover, WF constraints are restricted
to local constraints evaluated on individual objects while global constraints of a DSL are not sup-
ported. On the positive side, these approaches guarantee the diversity of models and scale well in
practice [SSB17; Ali+16].

Iterative Approaches. Iterative approaches generate models by multiple solver calls. In Chap-
ter 6 models are generated in by calling Alloy in multiple steps, where each step extends the in-
stance model by a few elements. This approach scaled up to 50 object in 45s for generating valid
Yakindu Statecharts. An iterative approach is proposed specifically for allocation problems in [KJS11]
based on Formula. Models are generated in two steps to increase diversity of results by first creat-
ing non-isomorphic submodels from an effective metamodel fragment followed by a problem-specific
symmetry-breaking predicate [Cra+96] to ensures that no isomorphic models are generated twice
while constraint checks are postponed to the final stage. An iterative, counter-example guided syn-
thesis is proposed for higher-order logic formulae in [Mil+15], but the size of models is fixed and
smaller than 50 objects.

Symbolic Model Generation Techniques. Certain techniques use abstract (or symbolic) graphs
for analysis purposes. A tableau-based reasoning method is proposed for graph properties [SLO17;
Pen08; ADW16], which automatically refine solutions based on well-formedness constraints, and han-
dle state space in the form of a resolution tree. As a key difference, our approach refines possible
solutions in the form of partial models, while [SLO17; Pen08] resolves the graph constraints to a con-
crete solution. Therefore our approach is able to exploit efficient graph query engines to evaluate
partial solutions, while those techniques are demonstrated on small (< 10 objects) graphs or with no
scalability evaluation at all.

Additionally, different approaches use abstract interpretation [RD06; Ren04], or predicate abstrac-
tion [RSW04] for partial modeling. In those approaches, concretization is used to materialize (typically
small) counter-examples for designated safety properties in a graph transformation system. However,
their focus is to support model checking of abstract graph transformation systems, which can evaluate
complex trajectories, but do not scale in the size of the models.

5.6 Conclusion

We presented a novel graph solver to generate consistent models of a designated size from a specifica-
tion defined by a metamodel and a set of WF constraints. Unlike existing approaches which map the
model generation problem to logic solvers (dominantly SAT or SMT-solvers), we address the model
generation problem of consistent instances directly over graphs by combining advanced graph-based
techniques with core SAT-solving rules. Our approach is fully automated and available as an open
source tool [Vs].

Our experimental evaluation carried out over three industrial domains confirmed that our solver is
able to synthesize consistent graph models with over 500-6000 objects with similar quality guarantees
as provided by the popular relational model finder Alloy. The scalability of our solver is 1-2 orders

68

5.6. Conclusion

of magnitude better than existing mapping based approaches using Alloy with a SAT-solver in the
background. Such a difference in scalability likely indicates not only the benefits of our approach but
also the inherent problems of mapping based model generation approaches deriving and solving a SAT
problem. Thus our solver can serve as the output of mappings that previously used Alloy for model
generation purposes. Altogether, our technique has the potential to be used in many testing scenarios
including validation of large industrial DSLs, but its scalability is not yet sufficient for benchmarking
purposes.

69

CHAPTER 6

Incremental Graph Model Generation
with Logic Solvers

6.1 Introduction

The generation of sample instance models of Domain-Specific Language specifications has become an
active research line due to its increasing industrial relevance for engineering complex modeling tools
by using large metamodels (MM) and complex well-formedness (WF) constraints [Mou+09]. Existing
approaches dominantly use either a logic solver or a rule-based instance generator in the background.

« Model finding using logic solvers [Jac02] (like SMT or SAT-solvers) is an effective technique (1) to
identify inconsistencies of a DSL specification or (2) to generate well-formed sample instances
of a DSL. This approach handles complex global WF constraints which necessitates to access
and query several model elements during evaluation. Model generation for graph structures
needs to satisfy complex structural global constraints (which is typical characteristic for DSLs),
which restricts the direct use of logical numerical and constraint solvers despite the existence
of various encodings of graph structures into logic formulae.

As the metamodel of an industrial DSL may contain hundreds of model elements, any realistic
instance model should be of similar size. Unfortunately, this cannot currently be achieved by a
single direct call to the underlying solver [JLB11][J2], thus existing logic based model generators
fail to scale. Furthermore, logic solvers tend to retrieve simple unrealistic models consisting of
unconnected islands of model fragments and many isolated nodes, which is problematic in an
industrial setting.

+ Rule-based instance generators [Bro+06; FSB04a; Sen+09] are effective in generating larger model
instances by independent modifications to the model by randomly applying mutation rules.
Such a rule-based approach offers better scalability for complex DSLs. These approaches may
incorporate local WF constraints which can be evaluated in the context of a single model element
(or within its 1-context). However, they fail to handle global WF constraints which require to
access and navigate along a complex network of model elements. Since constraint evaluation
is typically the final step of the generation process, the synthesized models may violate several
WEF constraints of the DSL in an industrial setting.

In this chapter, I propose an iterative process for incrementally generating valid instance models
by calling existing logic solvers as black-box components using various abstractions and approxima-

71

6. INCREMENTAL GRAPH MODEL GENERATION WITH LOGIC SOLVERS

tions to improve overall scalability. (1) First, we apply enhanced metamodel pruning [Sen+09] and
partial instance models [J2] to reduce the complexity of model generation subtasks and the retrieved
partial solutions initiated in each step. (2) Then we propose an (over-)approximation technique for
well-formedness constraints in order to interpret and evaluate them on partial (pruned) metamodels.
(3) Finally, we define a workflow that incrementally generates a sequence of instance models by re-
fining and extending partial models in multiple steps, where each step is an independent call to the
underlying solver. We carried out experiments using the state-of-the-art Alloy Analyzer [Jac02] to
assess the scalability of our approach.

Our approach increases the size of generated models by carefully controlling the information fed
into and retrieved back from logic solvers in each step via abstractions. Each generated model (1)
increases in size by only a handful number of elements, (2) satisfies all WF constraints (on a certain
level of abstraction). The incremental derivation of the result set provides graceful degradation, i.e. if
the back-end solver fails to synthesize models of size N (due to timeout), all previous model instances
are still available. From a practical viewpoint, the DSL engineer can influence or assist the instance
generation process by selecting the important fragment of the analyzed metamodel (so called effec-
tive metamodel [Bro+06]). This is also common practice for testing model transformations or code
generators.

The chapter is structured as follows. Section 6.2 introduces some preliminaries for reviewing meta-
models, constraints and partial snaptshots. The approach is presented in Section 6.3 followed by an
experimental evaluation in Section 6.4. Related work is assessed in Section 6.5 while Section 6.6 con-
cludes this chapter. The content of this chapter is based on paper [C10].

6.2 Preliminaries

In this section we present an overview of model generation with logic solvers with a running case
study of Yakindu statecharts.

Example 21. A sample statechart is illustrated in Figure 6.1. Yakindu provides two types of syn-
chronization mechanisms: explicit synchronization nodes (marked as black rectangles) and event-
based synchronization (i.e. raising and consuming events).

Validation is crucial for domain-specific modelling tools to detect conceptual design flaws early and
ensure that malformed models does not processed by tooling. Therefore missing validation rules are
considered as bugs of the editor. While Yakindu is a stable modeling tool, it was still easy to develop
model instances as corner cases which satisfy all (implemented) well-formedness constraints of the
language but crashes the simulator or code generator due to synchronization issues. One of such
problems is depicted in Figure 6.1 where (1) after 5 seconds a (2) timeout event raised in region
timer, but (3) it cannot be accepted in wait in the simulator and in the generated code.

Our goal is to systematically synthesize such model instances by using logic solvers in the back-
ground by mapping DSL specifications to a logic problem [JLB11][J2]. Such model generation ap-
proach usually takes three inputs: (1) a metamodel of the domain, (2) a set of well-formedness con-
straints of the language, and optionally (3) a partial snapshot serving as an initial seed which gen-
erated models need to contain.

In this chapter, we derive logic theory from the metamodel, the well-formedness constraints, de-
rived features, and optionally from a partial snapshot as described in Chapter 3:

DSLMM AN WF A DF A PS.

72

6.2. Preliminaries

Server main region
interface server: R
in event workDone working
)) after 55/ 1.
internal: working process timer raise [timeout]2 .
event timeout o> 32 - \
@—» Wait [fimeout] error timer .
finish
server.workDone
Figure 6.1: Example Yakindu statechart with synchronisations.
I11. Labels [l. Transitions I. State Hierarchy
[1..1] trigger [0.#] incomingTransitions [1.1] target
[[Trigger J H Transition . % Vertex 1T vertices

&
0.*] outgoingTransitions [1.1] source 0.4] regions

[1..1] guard E
[% preudostore || B meguiarsare | B CompositeElement
-
; I — 3
[1..1] action [! f I
[H Action [H Entry] [2 synchronization] [H state] [E statechart]

() () o () (J (]

Figure 6.2: Metamodel extract from Yakindu state machines

Example 22. For this chapter, we use the same state-graph metamodel fragment as introduced
in Chapter 3, but here, as illustrated in Figure 6.2, we partition it into three parts: State Hierar-
chy, Transitions and Labels The Yakindu documentation states several constraints for statecharts
including the following ones regulating the use of synchronization states.

Source states of a synchronization have to be contained in different regions!
D1:=Vsyn, s1, Sp, t1, t2, 11,72
(Synchronization(syn) A outgoing(sy, t1) A outgoing(ss, t2) A target(ty, syn)A
target(tz, syn) A vertices(ry, s1) A vertices(ry, s2) A sp # S2) = 11 ¢ Iy

« Source states of a synchronization are contained in the same parent state!
Dy:=Vsyn, s1, S, t1, t2, 11, 1o 3p
(Synchronization(syn) A outgoing(sy, t1) A outgoing(ss, 1) A target(ty, syn)A
target(tz, syn) A vertices(ry, s1) A vertices(rz, s2) A s1 % $3)
= (regions(p, r1) A regions(p, r2))

« Target states of a synchronization have to be contained in different regions!
D3:=Vsyn, s1, S, t1, b2, 11,72
(Synchronization(syn) A incoming(sy, t1) A incoming(s, t2) A source(ty, syn)A
source(t, syn) A vertices(ry, s;) A vertices(rz, s2) A sy % S3) = 11 7 Iy

« Target states of a synchronization are contained in the same parent state!
Dy:=Vsyn, s1, Sp, t1, t2, 11, r23p
(Synchronization(syn) A incoming(sy, t1) A incoming(sz, t2) A source(ty, syn)A
source(ts, syn) A vertices(ry, s1) A vertices(ra, s2) A s o s3)
= (regions(p, r1) A regions(p, r3))

73

6. INCREMENTAL GRAPH MODEL GENERATION WITH LOGIC SOLVERS

« A synchronization shall have at least two incoming or outgoing transitions!
®5:=Vsyn : Synchronization(syn) = Jty, 1y 1 1 & £ A(
(incoming(t1, syn) A incoming(t,, syn)) V (outgoing(t, syn) A outgoing(tz, syn)))

6.3 Incremental model generation by approximations

Despite the precise definition of logic formulae for our statechart language using existing mappings
[J2], a major practical drawback is that a direct (single step) model generation only terminates for a
limited sizes (which is very small in case of Z3 or Alloy). If we aim to improve scalability by omitting
certain constraints, the synthesized models are no longer well-formed thus they cannot be fed into
Yakindu as sample models.

To increase the size of synthesized models while still keeping them well-formed, we propose an
incremental model generation approach (Section 6.3.3) by iterative calls to backend solvers exploiting
two enabling techniques of metamodel pruning (Section 6.3.1) and constraint approximation (Sec-
tion 6.3.2).

6.3.1 Metamodel pruning

Metamodel pruning [FSB04a; Sen+09] takes a metamodel MM as input and derives a simplified
(pruned) metamodel p(MM) as output by removing some EClasses, EReferences and EAttributes. When
removing a class from a metamodel, we need to remove all subclasses, all attributes and incoming or
outgoing references to obtain a consistent pruned metamodel.

o Pruning: Cls,mmy S Clspym, Refp(MM) C Ref yus Attrpyommy S Attrym and Datapaay
Datapym.

EReference: if R € Ref 5y then:

src;?;\/l M)(R) € Clsppm) and trg;?;\,I M)(R) € Clspimm

ref re

VR € RefP(MM) : src;e(a/IM)(R) = sr¢,10,(R) A trg;?;IM)(R) = trg (R

VR, R, € RefP(MM) : invP<MM)(R1,R2) =4 inVMM(Rl,Rg)

EAttributes: if A € Attry) then:

attr

STCh (v M>(A) € Clsppmy and trggftj\r/l M)(A) € Dataypm)
VA € Attrpium) = st¢hv(A) = s (A) A trgy i (A) = trgh (A)
« EClasses: if C € Clsppp) then:
VS € Clsyp = suppppg(C, S) = (S € Clspopmy A supp(MM)(C, S))
VC € Clsymmy) : abspm(C) & absppa(C)

« Other functions mullim, mull}a¥ and contypy in p(MM) remain the same with limited domain.

74

6.3. Incremental model generation by approximations

Stage |. Model | Stage Il. Model
prune
[Meta |=| Meta, |
model ¢ H
+snapshot e\ model 1 |
L M = M | I
snapshot

Figure 6.3: Metamodel pruning with overapproximation

Example 23. We prune our statechart metamodel in two phases (see the slices in Figure 6.2):
classes Trigger, Guard and Action are omitted together with incoming references (Stage II), and
then classes Transition, Pseudostate, Entry and Synchronization are removed (Stage I).

By using metamodel pruning, we first aim to generate valid instance models for the pruned meta-
model and then extend them to valid instance models of the original larger metamodel. For that pur-
pose, we exploit a property we call the overapproximation property of metamodel pruning (see Fig-
ure 6.3), which ensures that if there exist a valid instance model M for a metamodel MM (formally,
M |= MM) then there exists a valid instance model Mp for the pruned metamodel p(MM) (formally,
Mp |= Metap) such that Mp is a partial snapshot of M (Mp C M). Consequently, if a model generation
problem is unsatisfiable for the pruned metamodel, then it remains unsatisfiable for the larger meta-
model. However, we may derive a pruned instance model Mp which cannot be completed in the full
metamodel MM, which is called a false positive.

Example 24. The statechart model in the middle of Figure 6.3 corresponds to the pruned meta-
model after Stage II. In our example, it can be extended by adding transitions and entry states to the
model illustrated in the right side of Figure 6.3, which now corresponds to the pruned metamodel
of Stage 1.

6.3.2 Constraint pruning and approximation

When removing certain metamodel elements by pruning, related structural constraints (such as mul-
tiplicity, inverse, etc.) of p(MM) are be automatically removed, which trivially fulfills the overapprox-
imation property. Moreover, p(MM) is defined in a limited signature (p(X), p(a))

MM = p(MM),p(Z) C %

However, the treatment of additional well- formedness constraints needs special care since simple
automated removal would significantly increase the rate of false positives in a later phase of model
generation to such an extent that no intermediate models can be extended to a valid final model.

Based on some first-order logic representation of the constraints (derived e.g. in accordance with
Chapter 3 and [C9][J2]), we propose to maintain approximated versions of constraint sets during
metamodel pruning. In order to investigate the interrelations of constraints, we assume that logical
consequences of a constraint set can be derived manually by experts or automatically by theorem
provers [KV09]. Given a DSL specification with a metamodel MM and a set of WF constraints WF =
{¢1,...,¢n}, let ¢ be a formula derived as a theorem MM, WF |= ¢.

75

6. INCREMENTAL GRAPH MODEL GENERATION WITH LOGIC SOLVERS

Now an overapproximation of formula ¢ over metamodel MM for a pruned metamodel p(MM) is
a formula p(@) such that (1) ¢ = p(¢), (2) ¢p contains symbols only from p(X). The details of ap-
proximation are illustrated in the followinf definition where R denotes a relation symbol derived for
class or reference predicates in accordance with the metamodel. While more precise approximations
can possibly be defined in the future, the current approximation is logically correct as if a model gen-
eration problem is unsatisfiable for an approximated set of constraints (over the pruned metamodel)
then it remains unsatisfiable for the original set of constraints.

Definition 26 (Over- and under-approximation by pruning) Let p(MM) denote the pruned
theory of of MM, which uses the pruned signature (p(X), p(a)) of (X, a). Then the over- and under-
approximation of a predicate ¢(vy, ...,v,) of (X, a) is a predicate of (p(X), p(a)) denoted with
PPlo(v1, ..., vn)] and pY[p(vy, . . ., vn)), and calculated as follows:

R(vy,...,v,) ifR € p(2)

PYIR(@1, . .., 00)] =

0 otherwise
R(vy,...,0, if R >
POIR@L - va)] = 1 “ " :)fthepriie)
[~ V] = v ~ Uy [01~Uz] =U~ U2
P [dzstlnct(vl, .oy Up)] = distinet(vy, .. .,v,) P [dlStlnCt(‘U], .o, Up)] = distinct(vy, . . ., vp)
pU[=¢] = =p°lo] P[] == ~pU[¢]
P [4)1 A @2] == pY el A pYlg2] p° [4)1 A @] == pPlon] A pPlo]
P o1 vV o2] == pYl01] V pY[02] P°lo1 V 2] == pPlen] V p°lg:]
pYlp1 = @2 == pU[p1] = p°[02] PPlor = 2] == pVlg1] = pO[2]
U[<p1 & ¢2] 1= pU[p1] & pY[pe] po[<p1 @] == p°lo1] © p°le]
pY[3v: 9] == Fv: pY[g] pP[Fv: ¢] == Fv: p°[g]
pUIVo: g == Vo : pU[g] pP[Vo : @] == Vo : pOlg]
VIR (0n, vp)]ii= R*(vy,...,vp) lfR € p(Z)
otherwise
[R* (01, 0p)]+= Rt (vy,...,vy) ifR € p(2)

1 otherwise

Example 25. Based on the set of WF constraints {¢1, 2, ¢3, ¢4, 95} defined in Section 6.2, a prover
can derive the following formula as a theorem over the metamodel of Stage II: ¢syncour V @syncins
where ¢1,¢05 | @syncour V @syncin- The generated theorem @syncour (and @syncin) restricts the
number of outgoing (ingoing) transitions from (to) a synchronization as follows:

@syncour = Ysynty, by, s1, 71, 12, p : Synchron(syn) =
(outgoing(syn, t1) A target(t;, s1) A outgoing(syn, t;) A target(tz, s2) A s1 % S2A
vertices(ry, s1) A vertices(r2,s2) A ry o ry A regions(p, r1) A regions(p, r2))

The variables and relations approximated in this phase are underlined: in Stage I the generation
is restricted to the model by omitting transitions. The result of overapproximation states that if a
model contains a synchronization, then needs to contain at least two regions:

(psoyncout v q)?yncin = Vsyn3sy, rq, 12, p : Synchron(syn) =

76

6.3. Incremental model generation by approximations

(s1 » sy A vertices(ry, s1) A vertices(r2,s2) A ry o r2 A regions(p, r1) A regions(p, r2))

Applying the approximation rules directly on {¢1, g5} would lead to ¢ : true and ¢S : true.
These constraints are too coarse overapproximations providing no useful information to the model
generator at this phase.

Over- and under-approximation by pruning are proper approximations:

Theorem 11 (Relation between over- and under-approximation by pruning) For each
pruning p(MM) and predicate ¢:

PU[(P('UI, cees Un)] = QD(’Ul, ceyUp) = PO[¢(UI, .5 Un)].

6.3.3 Incremental Model Generation by Iterative Solver Calls

By using metamodel pruning, we first aim to generate valid instance models for the pruned meta-
model, which is a simplified problem for the underlying logic solver. Instance models of increasing
size will be gradually generated by using valid models of the pruned metamodel as partial snapshots
(i.e. initial seeds) for generating instances for a larger metamodel. Therefore, an incremental model
generation task is also given with a target size s and a target metamodel MM, but with an additional
partial snapshot Mp. Mp is a valid instance of pruned metamodel p(MM). Mp has sp number of objects
(sp < s).

From a logic perspective, the partial snapshot defines a partial interpretation of relations for model
generation, which may simplify the task of the solver compared to using fully uninterpreted relations.
In order to exploit this additional information, the relations in the logic problem are partitioned into
two sets of interpreted and uninterpreted symbols. Op = {0y, ...,0s,} are the objects in the partial
snapshot. The extra objects to be generated in this step are denoted by Ony = {0sp+1,...,0s}. The
relations are partitioned according to the following rules:

« Classes: Each class predicate C(-) in MM is separated into two: a fully interpreted Co(:) pred-
icate for the objects in the partial snapshot Op, and an uninterpreted Cn(-) for the newly gen-
erated objects On. Therefore an object o is instance of a class C in the generated model if
Co(0) vV Cn(o) is satisfied. If the class is not in the pruned metamodel (C ¢ Clsp(any)) then Co(0)
is to be omitted, and if no new elements are created from a class then Cy(0) can be omitted.

« References: Each reference predicate R(, -) is separated into four categories: a fully interpreted
Roo(:, -) between the objects of the partial snapshot (Op), an uninterpreted Ryn(:, -) between the
objects of the newly created objects (Oy), and two additional uninterpreted relations Ron(-, -)
and Rno(-, -) connecting the elements of the partial snapshot with the newly created elements
(relations over Op X On and On X Og respectively). Therefore a reference R(o, t) exists in the
generated model if Roo(0, £) VRNN(0, 1) V RNo(0, 1) V Ron(0, t). If the relation is not in the pruned
metamodel (R ¢ Ref P(MM)) then Roo(o, t) can be omitted, and if no new elements are created
from a class then Ryn(o, t), Rno(o, t) and Ron(o,) can also be omitted.

« Attributes: Attribute predicates are separated into a fully interpreted Ago(:, -) for the objects in
the partial snapshots Op, and an uninterpreted relation ANo(:, -) for the newly created elements
ON. An object o0 has an attribute value v (A(o, v)) if Ago(0,v) V Ano(o, v). Attribute predicates
are treated as reference predicates for omission.

77

6. INCREMENTAL GRAPH MODEL GENERATION WITH LOGIC SOLVERS

L Meta, Metas
anguage
Level I/ Met<.1 ; [Meta, [+A | Y Meta, [+A]
mf’lgf' (M, ——{ M, [ra] M, [+A]
M, M; M,
|. States Il. State Refinement I1l. Transitions IV. Labels
[] [] , ?
: ! 1 4

Figure 6.4: Model generation iterations

The level of incrementality is still unfortunately limited from an important aspect. The back-
ground solvers typically provide no direct control over the simultaneous creation of new elements,
i.e. we cannot provide domain- specific hints to the solver when the creation of an object always de-
pends on the creation or existence of another object. This can still cause issues when a multitude of
WF constraints are defined.

Example 26. In our running example, the instance models are generated in four steps, which is
illustrated in Figure 6.4. First, initial seeds are generated for the state hierarchy (M; over MM,),
which are extended in the second step to model M, with the same metamodel elements. Then the
metamodel is extended to MM,, and the transitions and the initial states are added to model Mj;.
Finally, triggers, guards and actions can be added to the model to obtain M,.

6.4 Measurements

In order to assess the effectiveness of incremental model generation using constraint approximation
for synthesizing well-formed instance models for domain-specific languages, we conducted some ini-
tial experiments using the Alloy Analyzer as background solver. We were interested in the following
questions:

« Is incremental model generation with metamodel pruning and constraint approximation effec-
tive in increasing the size of models, the success rate or decreasing the runtime of the solver?

« Is incremental model generation still effective if metamodel pruning or constraint approxima-
tion is excluded?

6.4.1 Configurations

We conducted measurements on two versions of the Yakindu statechart metamodel: Phase 1 and
Phase 2 (see Figure 6.2). The pruned metamodel of Phase 1 (MM;) contains 8 classes and 2 references,
and no well- formedness constraints by default. The metamodel of Phase 2 (MM;) contains 10 classes,

78

6.4. Measurements

MM1 MM2
#CLS:X #REF:Y #WF:Z #CLS:X H#REF:Y #WF:Z
8 2 0+2 10 4 8

Incre- MM Constraint Model Success Model Success

mental Pruning Approx |Runtime (ms) size (#) rate (%) | Runtime (ms) size (#) rate (%)

Base No No No 18349 60 100% 39040 12 0%
Timeout 70 N/A| Timeout 16 N/A

W/o Prune Yes No Yes 7327 + 11176 50+50 100%| Timeout 16 N/A
W/o Approx Yes Yes No 12600+34804 50+50 100%(230 + 183465 20+30 0%
Full Yes Yes Yes 7327 + 11176 50+50 100%|1644 + 44362 20+30 100%

Figure 6.5: Measurement results

4 references and 8 constraints (including the 5 WF constraints listed in the chapter and 3 more for
restricting entry states).

+ As a base configuration, the Alloy Analyzer is executed separately for the two problems with
1 minute timeout. We record two cases: the largest model derived and a slightly larger model
size where timeout was observed.

+ Next, we run the solver incrementally with an initial model of size N and an increment of size K
denoted as N +K in Figure 6.5 without constraint approximation but with metamodel prun-
ing. Moreover, instance models derived for Phase 1 are used as partial snapshots for Phase 2.

« Then we run the solver incrementally with constraint approximation but without metamodel
pruning. For that purpose, the constraint set for Phase 1 contains two approximated con-
straints: (1) Each region has a state where the entry state will point, and (2) There are orthogonal
states in the model. Again, instance models derived for Phase 1 are used as partial snapshots
for Phase 2, but the full metamodel is considered in Phase 2.

« Finally we configure the solver for full incrementally with constraint approximation and meta-
model pruning by reusing instances of Phase 1 as partial snapshots in Phase 2.

6.4.2 Measurement setup

Each model generation task was executed on the DSL presented in this chapter 5 times using the Alloy
Analyzer (with SAT4j- solver), then the median of the execution times was calculated. The measures
are executed with one minute timeout on an average personal computer!. We measure the runtime of
model generation, the model size denoting the maximal number of elements the derived model may
contain, and the success rate denoting the percentage of cases when a well-formed model was derived,
which satisfy all WF constraints within the given search scope.

6.4.3 Measurement results

Results of our measurements are summarized in Figure 6.5. We summarize our observations below.

« Base: For MM;, Alloy was able to generate models with up to 60 objects. As there are no con-
straints at this level, many synchronizations are created (about half of the objects were syn-
chronization and with only 5-10 states). Over 60 objects, the runtime grows rapidly as the SAT

LCPU: Intel Core-i5-m310M, MEM: 16GB but the back-end solver can use 4GB only, OS: Windows 10 Pro, Reasoner:
Alloy Analyzer 4.2 with sat4j

79

6. INCREMENTAL GRAPH MODEL GENERATION WITH LOGIC SOLVERS

solver runs out of the maximal 4 GB memory. For MM,, Alloy was unable to create any models
that satisfies all of the constraints as the search scope turned out to be too small to create valid
models with synchronizations.

« W/o approx Alloy was able to generate models with 100 elements in two steps where each
iterative step had comparable runtime. However, since no constraints are considered for MMy,
Alloyed failed to extend partial snapshots of MM; to well-formed models for MM, (success
rate: 0%, although for this specific case, we executed over 100 runs of the solver due to the
unexpectedly low success rate). Furthermore, we had to reduce the scope of search to 20 and 30
new elements with types taken from MM, \ MM, due to timeouts.

+ W/o prune When metamodel pruning was excluded but approximated constraints were in-
cluded for MM;, model generation succeeded for 100 elements, but extending them to models
of MM, failed (as in this case, new elements could take any elements from MM5)

« Full With incremental model generation by combining metamodel pruning and constraint ap-
proximation, we were able to generate well-formed models for both MM; and MM, which was
the only successful case for the latter.

6.4.4 Analysis of results

While we used a reasonably sized statechart metamodel extracted from a real modeling tool (including
everything to model state machines, but excluding imports and namespacing), we avoid drawing
generic conclusions for the exact scalability of our results. Instead, we summarize some negative
results which are hardly specific to the chosen example:

+ Mapping a model generation problem to Alloy and running the Alloy Analyzer in itself will
likely fail to derive useful results for practical metamodels, especially, in the presence of complex
well-formedness constraints. Our observation is that many objects need to be created at the
same time in consistent way, which cannot be efficiently handled by the underlying solver
(either the scope is too small or out-of-memory). Altogether, the Alloy Analyzer was more
effective in finding consistent model instances than in proving that a problem is inconsistent,
thus there are no solutions.

+ An incremental approach with metamodel pruning but without constraint approximation will
increase the overall size of the derived models, but the false positive rate would quickly increase.

+ An incremental approach without metamodel pruning but with constraint approximation will
likely have the same pitfalls as the original Alloy case: either the scope of search will become
insufficient, or we run out of memory.

« Combining incremental model generation with metamodel pruning and constraint approxima-
tion is promising as a concept as it significantly improved wrt. the baseline case. But the under-
lying solver was still not sufficiently powerful to guarantee scalability with the Alloy back-end
solver for complex industrial cases.

6.5 Related work

We compared our solution with existing model generation techniques with respect to the character-
istics of inputs and output results in Table 6.1. As for inputs, the model generation can be (1) initiated

80

6.5. Related work

Logic | Uncertain | Rule-Based Iterative
Solvers | Models | Generators Solver Call
Partial Snapshot + ++ - +
*g Effective Metamodel - - + +
) Local Constraints + - + +
B Global Constraints + - - +
»| Metamodel-compliant + + + +
E] Well-formed + - - +
= Diverse - - + ?
© Scalable - - ++ +/-
Decidability - + + - (graceful degradation)

Table 6.1: Comparison of related approaches

from a partial snapshot, (2) focused on an effective metamodel. Additionally, an approach may support
(3) local and (4) global constraints well-formedness constraints: a local constraint accesses only the at-
tributes and the outgoing references of an object, while a global constraint specifies a complex struc-
tural pattern. Local constraints are frequently attached to objects (e.g. in UML class diagrams), while
global constraints are widely used in domain-specific modeling languages. As outputs, the generated
models may (i) be metamodel-compliant (ii) satisfy all well-formedness constraints of the language.
When generated models are intended to be used as test cases, some approaches may guarantee a cer-
tain level of coverage or (iii) diversity. We consider a technique (iv) scalable if there is no hard limit
on the model size (as demonstrated in the respective papers). Finally, a model generation approach
may be (v) decidable which always terminates with a result. Our comparison excludes approaches like
which do not guarantee metamodel- compliance of generated instance models.

Logic Solver Approaches. Several approaches map a model generation problem (captured by a meta-
model, partial snapshots, and a set of WF constraints) into a logic problem, which are solved by un-
derlying SAT/SMT-solvers. Complete frameworks with standalone specification languages include
Formula [JLB11] (which uses Z3 SMT- solver [MB08]), Alloy [Jac02] (which relies on SAT solvers like
Sat4j[LBP10]) and Clafer [Bak+16] (using backend reasoners like Alloy).

There are several approaches aiming to validate standardized engineering models enriched
with OCL constraints [GBR05] by relying upon different back-end logic-based approaches such
as constraint logic programming [CCR07; CCR08; BC12], SAT-based model finders (like Alloy)
[SAB09; Ana+10; Biit+12; KHG11; Soe+10], first-order logic [BKS02], constructive query containment
[Que+12], higher-order logic [BW07; GRR09], or rewriting logics [CE08].

Partial snapshots and WF constraints can be uniformly represented as constraints [J2], but meta-
model pruning is not typical. Growing models are supported in [JS07] for a limited set of constraints.
Scalability of all these approaches are limited to small models / counter-examples. Furthermore, these
approaches are either a priori bounded (where the search space needs to be restricted explicitly) or
they have decidability issues.

The main difference of our current approach is its iterative derivation of models and the approxima-
tive handling of metamodels and constraints. However, our approach is independent from the actual
mapping of constraints to logic formulae, thus it could potentially be integrated with most of the
above techniques.

Uncertain Models. Partial models are also similarity to uncertain models, which offer a rich speci-
fication language [FSC12a; SC15] amenable to analysis. Uncertain models provide a more expressive

81

6. INCREMENTAL GRAPH MODEL GENERATION WITH LOGIC SOLVERS

language compared to partial snapshots but without handling additional WF constraints. Such models
document semantic variation points generically by annotations on a regular instance model, which
are gradually resolved during the generation of concrete models. An uncertain model is more complex
(or informative) than a concrete one, thus an a priori upper bound exists for the derivation, which is
not an assumption in our case.

Potential concrete models compliant with an uncertain model can synthesized by the Alloy An-

alyzer [SFC12], or refined by graph transformation rules [Sal+15]. Each concrete model is derived in
a single step, thus their approach is not iterative like ours. Scalability analysis is omitted from the
respective papers, but refinement of uncertain models is always decidable.
Rule-based Instance Generators. A different class of model generators relies on rule-based synthe-
sis driven by randomized, statistical or metamodel coverage information for testing purposes [Bro+06;
FSB04a]. Some approaches support the calculation of effective metamodels [Sen+09], but partial snap-
shots are excluded from input specifications. Moreover, WF constraints are restricted to local con-
straints evaluated on individual objects while global constraints of a DSL are not supported. On the
positive side, these approaches guarantee the diversity of models and scale well in practice.

Iterative approaches. An iterative approach is proposed specifically for allocation problems in
[KJS11] based on Formula. Models are generated in two steps to increase diversity of results. First,
non-isomorphic submodels are created only from an effective metamodel fragment. Diversity between
submodels is achieved by a problem-specific symmetry-breaking predicate [Cra+96] which ensures
that no isomorphic model is generated twice. In the second step the algorithm completes the different
submodels according to the full model, but constraints are only checked at the very final stage. This
is a key difference in our approach where an approximation of constraints is checked at each step,
which reduces the number of inconsistent intermediate models. An iterative, counter-example guided
synthesis is proposed for higher-order logic formulae in [Mil+15], but the size of derived models is

fixed.

6.6 Conclusion

In the chapter, I proposed an incremental model generation approach which (1) iteratively calls black-
box logic solvers to guarantee well-formedness by (2) feeding instance models obtained in a previous
step as partial snapshots (compulsory model fragments) to a subsequent phase to limit the number of
new elements, and using (3) various approximations of metamodels and constraints. Our experiments
show that significantly larger model instances can be generated with the same solvers using such an
incremental approach especially in the presence of complex well-formedness constraints. However,
part of our experimental results are negative in the sense that the proposed iterative approach is still
not scalable to derive large model instances of complex industrial languages with due to restrictions
of the underlying Alloy Analyzer and the SAT solver libraries.

82

CHAPTER 7

Diverse Graph Model Generation With
Logic Solvers

7.1 Introduction

The design of complex DSLs tools is a challenging. As the complexity of DSL tools increases, special
attention is needed to validate the modeling tools themselves (e.g. for tool qualification purposes) to
ensure that WF constraints and the preconditions of model transformation and code generation func-
tionality [Bau+06][J2][C10] are correctly implemented in the tool. There are many approaches aiming
to address the testing of DSL tools (or transformations) [BA05; Ara+15; Val+12] which necessitate the
automated synthesis of graph models to serve as test inputs. Many best practices of testing (such as
equivalence partitioning [Rei97], mutation testing [JH11]) recommends the synthesis of diverse graph
models where any pairs of models are structurally different from each other to achieve high coverage
or a diverse solution space.

While software diversity is widely studied [Bau+14], existing diversity metrics for graph models
are much less elaborate [B14]. Model comparison techniques [Dif] frequently rely upon the existence
of node identifiers, which can easily lead to many isomorphic models. Moreover, checking graph iso-
morphism is computationally very costly. Therefore practical solutions tend to use approximate tech-
niques to achieve certain diversity by random sampling [JSS13], incremental generation [KJS11][C10],
or using symmetry breaking predicates [TJ07]. Unlike equivalence partitions which capture diversity
of inputs in a customizable way for testing traditional software, a similar diversity concept is still
missing for graph models.

In this chapter, I propose diversity metrics to characterize a single model and a set of models. For
that purpose, we innovatively reuse neighborhood graph shapes [RD06], which provide a fine-grained
typing for each object based on the structure (e.g. incoming and outgoing edges) of its neighborhood.
Moreover, we propose an iterative model generation technique to automatically synthesize a diverse set
of models for a DSL where each model is taken from a different equivalence class wrt. graph shapes
as an equivalence relation.

The chapter evaluates our diversity metrics and model generator in the context of mutation-based
testing [MBTO06] of WF constraints in an industrial DSL tool. We evaluate and compare the mutation
score and our diversity metrics of test suites obtained by (1) an Alloy based model generator (using
symmetry breaking predicates to ensure diversity), (2) an iterative graph solver based generator using
neighborhood shapes, and (3) from real models created by humans. Our finding is that a diverse set of
models derived along different neighborhood shapes has better mutation score. Furthermore, based

83

7. D1VERSE GRAPH MODEL GENERATION WITH LoGIC SOLVERS

on a test suite with 4850 models, we found that high correlation between mutation score and our
diversity metrics, which indicates that our metrics may be good predictors in practice for testing.

Up to our best knowledge, our method is one of the first studies on (software) model diversity.
From a testing perspective, our diversity metrics provide a stronger characterization (with respect
to granularity) of a test suite of models than traditional metamodel coverage which is used in many
research papers. Furthermore, model generators using neighborhood graph shapes (that keep models
only if they are surely non-isomorphic) provide increased diversity compared to symmetry breaking
predicates (which exclude models if they are surely isomorphic).

After illustrating the technical challenge in the context of an industrial DSL tool we provide an
overview of key underlying modeling techniques in Section 7.2. A conceptual overview of identifying
missing or extra constraints is given in Section 7.3. An experimental evaluation of our approach is
provided in Section 7.4, while related work is assessed in Section 7.5 before concluding in Section 7.6.
This chapter is based on conference paper [C11].

7.2 Preliminaries

Core modeling concepts and testing challenges of DSL tools will be illustrated in the context of
Yakindu Statecharts [Yak]

Example 27. A simplified metamodel for Yakindu state machines is illustrated in Figure 7.1. A
Statechart consists of Regions, which in turn contain states (called Vertices) and Transitions. In this
chapter, we introduced more Vertices compared to the metamodel used in Chapter 3: an abstract
state Vertex is further refined into RegularStates (like State or FinalState) and PseudoStates (like
Entry, Exit or Choice). We excluded Synchronization scenarios.

[0..*] outgoingTransitions [0..1] source

Q Transition EQ Vertex [0.7] vertices Q Region
|
[0..*] incomingTransitions [1..1] target § I[O"*] regions

|
"-E! Pseudostate ‘ 'E RegularState ’ EQ CompositeElement

[E] Entry | [H Exit | [E Choice [E] FinalState H Q State | [Q Statechart |
) () (J () (J

Figure 7.1: Metamodel extract from Yakindu state machines

As previously discussed in Chapter 3, an ordinary instance model can be represented as a logic
structure M = (Oyy, Ip1) where Oy, is the finite set of objects (the size of the model is |M| = |Opyl),
and I provides interpretation for all predicate symbols in ¥ as follows:

« the interpretation of a unary predicate symbol C; is defined in accordance with the types of the
EMF model: 7j((C;) : Oy — {1,0} An object 0 € Oy is an instance of a class C; in a model M
if Zy(Ci)(o) = 1.

84

7.2. Preliminaries

M1 M2 M3
el e2 e3
1 t4 t9
— source—»{ENtY — source»ENY — target »{ENtY
Transition RegularState| Transition RegularState| Transition RegularState|
\Verte \Verte \Verte
target Sriex target Siex source S eXA
1 3 5 ¢ source
State t3 State . R State > =0
RegularState‘itarge‘c Transition RegularStateftar‘ge)c Transition SOurce*’RegularState 8 source State l<target t11
Vertex Vertex Vertex Transition | target —.[Reg Transition
+ source ry ry Vertex
T
source = source <4 target source s7
t5 State t7 State
2 State target—»| [€«—source 0
targEt»RegularState Transition RegularState Transition Frm—— tapget)\e:g:;arsme
Vertex Vertex

Figure 7.2: Example instance models (as directed graphs)

« the interpretation of a binary predicate symbol R; is defined in accordance with the links in the
EMF model: 71(R;) : Oy X Op — {1,0}. There is a reference R; between 01, 0, € O in model
M ifIM(Rj)(Ol, 02) =1

Example 28. Figure 7.2 shows graph representations of three (partial) instance models. For the
sake of clarity, Regions and inverse relations incomingTransitions and outgoingTransitions are ex-
cluded from the diagram. In M; there are two States (s1 and s2), which are connected to a loop via
Transitions t2 and t3. The initial state is marked by a Transition ¢1 from an entry el to state s1. M,
describes a similar statechart with three states in loop (s3, s4 and s5 connected via t5, t6 and t7).
Finally, in M5 there are two main differences: there is an incoming Transition ¢11 to an Entry state
(e3), and there is a State s7 that does not have outgoing transition. While all these M1 and M2 are
non-isomorphic, later we illustrate why they are not diverse.

In many industrial modeling tools, WF constraints are captured either by OCL constraints [Ocl]
or graph patterns (GP) [Ujh+15]. Here we use a tool-independent logic predicate representation of
those constraints as introduced in Section 3.2.

7.2.1 Motivation: testing of DSL tools

A code generator would normally assume that the input models are well-formed, i.e. all WF con-
straints are validated prior to calling the code generator. However, there is no guarantee that the WF
constraints actually checked by the DSL tool are exactly the same as the ones required by the code
generator. For instance, if the validation forgets to check a subclause of a WF constraint, then runtime
errors may occur during code generation. Moreover, the precondition of the transformation rule may
also contain errors. For that purpose, it is important that WF constraints and model transformations
of DSL tools can be systematically tested. Alternatively, model validation can be interpreted as a spe-
cial case of model transformation, where precondition of the transformation rules are fault patterns,
and the actions place error markers on the model [Ujh+15].

A popular approach for testing DSL tools is mutation testing [MBT06; SBM09] which aims to
reveal missing or extra predicates by (1) deriving a set of mutants (e.g. WF constraints in our case)
by applying a set of mutation operators. Then (2) the test suite is executed for both the original and
the mutant programs, and (3) their output are compared. (4) A mutant is killed by a test if different
output is produced for the two cases (i.e. different match set). (5) The mutation score of a test suite is

85

7. D1VERSE GRAPH MODEL GENERATION WITH LoGIC SOLVERS

calculated as the ratio of mutants killed by some tests wrt. the total number of mutants. A test suite
with better mutation score is preferred [JH11].

7.2.2 Fault model and detection

As a fault model, we consider omission faults in WF constraints of DSL tools where some subcon-
straints are not actually checked. In our fault model, a WF constraint is given in a conjunctive normal
form ¢, = @1 A -+ - A @, all unbound variables are quantified existentially (3), and may refer to other
predicates specified in the same form. Note that this format is equivalent to first order logic, and does
not reduce the range of supported graph predicates. We assume that in a faulty predicate (a mutant)
the developer may forget to check one of the predicates ¢; (Constraint Omission, CO), i.e.

Qe:=[o1 A ... AN@i A...A @] is rewritten to
@r=lo1 Ao Apict A@ivi A A gkl
or may forget a negation (Negation Omission), i.e.

ei=[o1 A ... A(2@i) A ... A @g] is rewritten to

er=[er A AN@i AL A @]

Given an instance model M, we assume that both [[(pe]]M and the faulty [[qof]]M can be evaluated
separately by the DSL tool. Now a test model M detects a fault if there is a variable binding Z, where
the two evaluations differ, i.e. [p. [V Z # [[qof]]MZ i

Example 29. Two WF constraints checked by the Yakindu environment can be captured by graph
predicates as follows:

¢ : incomingToEntry(E):=3T : Entry(E) A target(T, E)
¢ : noOutgoingFromEntry(E):=Entry(E) A =(3T : source(T, E))
According to our fault model, we can derive two mutants for incomingToEntry as predicates

@f:=Entry(E) and ¢p,:=3t : target(T, E).

Constraints ¢ and ¢ are satisfied in model M; and M; as the corresponding graph predicates have
no matches, thus [¢]'Z = 0 and [¢]]™Z = 0. As a test model, both M; and M, is able to detect
the same omission fault both for ¢y as [¢f M = 1 (with E > el and E — e2) and similarly o,
(with s1 and s3). However, M3 is unable to kill mutant ¢y, as (¢ had a match E + €3 which remains
in ¢f,), but able to detect others.

7.3 Model diversity metrics for testing DSL tools

As a general best practice in testing, a good test suite should be diverse, but the interpretation of
diversity may differ. For example, equivalence partitioning [Rei97] partitions the input space of a
program into equivalence classes based on observable output, and then select the different test cases

86

7.3. Model diversity metrics for testing DSL tools

of a test suite from different execution classes to achieve a diverse test suite. However, while software
diversity has been studied extensively [Bau+14], model diversity is much less covered.

In existing approaches [CCR07; CCR08; Val+12; Sch+13; Bro+06; BA05] for testing DSL and trans-
formation tools, a test suite should provide full metamodel coverage [WKCO06], and it should also guar-
antee that any pairs of models in the test suite are non-isomorphic [JSS13; TJ07]. In [B14], the diversity
of a model M; is defined as the number of (direct) types used from its MM, i.e. M; is more diverse than
M; if more types of MM are used in M; than in M;. Furthermore, a model generator Gen deriving a
set of models {M;} is diverse if there is a designated distance between each pairs of models M; and
M;: dist(M;, M;) > D, but no concrete distance function is proposed.

Below, we propose diversity metrics for a single model, for pairs of models and for a set of models
based on neighborhood shapes [RD06], a formal concept known from the state space exploration of
graph transformation systems [Ren06]. Our diversity metrics generalize both metamodel coverage
and (graph) isomorphism tests, which are derived as two extremes of the proposed metric, and thus
it defines a finer grained equivalence partitioning technique for graph models.

7.3.1 Neighborhood shapes of graphs

A neighborhood Nbh; describes the local properties of an object in a graph model for a range of size
i € N [RDO06]. The neighbourhood of an object o describes all unary (class) and binary (reference)
relations of the objects within the given range. Informally, neighbourhoods can be interpreted as
richer types, where the original classes are split into multiple subclasses based on the difference in
the incoming and outgoing references.

Definition 27 (Neighborhood descriptors) Neighborhood descriptors are defined recursively
over a signature (%, a):

e For rangei = 0, Nbhy is a subset of class symbols:

* A neighbor Ref ; fori > 0 is defined by a reference symbol and a neighborhood:

Refi c {Rl, coop Rm} X thi—l-

e For a range i > 0 neighborhood Nbh; is defined by a previous neighborhood and two sets of
neighbor descriptors (for incoming and outgoing references separately):

Nbh; € Nbh;_y x 281 x 2R,
Then, a shaping function calculates the shape of a given model.

Definition 28 (Shaping) Shaping function nbh; : Oy — Nbh; maps each object in a model M to
a neighborhood with range i. If i = 0, then:

nbhy(0):={C|[C(v)[}L,, = 1}

otherwise, if i > 0 then:
nbh;(0):=(nbh;_1(0), in, out), where:

87

7. D1VERSE GRAPH MODEL GENERATION WITH LoGIC SOLVERS

in = {(R,n)|30" € On : [R(V, 0) |20, 0nse A 1 = nbhi_1(0')}
out = {(R,n)|30" € Ot : [R(v, V)50 oriser A 1 = nbhi_1(0)}

A shape of a model M for range i (denoted as S;(M)) is a set of neighborhood descriptors of the model:
Si(M):={x|30 € Op : nbh;(0) = x}.

A shape can be interpreted and illustrated as a as a type graph: after calculating the neighborhood
for each object, each neighborhood is represented as a node in the graph shape. Moreover, if there
exist at least one link between objects in two different neighborhoods, the corresponding nodes in
the shape will be connected by an edge. We will use the size of a shape |S;(M)| which is the number
of shapes used in M.

Example 30. We illustrate the concept of graph shapes for model M;. For range 0, objects are
mapped to class names as neighborhood descriptors:

nbhy(e) = {Entry, PseudoState, Vertex}
o nbhy(t1) = nbhy(t2) = nbhy(t3) = {Transition}
« nbhy(s1) = nbhy(s2) = {State, RegularState, Vertex}

For range 1, objects with different incoming or outgoing types are further split, e.g. the neighbor-
hood of t1 is different from that of ¢2 and ¢3 as it is connected to an Entry along a source reference,
while the source of t2 and 3 are States.

nbhy(t1) = ({Transition}, 0, {(source, {Entry, PseudoState, Vertex}),
(target, {State, RegularState, Vertex})

o nbh(t2) = nbh(t3) = ({Transition}, 0, {{source, {State, RegularState, Vertex}),
(target, {State, RegularState, Vertex})

For range 2, each object of M; would be mapped to a unique element. In Figure 7.3, the neighborhood
shapes of models M;, M,, and M3 for range 1, are represented in a visual notation adapted from
[RD06; RSW04] (without additional annotations e.g. multiplicities or predicates used for verification
purposes). The trace of the concrete graph nodes to neighbourhood is illustrated on the right. For
instance, el and e2 in M1 and M, Entries are both mapped to the same neighbourhood n1, while
e3 can be distinguished from them as it has incoming reference from a transition, thus creating a
different neighbourhood n5.

The theoretical foundations of graph shapes [RD06; RSW04] prove several key semantic properties
which are exploited:

P1 There are only a finite number of graph shapes in a certain range, and a smaller range reduces
the number of graph shapes, i.e. |S;(M)| < |Si+1(M)].

P2 [Si(M))] + 1Si(Mi)| = |S:(M; U M)[= [S:(M;)] and [S;(Mg)|-

7.3.2 Metrics for model diversity

We define two metrics for model diversity based upon neighborhood shapes. Internal diversity cap-
tures the diversity of a single model, i.e. it can be evaluated individually for each and every gener-
ated model. As neighborhood shapes introduce extra subtypes for objects, this model diversity metric

88

7.3. Model diversity metrics for testing DSL tools

S1+82 s3 0 nbh (o)
el—2 nl
nt n7 n5 3 5
2 6

22— Source —»{ENY e —_ target»{ENY € n
Transition RegularState| RegularState Transition RegularState| 1 6 3

§ Vertex Vertex T Vertex sl—= n
target A source 7y 7 7

-3 . target targef e source S n
State target) nd n4 State n2 £1,4,11 n2
RegularState source IMIAISION Transition Regu't‘lfState‘target Transition t2.3.5—-8.10 4

Vertex & \ Vertex s Iy > n
source 19 né

Figure 7.3: Sample neighborhood shapes of M;, M, and M3

measures the number of neighborhood types used in the model with respect to the size of the model.
External diversity captures the distance between pairs of models. Informally, this diversity distance
between two models will be proportional to the number of different neighborhoods covered in one
model but not the other.

Definition 29 (Internal model diversity) Forarangei of neighborhood shapes for model M, the
internal diversity of M is the number of shapes wrt. the size of the model: dl’f”t(M) = |S;(M)|/|M].

The range of this internal diversity metric d!"(M) is [0..1], and a model M with di"*(M) = 1
(and |M| > |MM]|) guarantees full metamodel coverage [WKCO06], i.e. it surely contains all elements
from a metamodel as types. As such, it is an appropriate diversity metric for a model in the sense
of [B14]. Furthermore, given a specific range i, the number of potential neighborhood shapes within
that range is finite, but it grows superexponentially. Therefore, for a small range i, one can derive
a model M; with df’”(Mj) = 1, but for larger models My (with M| > |M;]) we will likely have
di"t(M;) > di"*(My). However, due to the rapid growth of the number of shapes for increasing range
i, for most practical cases, d:"*(M;) will converge to 1 if M; is sufficiently diverse.

Definition 30 (External model diversity) Given a range i of neighborhood shapes, the external
diversity of models M; and M. is the number of shapes contained exclusively in M; or M. but not
in the other, formally, d$**(M;, M) = |S;(M;) & Si(My)| where & denotes the symmetric difference
of two sets.

External model diversity allows to compare two models. One can show that this metric is a
(pseudo)-distance in the mathematical sense [AF12], and thus, it can serve as a diversity metric for a
model generator in accordance with [B14].

Definition 31 (Pseudo-distance) A functiond : M X M — R is called a pseudo-distance, if it
satisfies the following properties:

* d is non-negative: d(M;, M) > 0

* d is symmetric d(M;, My) = d(My, M;)

89

7. D1VERSE GRAPH MODEL GENERATION WITH LoGIC SOLVERS

* if Mj and My are isomorphic, then d(M;, M) = 0

e triangle inequality: d(M;, M;) < d(My, M;) + d(M;, M;)

Theorem 12 (Exterrnal model diversity) External model diversity ds**(M;, My) is a pseudo-
distance between models M; and My for any i.

During model generation, we will exclude a model My if df**(M;, My) = 0 for a previously de-
fined model M;, but it does not imply that they are isomorphic. Thus our definition allows to avoid
graph isomorphism checks between M; and My which have high computation complexity. Note that
external diversity is a dual of symmetry breaking predicates [TJ07] used in the Alloy Analyzer where
d(M;, My) = 0 implies that M; and M. are isomorphic (and not vice versa).

Definition 32 (Coverage of model set) Given a range i of neighborhood shapes and a set of
models MS = {M;, ..., My}, the coverage of this model set is defined as cov;(MS) = |S;(M;) U
-+ U Si(Mg)l.

The coverage of a model set is not normalised, but its value monotonously grows for any range
i by adding new models. Thus it corresponds to our expectation that adding a new test case to a test
suite should increase its coverage.

Example 31. Let us calculate the different diversity metrics for M;, M, and M5 of Figure 7.2. For
range 1, they have the shapes illustrated in Figure 7.3. The internal diversity of those models are
di"t(My) = 4/6, di" (M) = 4/8 and di"*(Ms) = 6/7, thus Ms is the most diverse model among
them. As M; and M, has the same shape, the distance between them is df”(Ml,MZ) = 0. The
distance between M; and Ms is dfxt (My, M3) = 4 as M; has 1 different neighbourhoods (n1), and
M3 has 3 (n5, n6 and n7). The set coverage of My, M, and Ms is 7 altogether, as they have 7 different
neighbourhoods (n1 to n7).

Now we aim at generating a diverse sequence of models MS = {M;, My, ..., My} for a given
metamodel MM (and potentially, a set of constraints WF). First, model generation is an iterative
process where previous solutions serve as further constraints [C10]. Second, it repeatedly calls a back-
end graph solver [Vs][C6] to automatically derive consistent instance models which satisfy WF. As a
key conceptual novelty, we enforce the structural diversity of models during the generation process
using neighborhood shapes at different stages. Most importantly, if the shape S;(M,,) of a new instance
model M,, obtained as a candidate solution is identical to the shape S;(M;) for a previously derived
model M; for a predefined (input) neighborhood range i, the solution candidate is discarded, and
iterative generation continues towards a new candidate.

7.4 Evaluation

In this section, we provide an empirical evaluation of our diversity metrics and model generation
technique to address the following research questions:

RQ1: How effective is our technique in creating diverse models for testing?

RQ2: How effective is our technique in creating diverse test suites?

90

7.4. Evaluation

RQ3: Is there correlation between diversity metrics and mutation score?

Target Domain. In order to answer those questions, we executed model generation campaigns on
a DSL extracted from Yakindu Statecharts (as proposed in [C10]). We used the partial metamodel
describing the state hierarchy and transitions of statecharts (illustrated in Figure 6.2, containing 12
classes and 6 references). Additionally, we formalized 10 WF constraints regulating the transitions as
graph predicates, based on the built-in validation of Yakindu.

For mutation testing, we used a constraint or negation omission operator (CO and NO) to inject
an error to the original WF constraint in every possible way, which yielded 51 mutants from the
original 10 constraints (but some mutants may never have matches). We checked both the original
and mutated versions of the constraints for each instance model, and a model kills a mutant if there
is a difference in the match set of the two constraints. The mutation score for a test suite (i.e. a set of
models) is the total number of mutants killed that way.

Compared approaches. Our test input models were taken from three different sources. First, we
generated models with our iterative approach using a graph solver (GS) with different neighborhoods
for ranges r=1 to r=3.

Next, we generated models for the same DSL using Alloy[TJ07], a well-known SAT-based re-
lational model finder. For representing EMF metamodels we used traditional encoding techniques
[Biit+12][J2]. To enforce model diversity, Alloy was configured with three different setups for sym-
metry breaking predicates: s=0, s=10 and s=20 (default value). For greater values the tool produced
the same set of models. We used the latest 4.2 build for Alloy with the default Sat4j [LBP10] as back-
end solver. All other configuration options were set to default.

Finally, we included 1250 manually created statechart models in our analysis (marked by Human).
The models were created by students as solutions for similar (but not identical) statechart modeling
homework assignments [B14] representing real models which were not prepared for testing purposes.
Measurement setup. To address RQ1-RQ3, we created a two-step measurement setup. In Step I. a
set of instance models is generated with all GS and Alloy configurations. Each tool in each config-
uration generated a sequence of 30 instance models produced by subsequent solver calls, and each
sequence is repeated 20 times (so 1800 models are generated for both GS and Alloy). In case of Alloy,
we prevented the deterministic run of the solver to enable statistical analysis. The model generators
was to create metamodel-compliant instances compliant with the structural constraints of Section 3.2
but ignoring the WF constraints. The target model size is set to 30 objects as Alloy did not scale with
increasing size (the scalability and the details of the back-end solver is reported in [C6]). The size of
Human models ranges from 50 to 200 objects.

In Step II., we evaluate and the mutation score for all the models (and for the entire sequence)
by comparing results for the mutant and original predicates and record which mutant was killed by a
model. We also calculate our diversity metrics for a neighborhood range where no more equivalence
classes are produced by shapes (which turned out to be r = 7 in our case study). We calculated the
internal diversity of each model, the external diversity (distance) between pairs of models in each
model sequence, and the coverage of each model sequence.

RQ1: Measurement Results and Analysis. Figure 7.4 shows the distribution of the number of
mutants killed by at least one model from a model sequence (left box plot), and the distribution of
internal diversity (right box plot). For killing mutants, GS was the best performer (regardless of the
r range): most models found 36-41 mutants out of 51. On the other hand, Alloy performance varied
based on the value of symmetry: for s=0, most models found 9-15 mutants (with a large number of
positive outliers that found several errors). For s=10, the average is increased over 20, but the number
of positive outliers simultaneously dropped. Finally, in default settings (s=20) Alloy generated similar

91

7. D1VERSE GRAPH MODEL GENERATION WITH LoGIC SOLVERS

models, and found only a low number of mutants. We also measured the efficiency of killing mutants
by Human, which was between GS and Alloy. None of the instance models could find more than
41 mutants, which suggests that those mutants cannot be detected at all by metamodel-compliant

instances.
40 ° g 1 3 E %
35 8 0.9) °)
o [o
Ee] g > 0.8 o ° S °
o 30 = °
= . ° s 07 g
e P g o6 :
2
€ 20 % S o5 g 3
+— © o
§ 15 g o c 04 §
[J]
0.3 o
H* 10 e _%_ g 2 3¢)
0. : £
5 ° ° 0.1 < g
0 0

M Alloy;s=0 [Alloy;s=10 [Alloy;s=20 (def) Il Human B GS;r=1 [GS;r=2 [GS;r=3

Figure 7.4: Mutation Score and Internal Diversity

The right side of Figure 7.4 presents the internal diversity of models measured as
shape nodes/graph nodes (for fixpoint range 7). The result are similar: the diversity was high with
low variance in GS with slight differences between ranges. In case of Alloy, the diversity is sim-
ilarly affected by the symmetry value: s=0 produced low average diversity, but a high number of
positive outliers. With s=10, the average diversity increased with decreasing number of positive out-
liers. And finally, with the default s=20 value the average diversity was low. The internal diversity of
Human models are between GS and Alloy.

7.5a illustrates the average distance between all model pairs generated in the same sequence
(vertical axis) for range 7. The distribution of external diversity also shows similar characteristics as
Figure 7.4: GS provided high diversity for all ranges (56 out of the maximum 60), while the diversity

45

40 XX X

R TR T R o T o S S A S S
xx’g“ﬁa—-—-—r
+ 4+
el
[0} Q@ 35
o —
c po4
] 2
k7 g%
e £
% E 25 0006006060000 00000000000
L
o 20 00000
< 0 1 2 3 4 5 6 7
) 15 o
Range of Neighbourhoods C 5 10 15 20 25 30
—a— Alloy;s=0 —B—Alloy;s=10 — Alloy;s=20 (def) #of Models
—a—Alloy;s=0 —&—Alloy;s=10 o~ Alloy;s=20 (def)
—¥—GS;r=1 X—GS;r=2 + - GS;r=3 —%—GS;r=1 X—GS;r=2 +GS;r=3
a External Diversity b Mutation score for model sequence

Figure 7.5: External diversity and mutation score comparison

92

7.4. Evaluation

200 Alloy;s=0 200 Alloy;s=10

150

100

of Shape Nodes
g
of Shape Nodes

o
o

0 10 20 30 0 10 20 30

Alloy;s=20 (def) 800 Graph Solver;r=1

200
150
100

50

of Shape Nodes
of Shape Nodes
s
8

0 0
0 10 20 30 0 10 20 30

—] —] r2 r3 r4 r5

Figure 7.6: Model set coverage

between models generated by Alloy varied based on the symmetry value.

As a summary, our model generation technique consistently outperformed Alloy wrt. both the

diversity metrics and mutation score for individual models.
RQ2: Measurement Results and Analysis. 7.5b shows the number of killed mutants (vertical axis)
by an increasing set of models (with 1 to 30 elements; horizontal axis) generated by GS or Alloy. The
diagram shows the median of 20 generation runs to exclude the outliers. GS found a large amount
of mutants in the first model, and the number of killed mutants (36-37) increased to 41 by the 17th
model, which after no further mutants were found. Again, our measurement showed little difference
between ranges r=1, 2 and 3. For Alloy, the result highly depends on the symmetry value: for s=0
it found a large amount of mutants, but the value saturated early. Next, for s=10, the first model
found significantly less mutants, but the number increased rapidly in the for the first 5 models, but
altogether, less mutants were killed than for s=0. Finally, the default configuration (s=20) found the
least number of mutants.

In Figure 7.6, the average coverage of the model sets is calculated (vertical axis) for increasing
model sets (horizontal axis). The neighborhood shapes are calculated for r = 0 to 5, which after no
significant difference is shown. Again, configurations of symmetry breaking predicates resulted in
different characteristics for Alloy. However, the number of shape nodes investigated by the test set
was significantly higher in case of GS (791 vs. 200 equivalence classes) regardless of the range, and it
was monotonously increasing by adding new models.

Altogether, both mutation score and equivalence class coverage of a model sequence was much

better for our model generator approach compared to Alloy.
RQ3: Analysis of Results. Figure 7.7 illustrates the correlation between mutation score (horizontal
axis) and internal diversity (vertical axis) for all generated and human models in all configurations.
Considering all models (1800 Alloy, 1800 GS, 1250 Human), mutation score and internal diversity
shows a high correlation of 0.95 — while the correlation was low (0.12) for only Human.

Our initial investigation suggests that a high internal diversity will provide good mutation score,
thus our metrics can potentially be good predictors in a testing context, but we cannot generalize to
full statistical correlation.

Threats to Validity and Limitations. We evaluated more than 4850 test inputs in our measurement,
but all models were taken from a single domain of Yakindu statecharts with a dedicated set of WF con-
straints. However, our model generation approach did not use any special property of the metamodel

93

7. D1VERSE GRAPH MODEL GENERATION WITH LoGIC SOLVERS

X
ottt
Ly sl
0.8 o o aHBas 8 X X
07 o N a A Alloy;s=0
> 0.6 BA BE‘HE Sg 8 g o O Alloy;s=10
= =]
g 05 5 DQE DQDE g © Alloy;s=20 (def)
o o4 ﬁ o. o D@ E <>gAAA A X GS;r=1
03 A Hﬁ AE @ A X GS;r=2
0.2
2 §M Bia B5°° + GS;r=3
0.1 a o
0 © Human
0 5 10 15 20 25 30 35 40 45

Of Mutants Killed

Figure 7.7: Model diversity and mutation score correlation

or the WF constraints, thus we believe that similar results would be obtained for other domains. For
mutation operations, we checked only omission of predicates, as extra constraints could easily yield
infeasible predicates due to inconsistency with the metamodel, thus further reducing the number of
mutants that can be killed. Finally, although we detected a strong correlation between diversity and
mutation score with our test cases, this result cannot be generalized to statistical causality, because
the generated models were not random samples taken from the universe of models. Thus additional
investigations are needed to justify this correlation, and we only state that if a model is generated by
either GS or Alloy, a higher diversity means a higher mutation score with high probability.

7.5 Related work

Diverse model generation plays a key role in testing model transformations code generators and
complete developement environments [RV16]. Mutation-based approaches [MBT06; DPV06; Ara+15]
take existing models and make random changes on them by applying mutation rules. A similar ran-
dom model generator is used for experimentation purposes in [BS16]. Other automated techniques
[Bro+06; EKT09] generate models that only conform to the metamodel. While these techniques scale
well for larger models, there is no guarantee whether the mutated models are well-formed. Ap-
proaches relying upon object identifiers (like [Dif]) may classify two graphs which are isomorphic
to be different.

There is a wide set of model generation techniques which provide certain promises for test effec-
tiveness. White-box approaches [Ara+15; BA05; GC14; GS15; Sch+13][J2] rely on the implementation
of the transformation and dominantly use back-end logic solvers, which lack scalability when deriving
graph models.

Scalability and diversity of solver-based techniques can be improved by iteratively calling the
underlying solver [KJS11][C10]. In each step a partial model is extended with additional elements
as a result of a solver call. Higher diversity is achieved by avoiding the same partial solutions. As a
downside, generation steps need to be specified manually, and higher diversity can be achieved only
if the models are decomposable into separate well-defined partitions.

Black-box approaches [Fle+07; Mot+15; But+12; GS15] can only exploit the specification of the
language or the transformation, so they frequently rely upon contracts or model fragments. As a
common theme, these techniques may generate a set of simple models, and while certain diversity
can be achieved by using symmetry-breaking predicates, they fail to scale for larger sizes. In fact, the

94

7.6. Conclusion

effective diversity of models is also questionable since corresponding safety standards prescribe much
stricter test coverage criteria for software certification and tool qualification than those currently
offered by existing model transformation testing approaches.

Based on the logic-based Formula solver, the approach of [JSS13] applies stochastic random sam-
pling of output to achieve a diverse set of generated models by taking exactly one element from each
equivalence class defined by graph isomorphism, which can be too restrictive for coverage purposes.
Stochastic simulation is proposed for graph transformation systems in [THR10], where rule applica-
tion is stochastic (and not the properties of models), but fulfillment of WF constraints can only be
assured by a carefully constructed rule set.

7.6 Conclusion

This chapter proposed a novel diversity metrics for models based on neighbourhood shapes [RD06],
which are true generalizations of metamodel coverage and graph isomorphism used in many research
papers. Moreover, we presented a model generation technique that to derive structurally diverse mod-
els by (i) calculating the shape of the previous solutions, and (ii) feeding back to an existing generator
to avoid similar instances thus ensuring high diversity between the models.

We evaluated our approach in a mutation testing scenario for Yakindu Statecharts, an industrial
DSL tool. We compared the effectiveness (mutation score) and the diversity metrics of different test
suites derived by our approach and an Alloy-based model generator. Our approach consistently out-
performed the Alloy-based generator for both a single model and the entire test suite. Moreover, we
found high (internal) diversity values normally result in high mutation score, thus highlighting the
practical value of the proposed diversity metrics.

Conceptually, our approach can be adapted to an Alloy-based model generator by adding formulae
obtained from previous shapes to the input specification. However, our initial investigations revealed
that such an approach does not scale well with increasing model size. While Alloy has been used as
a model generator for numerous testing scenarios of DSL tools and model transformations [BAO05;
Biit+12; SBMO09; Val+12][C10], our measurements strongly indicate that it is not a justified choice as
(1) Alloy is very sensitive to configurations of symmetry breaking predicates and (2) the diversity and
mutation score of generated models is problematic.

95

CHAPTER 8

Change Propagation of View Models
with Logic Solvers

8.1 Introduction

View models are a key concept in domain-specific modeling tools to provide task-specific focus (e.g.,
power or communication architecture of a system) to engineers by creating a model which highlights
only some relevant aspects of the system to help detect conceptual flaws. Typically multiple view
models are defined for a given an underlying source model, which need to be refreshed automatically
(or upon user request) upon changes in the source model.

However, such view models are read-only representations derived by a unidirectional transfor-
mation, and they cannot be changed directly. When a view model needs to be changed, the engineer
is forced to edit and manually check the source model until the modified model corresponds to the ex-
pected view model. Additionally, the effects of a source change need to be observed in all other view
models to avoid unintentional changes and to prevent the violation of structural well-formedness
(WF) constraints. The fact that changes in the view model cannot be directly propagated back to a
change in the source model hinders the use of view models in an industrial case setting.

To tackle this problem, we propose a technique to automatically calculate possible source model
candidates for a set of changes in different view models. First, the possibly affected partition of the
source model is identified by observing traceability links to restrict the impact of a view modifica-
tion. Then the modified view models, the query-based view specification and the well-formedness
constraints of the source model are transformed into logic formulae. By using an iterative technique
[C10] over the Alloy Analyser [Jac02], our approach enumerates multiple (but not all) valid resolu-
tions of the source model corresponding to the changes of view models and the constraints of the source
model. As a result, source elements unaffected by the target change may still need to be added as a
side effect to make the source model consistent. We illustrate our technique on a healthcare example.
The current approach extends the conceptual overview of [C13] by presenting the technical contents
in depth, and providing a first performance evaluation.

Our method provides advanced support for a class of bidirectional model transformations where
each element in the view is defined unidirectionally by a declarative query [Deb+14; Gho+15]. Arbi-
trary changes of view models are supported and incrementally back-propagated without backward
transformation rules. Our approach allows the engineer to select from multiple source candidates
or to restrict the scope of considered source changes. Moreover, changes from multiple view mod-
els are merged into a consistent source model where the consistency criteria also includes the well-

97

8. CHANGE PROPAGATION OF VIEW MODELS WITH LOGIC SOLVERS

formedness constraints of the source language.

Next, Section 8.2 overviews the concepts of view models and our past work on deriving view mod-
els by query-based unidirectional transformations. Then our backward change propagation approach
(from view models to source models) is presented in details in Section 8.3. An initial experimental
evaluation is provided in Section 8.4. Related work is overviewed in Section 8.5 while Section 8.6
concludes the chapter. This chapter is based on [C12] and [C13].

8.2 View models

In a domain-specific modeling tool, the underlying domain model is presented to the engineers in
different views. These views are frequently represented as models themselves (called view models
and denoted by My in the sequel), which are populated from the underlying domain model (called
source model, Ms). One source model may populate multiple view models. In a general setting, view
models can be detached from the source model to such an extent that they correspond to a different
language, thus they need to be compliant with a view metamodel MMy and satisfy view-specific well-
formedness constraints WFy .

A view model is derived from the source model by a unidirectional forward transformation
My:=fwd(Ms). This is a restricted class of model transformations where query-based declara-
tive techniques are especially suitable [Gho+15; Deb+14]. Efficient live maintenance of a view
model upon changes of the source model can be carried out by incremental transformation tech-
niques [Deb+14; HLR06] even for multiple view models (My;:=fwd’(Ms)) or chains of view models
(My :==fwd?*(fwd'(Mys))).

A forward transformation frequently creates and maintains a trace model T = Tp; U T, between
the source Ms and view My models. An object trace Ty is a relation which connects activations of
rules (queries) in the source model Mg to objects of the view model My. Similarly, a feature trace T,
(i.e. reference or attribute trace) is a relation which connects rule activations in the source model Mg
to references in the view model My .

While view models may immediately reflect live changes in the source model, view models were
immutable by the engineers in our previous work [Deb+14], which restricts the use of view models

in an industrial setting. In the current approach, we allow view models My, . .. My to be changed
directly to M{,,, ... M;,, and present an approach for backward change propagation for view models

to an updated source model M using logic solvers.

8.2.1 Motivating scenario

Our change propagation technique will be illustrated on a case study of a remote health care system
developed in the Concerto project [Con], which develops an environment for pulse and blood pressure
measurement controlled by a smart phone.

Example 32. An example environment is illustrated in the upper left part (1.) of Figure 8.1. Mea-
surements of pulse and blood pressure is measured by the sensors of a mobile phone, which are
executed periodically triggered daily by the phone timer. The completion event of measurements
triggers the processing of sensor data: pressureDone and pulseDone. The result of the measure-
ment is collected in reports pulseReport and pressureReport, and sent to the different hosts. In our
case study, the blood pressure is sent to the general practitioner (gp) of the patient for logging, and
signs of hearth failure is sent to hospitals (modeled by emergency).

98

8.2. View models

Two view models are derived from this source model in our telecare example which are main-
tained as the source model changes. The Dataflow view (2.A) shows which Hosts will be notified
about each InformationTypes, while Event layout (2.B) describes event sequences represented by
Activation nodes with after references between them leading from an Init node to a Finish node.

Let us now assume that changes are made in views illustrated in 3.A and 3.B: 3.A represents a
change where dataflow from Pulse to Emergency is redirected to the General Practitioner (denoted
by «del» and «new»). In 3.B, the action dedicated to report the pulse is removed from the view,
but the remaining report waits for the completion of both measurement (denoted similarly). Our
technique will allow to automatically generate valid and well-formed source model candidates like
(4.) that conforms to the current state of the view model.

Dataflow view

Event ordering view

Error pattern

init(t’ o i
src(type) dataflow(type, host) = () @ b: Action after(a, b)
t: PeriodicTrg when ®
type: MType type: MType || host:Host Fetoni) [a: PeriodicTrg | a: Action
type where % A ‘ triggeredBy NEG unreported(n)
trg(host) -Measurement — b: Action [a:ActloAn‘ :EvenFTrigger m:Measurement
hat Finish(t) || hen ¥ ngger —
host: Host t. PeriodicTrg ||| ® [EvenFTrigger || [b: PeriodicTrg | ‘Report
1. Source Model : 4. Changed Source Model
- :Sensor - [«del»:Report | [:sensor } -
gcticts action hame = phone ctionsctions [name = pulseReport | [Tame = phone = yections2Ctions
:Report :Report . P - | :Report
name = pulseReport name = pressureRepor !“del”'Eve”th”“he‘ﬂ”ggﬁ‘ name = pressureReport
| name = pulseDone [%
when i i when i when
wher triggers friggers CiEg «del»:Measure /’/ tr:gger‘s‘
[‘Host | | [:EventFinishedTrigger| | [:EventFinishedTrigger [:Host | | name = pulseMeasure | “RE 7 [_:EventFinishedTrigger Host |
| name = emergency | | [name = pulseDone [name = pressurebone [[name = gp | / | name = pressurebone
: / T
triggeredBy triggeredBy iR name = emergency / i triggeredBy
/
:Measure :Measure g e |
. - «new» asure triggeredBy | =
when when anews 7 anewn i
type, type 4~ when Sy jeriesq
:MeasurementType :PeriodicTrigger | :MeasurementType] |:Measur‘ementType] | :PeriodicTrigger :MeasurementType
[rome = pressure ||| [none = pulse — | [ame = doily
2.A. Dataflow View 3.A. Changed Dataflow View
«del»
[:InformationType |dataflow [:Host] [:InformationType | dataflow| :Host |
View Transformation ‘% [ame - pulse [mame - emergency | [nane = pulse G| e energency | Change
=, GHEEY Propagation
[:InformationType |datafloy| :Host | Ch [:InformationType | | :Host |
[name = pressure name = gp | ange [name = pressure | dataflow| name = gp |
A
2.B. Event Ordering View . 3.B. Changed Event Ordering View;
{7 = — In View 9 — B «del»:Activity
after [Activity Jafter| Activity | seeen after. :Activity after I"name = pulseReport |
pulseMeasure | [name = pulsereport N T
:Finish <, :Finish
tActivity] | :Activity / :Activity a]Ft r :Activity
after | nane = pressureMeasureafidrane = pressureReport | after after| name = pressureMteasure | 7| name = pressureReport | 21 te"

Figure 8.1: Motivating scenario on a healthcare example

8.2.2 Definition of view models

In [Deb+14] we proposed to use declarative queries as derivation rules to (i) specify new view model
elements in the target My, and (ii) maintain a trace model between the source Mg and view My
models based on the matching queries (patterns). A graph pattern describes structural conditions

o(vy, ..

.,Up) on a model M with a combination of path and type expressions equivalent to first or-

der logic predicate. A derivation rule consists of a pattern predicate ¢ and an action part where for
each activation Z of predicate ¢, the action part is fired. An activation Z is a function that maps all

parameters {vy, ..
L] Un} - OMs-

Z:{Ul,..

.,vn} of predicate ¢ to an object of Oy in the source model Ms = (Ony, Iumy),

99

8. CHANGE PROPAGATION OF VIEW MODELS WITH LOGIC SOLVERS

To help navigation along traces, two (injective partial) lookup functions are introduced:
lookup,, ¢(v) maps a view object v to a predicate ¢ with its activation Z over the source model
(lookupy s(v) = (¢, Z) if (¢, Z,v) € T) and lookupgy (¢, Z) maps an activation to a view object v
(lookupgy (¢, Z) = v if (¢, Z,v) € T). The following actions are used in derivation rules[Deb+14]:

AddObj(C, ¢) Activation Z of precondition ¢ creates an entry (¢, Z, v) in the trace with a unique
view object v in the view model with the corresponding type C. For each activation Z of precondition
¢, there exists a unique v € Oy, view object, where

I]:qo]]]ZwS =1 I <(p’ Z’ ’U> [T =1 v € OMva [[C(x)]]?c/{xv =1
AddRef(R, o, ¢s, 9+ Zr, Zs, Z;) Activations Zg, Zs, Z; of preconditions gr, ¢s, ¢: creates an entry

(@R, Oss 01, ZR, Zs, Z1, R, U5, v;) € T in the trace with a reference R in the view model from the source
v; to the target v;, where vs = lookupgy (s, Zs) and v; = lookupgy, (¢s, Z;).

M M
[[(pR]]ﬁS‘:[[(pS ZSS: PN <(PR’ (Ps> (Pt, ZRa ZSa Zt’ R, 087 Ut) € T P [[R(x y)]]MV — —I
[[(Pt]]ZtS:1 vs = lookupgy (s, Zs), vy = lookupgy (¢:, Z;) > I/ EXD Vs, Yo,

AddALt(A, pa, 0s, 01 Z4, Zs) Activations Z, Zs, v — t of preconditions ¢4, ¢s, ¢; creates an entry
(0a, Os, Q1> ZR, Zs, Z1, A, Us, t € T in the trace with an attribute A in the view model from the source
v; to the target t, where vs = lookupgy (¢s, Zs).

Ms _ Ms _
ol Aoz = o npoon B B A D ST o A DI, = 1
lo:l,.>,=1 vs = lookupgy (¢s, Zs)

As aresult, we obtain a declarative formalism for defining view models with execution semantics
compliant with incremental and live graph transformations [Rat+08]: when a new activation of a
forward rule is detected, the corresponding view elements are created and when a previously existing
activation of a forward rule disappears the related view elements are removed. However, this is still
a restricted subclass of model transformations since (1) each rule creates exactly one new element
(object or reference) in the view model, and (2) the transformation is monotonic in the sense that a
view element always depends on the existence of a match of a positive pattern (i.e. we disregard cases
when a view element is created when a pattern cannot be matched).

Example 33. Queries used for defining the views of our motivating example are depicted in the
top of Figure 8.1. For the Dataflow view, src query selects all the MeasurementType to create In-
formationType instances in the view, while trg is responsible for creating Host instances from the
Host objects in the source model. The dataflow pattern has two parameters and selects all the type
and host pairs that are connected to each other via a Measurement and a Report objects. The action
part of the rule will create an edge between an InformationType and a Host associated with the two
parameters upon a match appears for the pattern. Similarly, the after pattern is responsible for set-
ting the after edge between view model objects. In case of (1.), the edge will go from an Init object to
an Activity, (2.) describes the connection between two Activity, while (3.) activates when an Action
(common ancestor of Report and Measurement) is not triggered by any EventFinishedTrigger. The
init and finish queries create Init and Finish objects in the view for each PeriodicTrigger objects in
the source model. Finally, the action query builds Activity instances from all Action objects.

100

8.3. Backward change propagation by logic solvers

| Target (View) Models Trace [Source Model |

[
My, = My; + M, HMVZ = M§, + Mp, }loof‘”p T =Tr+Tp loo"”” ‘){Ms = M{ + Mg + Msc‘)l——) «del»

Change dlffEI'EHCv: dlfferencvc uufferenu: WE Wiv W
on target N2 N3
\){Mm = M, + My} HM V2 = My, + My,)lo"k“p’{ T'=Tr +Ty ('/‘ IMS = ME + M§ + MN1| M ﬁ

LOgIC «new»
+WF —_Solver

Figure 8.2: Overview of backward change propagation

8.2.3 Characterization of query-based transformation of view models

S. Hidaka et al. [Hid+15] classifies bidirectional transformation approaches based on their features.
According to it, our previous work [Deb+14] is a syntactic approach for forward functional transforma-
tion of MDE artifacts. View models contain no complement information, hence they are regular models
without additional annotations. These models are total targets as the full view model is specified by
the consistency relations. Definition of a view model is unidirectional, however the expressiveness
of definition is Turing incomplete. Forward propagation of the operation-based changes are live, in-
cremental and executed automatically that also maintains explicit traces. However, that approach has
incomplete change support, thus only the modification of the source model is supported.

8.3 Backward change propagation by logic solvers

8.3.1 Overview of approach

We present a novel approach to back-propagate view model changes into a consistent source model
by using logic solvers. An overview of our approach is depicted in Figure 8.2 where target (view)
models My 1, My, . . . are derived from a source model (Ms) based on the matches of the view definition
queries (in the source model), and a traceability model T is built and maintained during the forward
transformation. Now the engineer makes changes to the view models, which leads to changed view
models Mj, , M{,,, The goal of our approach is to calculate (one or more) source models Ms” which
corresponds to the change, maintain T’, and satisfy additional constraints of the source model.

A change in the view model can be separated into two partitions: the fixed model partition M;, L ; de-
notes a partial model which remains unchanged, while M‘(,)l. is updated to a new M {)7[. (cross- references
are included in M‘(,)l. and M‘Jyl.). The change is propagated consequently to the trace model: Tp contains
the invalidated trace links, Ty symbolizes the new links to be created and Tr contains the remaining
trace links which are not affected by the change. Along the traces, the change can be propagated back
to the source model by identifying unchanged, newly activated and deactivated matches of queries
in the source model. By analyzing the impact of changing matches in Ty, the source model can be
partitioned into three partial models: a fixed part Mg contains the elements which cannot be changed,
a changing part MSC containing the objects which can be modified, and a obsolete part M? containing
the objects which can be deleted. The changing trace Ty declaratively specifies structural constraints
on the MSC v Mg) model which have to be satisfied in order to ensure the consistency of the forward
transformation.

A possible solution M for the changed parts Mc MN ' has to (1) match the fixed part MVI, (2)
the requirements defined by the changed matches deﬁned in Ty, and (3) additional domain-specific
WEF (of the source model). All these constraints are transformed into a first-order logic problem to be
solved by a logic (SAT/SMT) solver following [C10]. The solver provides several (but not necessarily

101

8. CHANGE PROPAGATION OF VIEW MODELS WITH LOGIC SOLVERS

all) possible valid solutions for Mg and it may create new objects in Mgf ! from which from the model
developer may choose the most appropriate one Mév I

As a summary, our approach integrates two novel techniques into an interactive workflow: an in-
verse impact analysis by change partitioning (Section 8.3.2) separates the affected and unaffected parts
of the source model, while partial model generation creates candidate source models that correspond
to the new target views (Section 8.3.3) and source constraints.

8.3.2 Change partitioning

The rationale of change partitioning is as follows: (i) if a view model element does not change, the
associated traces cannot be changed, (ii) otherwise, if the change of a source object may induce a valid
view model it has to be selected. However (iii) unnecessary source changes should not happen. To
ensure these conditions, an impact analysis of the changes has to be conducted to identify the affected
part of source model which can be modified.

In general, partitioning aims to select a relatively small fragment of the source model which needs
to be changed in order to propagate the change back. However, there is not any ultimate solution for
this: larger selections may introduce unnecessary changes in the source model, while smaller changes
may result be unfeasible propagation. A detailed discussion of a change partitioning technique is
detailed in Section A.5. Here, we just give an example.

Example 34. In our example of Figure 8.1, the affected part for the deletion of dataflow edge
from the view model is calculated as follows. The trace model Tr stores that the existence of
dataflow edge is related to the dataflow pattern where the activation binds pattern parameters
emergency :Host and pulse:MeasurementType to objects in the source model M. The affected
part of the pattern includes all objects related to the match {emergency,pulse}, and the affected part
of the constraints includes internal variables {pulseReport, pulseMeasure}. However, pulseMeasure
is also responsible for an after edge in the other view model, thus it can be changed but not allowed
to be deleted from the source model. At this stage, the user may manually move objects between
these categories (Mg ,Mg,Mg) to refine his/her intention on source candidates.

MSC = {pulseMeasure}
Mg = {emergency, pulse, pulseReport}
Mg = {rest of the objects}

8.3.3 Model generation by logic solvers

Logic solver based model generation for a domain specific language is an actively researched area.
Instance models can be created to provide models that satisfies required properties, test cases or to cre-
ate counterexamples for false language properties [J2], and incremental model generation techniques
[SFC12][C10] are able to take advantage nearly finished partial instance models.

8.3.3.1 Logic representation of view models

In general, solver-based model generation takes the logic representation of the metamodel MM and
well-formedness constraints WF as a theorem over a signature (X, a) to synthesize conforming in-
stance models M = (Oup,Zy) with M |= MM. A model query can be represented as a relation

102

8.3. Backward change propagation by logic solvers

Qi(vy, ..., v,) over objects of the model which is evaluated to true only if some objects satisfy the
translated query specification ¢(vy, . .., v,):

VU1, ...y 0n t Qi(V1, ..., Up) © @(v1, .. ., Up).
A match m; is represented as a map Z : {vy,...,v,} — Op. Consistency with the view model

is ensured by a formula set View, which controls the matches of query predicates. Therefore, the
generation of a valid and consistent view model is specified as M |= Meta A WF A View.

Example 35. In the logic equivalent of our running example the type, what and where refer-
ences are modeled by relations. The specification of dataflow(t, h) pattern can be represented by
the following predicate:

dataflow(t, h):=3iy, i, : type(i1, t) A what(iz, i) A where(is, h).

Here t and h has to be connected by a specific path of relations. In our example the changed dataflow
model has two matches: Z; = t > ¢],h — c* and Z, = t > ¢}, h > ¢?, as both types are forwarded
to the general practitioner. With the following axioms added to the logic problem it can be ensured
that there are exactly two matches of the pattern (as defined by the dataflow view), and each match
is unique:

Vht: Ppp(t,h) © (t=ci Ah=c?)V(t=cy Ah=c5)

8.3.3.2 Incremental transformation of view models

In case of view models, the affected part Mg U Mg) typically remains proportional to the change, thus
Mg explicitly defines most of the generated models. Incremental model generation techniques like
[C10] are able to take advantage of fully specified model fragments, and encode the graph generation
problem in a way that the problem is proportional to the newly created fragment, as in Chapter 6. In
the following, we give a brief description of the mapping technique.

+ Objects: the object set is partitioned into three subsets: Mg is mapped to the fixed objects OF,
Mg stands for the changing objects O¢ and finally Oy replaces the objects which are removed
Mg). In general, predicates dealing with Mg are interpreted, thus the solver already knows its
truth evaluation.

« Classes: Each class predicate C is also separated into three subsets: a fully interpreted Cg de-
fined over OF, a fully interpreted Cc defined on the changing objects O¢, and the uninterpreted
Cn over Oy. In summary, the solver has to interpret only relations of Cy.

« References: Reference predicates are also separated to multiple smaller relations: Roo rep-
resents the interpreted relation between fixed objects, Rcc the reference between changing
objects, and Ryn represents the reference between new objects. Additionally, uninterpreted
cross-references have to be added for references connecting these regions: Roc, Ron, Rcos Rens
Rno, Rnc. While only Rpg is interpreted from the nine new relations, it contains the most
references.

« Attributes: Attribute predicates are also separated into three partitions for O, O¢ and Oy

103

8. CHANGE PROPAGATION OF VIEW MODELS WITH LOGIC SOLVERS

« Model Queries and Matches: Model queries are separated into multiple queries, each param-
eter can be bound to Of, O¢ and Oy . This might add several relations to the logic problem, but
the unchanged matches are already interpreted. In the construction of the constraint set View,
the uniqueness of non-interpreted matches needs to be ensured

Compared to solving the model generation problem as a whole, our incremental approach enables
the logic solver to handle much fewer variables as a large fragment of the model is already interpreted
(prior to calling the solver). The downside is that constraints become more complex as they have to
be separated into those groups above. However, we expect that most predicates remain interpreted,
which is beneficial for the solver.

8.3.4 Properties of our approach
Our approach has the following properties (based on [Hid+15]):

1. Full operation support on views: View models can be edited as regular models, while the tech-
nique ensures consistency between source and view models.

2. Implicit backward consistency: View models derived from a source model candidate Mg =
fwd'(S’) are isomorphic to the view models V/, ... V.

3. Delta-based and offline back-propagation: After making changes on the target models, our ap-
proach generates source model candidates from a stable state of the views and the changes in
the traces. Upon a sequence of (possibly concurrent) view changes is applied it leads the view
models to a new stable state. Then the difference between the previous and current state of
the views can be propagated back even if some changes are contradictory or inconsistent by
themselves.

4. Interactive execution: There might be several source candidates for a view model change on
which the solver can iterate, starting from the smallest solution. The developer or a selection
strategy can select the most suitable one from the sequence of valid solutions.

5. Well-formedness: S’ satisfies the well-formedness constraints of the source domain S’ = WF.

6. Incrementality: A view change can change only the affected part of the source model. Further-
more, if a view model element is not changed, it is not affected by the back propagation (i.e.
there are no elements that are removed then re-added).

7. Hippocraticness of unaffected partition: If a view model element is not changed, the associated
source model part has to remain unchanged. This implies the standard notion of Hippocratic-
ness: if there is no change in the view models, and the views are consistent with the source, the
source model remain unchanged.

Conditions 1-4 are related to usability and they connect the new backward propagation technique
to our previous forward transformation approach. Some form of consistency is ensured in several
approaches (e.g. [Cic+10]) but we also incorporate WF constraints of the source language. Hippocratic
behavior defined in [Ste08] states that a backward or forward transformation must not modify the
source or the target model if they are already consistent. In Property 6. and 7. we define a stronger
requirement which states that consistent partitions of the source and target models should not be
modified. This constraint simultaneously keeps most of the source model untouched and makes the
deduction phase more efficient by limiting the task to partial models.

104

8.4. Experimental evaluation

8.4 Experimental evaluation

In order to evaluate the performance of the key step of our backward change propagation technique
we have conducted initial measurements on a prototype implementation in the context of the running
example as case study (taken from the CONCERTO project). The measurement scenarios and the
results are available on GitHub'. Our measurements aim to address the following questions:

Q1 What is the influence of the size of the source model, the size of the target change and the
scope of the source model (i.e. the number of newly created source objects) on the runtime of
the solver?

Q2 What is the difference between incremental model generation and full model generation (like
in [Gho+15]) with respect to performance and the quality of results?

Q3 What are the (solver-specific) limitations of our backward change propagation technique?

Our evaluation exclusively focuses on assessing the performance of the model generation step for
the source model (detailed in Section 8.3.3), and excludes the performance evaluation of change par-
titioning (Section 8.3.2). In our initial experiments, we experienced that both the change partitioning
time (i.e. the selection of affected source elements) and the forward transformation time is negligible
(less than 1 second for the largest problems we measured) compared to the time required to solve the
logic problem by Alloy. Thus performance limitations are dominated by the latter.

8.4.1 Change propagation problem generator

In order to measure the performance of our technique we extended the running example visible in
Figure 8.1 to a change propagation benchmark, which can be parametrized and scaled by the size (s)
of the source model and the number of changes (c) in the views. We have created valid health care
models illustrated in Figure 8.3 in the following way :

1. First, a Sensor is created with a PeriodicTrigger.

2. Two MeasurementTypes are added to the model, which are measured by two respective Mea-
sures activated by the periodic trigger. Then two Reports are added to the model, which are trig-
gered by two new EventFinishedTriggers waiting for the measurements of two different types.
Then the result is reported to two newly created Hosts.

3. Step 2 is repeated s times, which means that the model has 2s MeasurementTypes, 4s Measures,
2s Reports, 2s EventFinishedTriggers and 2s Hosts.

4. The view models are derived, which creates in a dataflow model with 2s Hosts and 2s Informa-
tionTypes 4s dataflow references, and an event ordering model with 1 Init, 1 Finish, 6s Activities
and 10s after references.

5. Then changes are applied to the view models: ¢ MeasurementType and ¢ Hosts with their
dataflow references are randomly removed from the first view model, and a new Action is
added to the event ordering view.

As a result, we obtain non-trivial source and view models, while the random changes of the view
model remain semantically meaningful.

Ihttps://github.com/FTSRG/publication-pages/wiki/incremental_backward_change_propagation_
of _view_models_by_logic_solvers

105

https://github.com/FTSRG/publication-pages/wiki/incremental_backward_change_propagation_of_view_models_by_logic_solvers
https://github.com/FTSRG/publication-pages/wiki/incremental_backward_change_propagation_of_view_models_by_logic_solvers

8. CHANGE PROPAGATION OF VIEW MODELS WITH LOGIC SOLVERS

Copy
]I :
| Host Host | |EFTrigger| [EFTrigger | | [Host
Y Y Y Y _l
[Measure | Measure | | Measure | |Measure| [measure | [Measure |
L 1 L L L 1 L 1
| |
\4 y v v y 4
MeasurementType| |M\Gm\en\t\‘l'ypé\] urementType MeasurementType
h ,

Figure 8.3: Structure of the generated source models

8.4.2 Measurement setup

Each model generation task was executed on the generated healthcare change propagation problems
using the Alloy Analyzer (with SAT4j-solver). Each change propagation problem is solved with our
incremental solution which generates only the affected part in the source model. As a baseline, we
compare it to a solution conceptually similar to [Gho+15] which generates full models for a view
model. The full model generation is achieved as a corner case of the incremental generation where
the changed view models are interpreted as if they were newly created, and no part of the source
model is preserved.

We measured the runtime of Alloy Analyzer, which consists of an initial conversion to a con-
junctive normal form and then solving the SAT-problem by the back-end solver. We executed each
measurement 5 times, then the average of the execution times was calculated. The measurements
were executed with a 120 second timeout on an average personal computer?. The memory usage of
the solver was always below 2 GB.

8.4.3 Measurement result

The execution times of our measurements (see Figure 8.4— Figure 8.7) are given in seconds.
« |S| denotes the number of objects in the original source model (Ms);

« |AV| denotes the size of the target change, i.e. the sum of removed and newly created matches
in the view model (M‘(,) and M‘Jy);

« Finally, |[N| denotes the source scope, i.e. the number of new objects in the changed source model
candidates (the number of objects in Mév). It is equivalent to the scope of model generation in
Alloy when incremental technique is used.

2CPU: Intel Core-i5-m310M, MEM: 16GB, OS: Windows 10, Reasoner: Alloy Analyzer 4.2 with sat4j

106

8.4. Experimental evaluation

In case of full model generation where the each model object is newly created, the size of the
original model is subtracted from this value, so the two techniques are comparable with respect to
the number of objects.

8.4.4 Increasing model size

First, Figure 8.4 displays the runtime results of cases where only one change is performed (¢ = 1,
AV = 8..9). Eleven different series are measured, where the change propagation is solved with source
scope of |[N| new elements (ranging from 0 to 10) with increasing the size of source models |S| up
to 123 objects. With 0 new elements, the problem was unsatisfiable, otherwise valid solutions were
created.

100 |S|=39

—e—|S|=15

—e—|5|=27

—e—|S|=51
—e— |5|=63

|S|=75
—e— [5|=87

Runtime (s)

—e—[5]=99
—e—|5|=111
—e—[5|=123

IN| (number of objects)

Figure 8.4: Runtime with increasing source model size (vertical axis: size of source model, series: size
of source scope, change size: 1)

The results show a polynomial (cubic) increase of run-times in the size of the original source
model, and it always harder to solve the problem with increasing source scope size. Additionally, the
solver has a similar characteristics regardless a problem is satisfiable or unsatisfiable. Fortunately,
smaller solutions can be retrieved more efficiently, which is typically preferred over solutions with
unnecessary elements.

We also depicted the run-times in Figure 8.5 while further increasing the size of source scope.
This shows that the source scope needs to be decreased when the size of source models increases in
order to obtain the same run-time.

8.4.5 Increasing target change size

Figure 8.6 displays the results with larger target change sizes. Here, the vertical axis displays the source
scope, i.e the number of new objects added to the source model by the solver, and different series
shows the run-times of target change size ranging from 8 up to 43 changes, and the measurement
is repeated for two model sizes. For the smallest change one new element is needed to successfully
create solutions, two new object is needed for the next change size, and so on, so the largest changes
needed at least 5 new objects.

107

8. CHANGE PROPAGATION OF VIEW MODELS WITH LOGIC SOLVERS

200
—e— [N|=0

180
—e— |N|=1

160 IN|=2
140 —e— |N|=3
— 120 ’ —e— |N|=4
IN|=5

=
o
<]

—&— |N|=6

Runtime (

80 —e— [N|=7
60 —e— |N|=8
0 —e— [N|=9

—e— |N|=10
20

......... 0(I5]73)

A
15 35 55 75 95 115 135 155 175 o(Is13)

|S| (humber of objects) e o(|s]73)

Figure 8.5: Runtime with increasing source scope size (vertical axis: size of source scope, series: size
of source model, change size: 1)

[s|=123,]AV]=9.43 | [s|=63,]AV]|=8..40

140 ——|5|=63,|4V|=8
——|5]=63,|AV|=17

|S|=63,|aV|=25
——|5]=63,|AV|=33
——|5]=63,]AV|=40

|S|=123,|AV|=9
—— |5|=123,]AV|=17

Runtime (s)

—|5|=123,|AV|=27
——|5|=123,|AV|=35

——|5|=123,|AV|=43

0 2 4 6 8 10 12 14 16 18

|N| (number of objects)

Figure 8.6: Runtime with different change size (vertical axis: number of newly added objects, series:
size of model, size of change)

The results shows that the run-time is not directly affected by the size of the change, different
change sizes have the same complexity. However, a larger target change size usually implies a larger
source scope, which, of course, influences the run-time of the solver. In other terms, if the conse-
quences of a large target changes are attempted to be propagated back to the source model with a
small scope size, then the logic solver will conclude that the problem is unsatisfiable. While if we also
increase the scope size, then the problem might become satisfiable - but the logic solver may fail to
find a solution due to its performance limits.

Therefore, based on our measurements of increasing model and change size, our first question
can be addressed as follows:

A1l The runtime of the solver is a polynomial function of the original size of the model and the

108

8.4. Experimental evaluation

source scope size (i.e number of newly added elements). The size of the target change increases
the size of the source scope required for a solution.

8.4.6 Incremental vs. full generation

In Figure 8.7 the runtime of the incremental and full model generation is depicted with respect to the
size of the source model size and the source scope. Only results of two small source models (15 and
27) are presented as on all larger cases, the full model generation technique was unable to provide a
solution.

In comparison, the incremental model generation technique performed much better: it was able to
solve some nontrivial problems, and in general, it was orders of magnitude faster than full generation.

From the perspective of model quality, the full model generation approach redirected several re-
lations where the target view model was unchanged (e.g. unchanged dataflows), which might be un-
desired in change propagation scenarios. On the other hand, the full change propagation may find
solutions which requires changes in partitions categorized as unaffected by our change partition-
ing, which can be only retrieved by manual configuration of the affected part in case of incremental
generation.

350
300

250

—>—Incr,|S|=15
200
—>—Incr,|S|=27

Runtime (s)

150 Full,|S]=15

—+—Full,|S]=27
100

50 : :z
0

0 2 4 6 8 10 12 14 16 18 20

IN| (number of objects)

Figure 8.7: Incremental versus full model generation

The difference between incremental and full model generation for backward change propagation
purposes can be summarized as follows:

A2 Incremental model generation provides better performance for source models of increasing size
for a given scope. Full model generation may be able to retrieve some hidden solutions. Unlike
full model generation, incremental generation is able to detect if a change propagation setup is
unsatisfiable for a given scope.

8.4.7 Limitations

Our initial experimental results revealed several limitations of our approach most of which were
caused by using Alloy as an underlying logic solver. When investigating the runtime for model gen-
eration, we found that over 80% of the time is spent for an initial conversion to Conjunctive Normal

109

8. CHANGE PROPAGATION OF VIEW MODELS WITH LOGIC SOLVERS

Form (CNF) prior to starting the model finding step. In fact, CNF conversion took over 99% of the
time for large models with |S| = 160 elements. The largest source model our technique was success-
fully executed had 243 objects, and the run-time for propagating a single target change was over 20
minutes (again, spent dominantly on CNF conversion).

While our incremental query-based forward transformation scales to source models orders of
magnitude larger, we can state as a conclusion that such scalability cannot be achieved for incremental
backward change propagation when using Alloy as a solver.

However, the fact that model generation time is dominantly spent on CNF conversion in Alloy
(and not on the actual SAT/SMT-based model finding), this may trigger future research to replace
Alloy with a dedicated incremental model finder for EMF-based models.

Furthermore, when investigating small backward change propagation problems with our ap-
proach, one may gain domain-specific insights to identify specific target changes which can be always
mapped to a source change (e.g. by some rule-based transformation techniques).

A3 Incremental backward change propagation using model generation by Alloy scales only to small
models compared to incremental forward transformations. But an incremental model genera-
tion technique scales significantly better than full model generation, which is a hope for dedi-
cated future model generators.

8.4.8 Threats to validity

Finally, let us investigate the most critical threats to validity of our conclusions.

« While our case study is relatively complex (as it originates from the CONCERTO project), our
measurements were executed only on a single case study, thus our findings may not be appli-
cable in a more general context. However, our model generator approach has strong roots in
[C10] where efficiency of incremental model finding by using existing model solvers were as-
sessed, and the experimental results point to similar limitations. Moreover, our negative results
(e.g. poor performance of Alloy) are more likely generalizable for other model generation and
transformation scenarios.

« We excluded the time of forward transformation and change partitioning from our measure-
ments - as initial experiments showed that they were less than a second.

+ As execution times of Alloy quickly started to increase, we only had 5 measurements for each
case, thus we did not carry out a full-fledged statistical analysis of our results. Correspondingly,
our findings are softer (more qualitative than quantitative).

8.5 Related work

Most existing view model synchronization techniques use bijective transformations where transfor-
mations can be executed in both the forward and reverse directions such in lenses [Fos+07], injec-
tive functions [MHT04] or ATL [Xio+07]. Triple Graph Grammars (TTG) [Sch94] are a well-know
approach for model synchronization [Her+15] where the forward and reverse transformation rules
are derived automatically from a bidirectional rule definition. A special class of TGG is View TGG
[Anj+14] which is specialized for efficient update propagation. As a fundamental difference, our ap-
proach uses patterns to define the well-formedness constraints and the view instead of generative
graph grammars.

110

8.5. Related work

Approach Logic Solver| Traceability | WF const. | Partial Model | Interoperability
ATL[Xio+07] - - - -

TGG[Sch94] - + - - +
QVT-R[OMG] - + - +
QVT-R with Alloy[MC13] | SAT Solver - + - +
JTL[Cic+10] ASP - - - +
MTE with MILP[CK13] MILP - - - +
EMF Views [Bru+15] - + - + +
F-Alloy [GK15] SAT Solver - + - +
QueST[Gho+15] SAT solver + - +
Our solution SAT solver + + +

Table 8.1: Comparison of related approaches

Most closely related approaches for view synchronization are listed in Table 8.1. To compare them
to our approach, we use several characteristics to guide the structure of this section.

Using Logic Solvers. Using logic solvers for generating possible source and target candidates
is common part of several approaches. [Cic+10] uses Answer Set Programming, [CK13] maps the
problem to Mixed Integer Linear Programming. Those approaches use solvers to select model ele-
ments which may alter the matches related to view model changes (similar to the calculation of the
affected part). As a difference, our approach takes the whole DSL specification into the account, to
change source model elements which are only implicitly related to the view changes, caused by the
interaction of the metamodel, the WF constraints and other view models.

[MC13] uses Alloy to generate change operations on the source model which leads to a modi-
fied source model which is (i) well-formed and (i) consistent with the changed target model. As a
difference, our solution creates the changed partition (and not the change operations). [Gho+15] and
[GK15] converts the transformation to Alloy similarly, but do not handle WF constraints of the source
model, and changes the whole source model. By selecting the affected part, our solution likely has
better scalability as it has to manage less objects: [GK15] scales up to 20 objects in the source and
target models in total, and no other measurement is given. This technique is also suggested in the
future work of [MC13].

Traceability Links. For the backward propagation of changes, use of traceability links is a well-
accepted approach to define which part of the source model has to be updated upon a change on the
target model. In [Sch94], these links are stored as a correspondence model where their maintenance is
derived from the TGG rules. [OMG] also specifies trace classes to facilitate and maintain traceability
links. [Gho+15] stores traceability links in Alloy[Jac02] as a bijective mapping. [Bru+15] uses a weav-
ing model that stores the traces of references between different models in the view, however all objects
in the view model act as proxies to an object in the source model. Our solution builds and maintains
a traceability during the forward propagation of changes. Moreover, we reuse the information stored
in the traces to improve the affected part calculation for changes in the view.

Well-formedness constraints. To avoid the calculation of ill-formedness source models after
the backward propagation of a view model change, well-formedness constraints should be taken into
account. This property is supported in the specification of [OMG] and by [MC13] and in our approach.

Partial synchronization. [Het10] defines partial synchronization to apply the changes of target
model only to the relevant part of the source model. This reduces the number of possible source
candidates. Our approach identifies the fixed part of the source model, that cannot be changed, and

111

8. CHANGE PROPAGATION OF VIEW MODELS WITH LOGIC SOLVERS

selects the complement of this part which will be the basis of constraints. While [Het10] defines
a formal framework for model synchronization, our solution can be interpreted as an efficient and
view-model specific realization of it.

Partial models have certain similarity to uncertain models, which offer a rich specification language
[FSC12a; SC15] amenable to analysis. Uncertain models provide a more expressive language (called
MAVO annotations) compared to partial snapshots (which implements only annotation V and O from
MAVO) but without handling additional WF constraints. Such models document semantic variation
points generically by annotations on a regular instance model, which are gradually resolved during the
generation of concrete models. An uncertain model is more complex (or informative) than a concrete
one, thus an a priori upper bound exists for the derivation, which is not an assumption in our case.

Concrete models compliant with an uncertain model can synthesized by the Alloy Analyzer
[SFC12], or refined by graph transformation rules [Sal+15]. Each concrete model is derived in a single
step, thus their approach is not iterative like ours. Scalability analysis is omitted from the respective
papers, but refinement of uncertain models is always decidable.

We believe that our contribution is novel in the context of view model synchronization in the sense
that the effects of uni-directional and non-injective forward rules are reversed by mapping models, WF
constraints and rules into first-order logic and then using iterative calls to a SAT-solver. Furthermore,
the consistency criteria for the derived source models is stricter as it includes WF constraints of the
source language (and not only consistency constraints of the transformation). Moreover, a fix partial
model is specified upon a change in the target model using traceability links maintained during the
forward propagation. Finally, iterative and incremental calls to logic solvers scales better then a full
model generation run.

8.6 Conclusion

In this chapter, we presented an incremental backward change propagation approach from view mod-
els to source models (in full details compared to [C13]), which (1) provides a change partitioning tech-
nique to separate possibly affected and unaffected partitions of the source model, (2) transforms the
source model partitions, the queries and WF constraints of the source language to a logic problem
and (3) generates well-formed and consistent source model candidates by the Alloy Analyzer. This
way, valid source candidates can be deduced in case of multiple view models and when backward
transformation rules are not explicitly specified.

An initial experimental evaluation of our approach was carried out in the context of a health
care model (taken from the CONCERTO Atremis European project [Con]), which demonstrated that
(A) our incremental model generation approach scales much better compared to generating the full
source model in a single call to a logic solver, but (B) its scalability is severely limited by the Alloy
Analyzer (especially, by an initial internal conversion to a CNF form).

112

CHAPTER 9

Validation of Complex Domain-Specific
Languages

9.1 Introduction

In case of complex, standardized industrial domains (like ARINC 653 [ARI] for avionics or AU-
TOSAR [AUT13] in automotive), the sheer complexity of the DSL is a major challenge itself. There
are hundreds of well-formedness constraints and design rules defined by those standards, and due to
the lack of validation, there is no guarantee for their consistency or unambiguity. Moreover, domain
metamodels are frequently extended by derived features, which serve as automatically calculated
shortcuts for accessing or navigating models. The specification of derived features can also be incon-
sistent, ambiguous or incomplete.

The mathematical precise validation of DSL specifications themselves have been attempted by
only few approaches so far [JLB11; JS06], and even these approaches lack a systematic validation
process. As model-driven tools are frequently used in critical systems design to detect conceptual flaws
of the system model early in the development process to decrease verification and validation (V&V)
costs, those tools should be validated with the same level of scrutiny as the underlying system as part
of a software tool qualification process in order to provide trust in their output. Therefore software
tool qualification raises several challenges for building trusted DSL tools for a specific domain.

The main objective of this chapter is to propose an automated validation framework to formally
check the specification of DSLs. For that purpose we carry out a wide range of validation tasks by
automated theorem proving based on this formalization to show consistency, unambiguity and com-
pleteness, subsumption or equivalence of a DSL. To decrease the development time and cost of DSL
tools, we aim to detect design flaws in the early phase of DSL development by highlighting validation
problems to the developer directly in the DSL tool itself by back-annotating analysis results. As a
side effect, our validation framework can also be used for generating prototypical well-formed instance
models for a DSL, which can be used for synthesizing test cases, for instance.

Language level validation is a very challenging task because the analysis has to cover an infinite
range of possible design models, which necessitates symbolic approaches. The language elements are
representable by sets and relations which makes first order logic suitable to formalize them. Different
constraint languages attached to the modelling languages are semantically close to first order logic,
extending them with additional elements, like transitive closure. However, reasoning over a language
level problem is undecidable in general. Fortunately logic solvers have become more and more pow-
erful.

113

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

« SAT-solvers specialized for graph problems are capable of checking large range of models in
order to generate counterexamples of bounded size if the validated property is not satisfied by
the target DSL, but they cannot prove the correctness.

+ On the other hand, SMT-solvers are able to efficiently handle complex logic problems with
unlimited domain by solving them with a combination of background theories. An advanced
SMT-solver contains decision procedures for the most common logic fragments, like the effec-
tively propositional [PMB08].

Abstraction is a key element of automatically solving logic problems. First, constraint languages
use higher order language elements like transitive closure which cannot be explicitly represented in
first order logic. Additionally, a more generic problem can be solved efficiently if it is represented
in the target scope of the backend solver. Thus, with suitable approximations, language properties
cannot be directly constructed in the target logic formalism.

In the chapter, we make the following contributions:

« We propose an approach for the validation of DSLs which covers the handling of metamodels,
well-formedness constraints, derived features and partial snapshots. Our aim is to derive effec-
tively propositional formulae wherever possible, which is an efficiently analyzable fragment of
FOL. We also propose approximation techniques to handle complex language constructs which
cannot be represented in FOL.

« In order to systematically carry out the validation process for a DSL, we propose a validation
workflow, which consequently investigates each language feature to check consistency, com-
pleteness and unambiguity (for derived features) and subsumption or equivalence (for well-
formedness constraints).

« We provide prototype tool support which takes EMF metamodels with derived features, in-
stance models, constraints captured by graph patterns of the ViaTrA framework or in OCL as
input, and carries out DSL validation using back-end reasoners. Validation results are back-
annotated to the source DSL specification and to the initial partial model therefore language
engineers may inspect those results as regular instance models.

« We carry out an initial performance evaluation on various DSL validation tasks using a moti-
vating example from the avionics domain using the powerful Z3 SMT solver built on high-level
decision procedures and Alloy (based on a SAT-solver) as automated back-end reasoning tools.

This chapter is structured as follows: next Section 9.2 summarizes the Avionics Architecture mod-
eling case study, Section 9.3 defines the proposed validation approaches, which are illustrated on the
case study in Section 9.4. Measurement results are illustrated in Section 9.5. Section 9.6 summarizes
the related work, and Section 9.7 conclude the chapter. This chapter is based on [C9] and [J2].

9.2 Running example: Avionics modeling environment

9.2.1 Motivating scenario

Trans-IMA [Hor+14] aims at defining a model-driven approach for the synthesis of complex, inte-
grated Matlab Simulink models capable of simulating the software and hardware architecture of an
airplane. The project aimed to (i) define a model-driven development process for allocating software

114

9.2. Running example: Avionics modeling environment

Functional Component
Architecture Library
Model v

N Platform

1 Description
: Model

! A
| -
1 1

1 1

1 Integrated 1
ey Architecture [==---- !

Model

Figure 9.1: High-level overview of the Trans-IMA project

functions captured as Simulink models [Mat] over different hardware architectures and (ii) develop
domain-specific languages and tools for supporting the definition of the allocation process.

The high-level overview of the Trans-IMA challenge is illustrated in Figure 9.1. In model-driven
development of avionics systems, the functional architecture and the platform description of the system
are often developed separately to increase reusability. The former defines the services performed by
the system and links between functions to indicate dependencies and communication, while the latter
describes platform-specific hardware and software components and their interactions.

1. Functional Architecture Models can be imported from industrial language and tools such as
AADL [SAE] or Matlab Simulink [Mat] to capture the functional description of different sys-
tems. In my thesis work, I focuse on the validation of this DSL fragment.

2. Then the system architect specifies the Platform Description Model from the elements of the
Component Library defining the available hardware elements.

3. In the next step the system architect allocates all the functions from the Functional Architecture
Model. The allocation itself includes two major parts: (i) the mapping of functions defined in the
FAM to their underlying execution elements within the PDM and (ii) the automated discovery of
available communication paths for the various information links defined between the allocated
FAM elements.

4. Finally, when the allocation is complete and fulfills all safety and design requirements the Inte-
grated Architecture Model is automatically synthesized to enable simulation in Matlab Simulink.

Trans-IMA DSL contains 118 classes, 90 attributes and 170 references, where 56 features were
marked as derived (about 20% of total) and each was specified by a corresponding model query. The
design rules are defined by 31 well-formedness constraints.

9.2.2 Metamodeling

Metamodels define the main concepts, relations and attributes of the target domain to specify the
basic structure of the models.

Example 36. A simplified metamodel for functional architecture is shown in Figure 9.2. The Func-
tionalArchitectureModel element represents the root of a model, which contains each Function
(subtype of the FunctionalElement). Functions have a minimumFrequency attribute, a type at-
tribute and multiple Functionallnterfaces, where each functional data is either a FunctionalOutput

115

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

H FunctionalArchitectureModel EH FAMTerminator | terminator data | B FunctionalData
0.1 0.1
1 1 data

rootElements model o.*
O“* .

8 FunctionalElement _element interface | E Functionallnterface Eterface
0.1 0.1 0.1
A 0..* | subElements |

H Functionallnput| | B FunctionalOutput

0.1gparent [« <enumeration>>]
- w .
B Function ® FI:unctlonType ol o1 —¥on
T type : FunctionType =~ Root _
= minimumFrequency : EInt = Leaf 0.*| H InformationLink |g
= Intermediate | incomingLinks outgoingLinks

Figure 9.2: Metamodel of the Functional Architecture

(for invoking other functions) or a Functionallnput (for accepting invocations). An output can be
connected to an input through an InformationLink. Finally, if an input or output is not connected
to an other Function then it must be terminated in a FAMTerminator.

9.2.3 Derived features

Derived features (DF) are frequent extensions of metamodels to improve navigation by path com-
pression or compute derived attributes. The value of a DF can be computed from other parts of the
model as defined by a model query [RHV12; Ocl]. Such queries df(o, v) have two parameters: (i) for
derived references o represents the source and v the target object of the reference while (ii) for derived
attributes o represents the container object and v is the computed value the attribute.

A derived feature f defines the values of the selected feature in the following way: Vo, v
feature(o, v) < f(o,v). This has to be satisfied for each derived feature in the DSL which is defined
by the DF rule, therefore the definition of a valid model is specified as: M |= MM A DF. Model query
frameworks like VIATRA automatically recalculate the value of the derived features in the instance
model to satisfy DF [RHV12].

Our sample DSL contains two derived features highlighted in blue in Figure 9.2: a type which
defines the value of an enum attribute and a model which points to the container FAM models.

Example 37. The derived attribute type of Function is defined to take a value from the enumer-
ation literals: Leaf, Root, Intermediate. The pattern defining the type attribute is illustrated on the
right side of Figure 9.3. We use both a custom graphical and the textual VIATRA notation [Ber+11]
to illustrate the queries defined for these derived features. In the graphical notation each rectan-
gle is a variable with a declared type, e.g. the variable _Par is a Function, while arrows represent
references of the given EReference between the variables, e.g. the function This has the function
_Par as its parent. Negative application conditions (NACs) are illustrated as red rectangles. The or
pattern bodies represent that the matches of the query is the union of the matches of its or bodies.

Based on these definitions the type query has three or pattern bodies each defining the value for
the corresponding enum literal of the type attribute:

116

9.2. Running example: Avionics modeling environment

Root if the container object is directly under the FunctionalArchitectureModel connected by
rootElements.

« Leaf if the container object does not have a child along the subElements EReference and it is
not a root element (as defined by the corresponding negative application conditions neg).

« Intermediate if the container object has both parent and child functions.

: : :
ppelie Br9e)_# [par:Funsion] [Fpuncvonwosel || 520722770500 50 rargen
| _F: FuncArchModel | i parent i l rootElements NEG find rootElement (_Model,This);
rootElements i | This:Function | i | This:Function | N Z:r%et ==::Root;
| This:Function | i :parent i T parent NEG neg f::Lnd parent (_Child, This); L
: J |_Ch|: FuncEIementl ?Z%g:;ii : fi::%ement (_Model, This);
or

; ‘Intermediate’ : Target == ‘Leaf find parent (This, _Par);

find parent(_Child, This);
Target==::Intermediate; }

Figure 9.3: Definition of derived attribute type

Example 38. FunctionalElements are also augmented with a derived reference model (highlighted
in blue in Figure 9.2) which represents a reference to the container FunctionalArchitctureModel
object from any FunctionalElement within the containment hierarchy. The definition of the corre-
sponding graph pattern is visible in Figure 9.4 which calculates the transitive closure of the parent
reference between elements This and _Par as denoted by an arrow with a + symbol.

model(This, Target) @QueryBasedFeature pattern model (
| Target. FuncArchModel | This FunctionalElement ,
Target: :rootElements J, Target : FunctionalArchitectureModel)
FuncArchModel {

find parent+(This, Parent);

. find rootElements (Target, Parent);
+ :paren
I } or {

find rootElements (Target, This);

l: :rootElements
| This:FuncElement |

1
1
1
:
1
:| _Par:Function |
i
1
|
1

| This: FuncElement | 3
or

Figure 9.4: Definition of derived reference model

9.2.4 Well-formedness constraints

Structural well-formedness (WF) constraints (aka design rules or consistency rules) complement
metamodels with additional restrictions that have to be satisfied by a valid instance model (in our
case, functional architecture model). Such constraints can also be defined by query languages such as
graph patterns or OCL invariants, in fact, our validation approach supports both of these formalisms.
In many practical cases, well-formedness constraints are defined by queries which capture ill-formed
model structures that are disallowed to have a match in a valid model. In the presence of a set WF of
well-formedness constraints, a model M is called valid if M |= MM A DF A WF.

117

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

Example 39. In our running example, a WF constraint captures that a FunctionalData ob-
ject with a FAMterminator cannot be connected to an InformationLink. It is specified by the
terminatorAndInformationLink query (see Figure 9.5) that has two or pattern bodies, one for
the Functionallnputs and one for the FunctionalOutputs with their corresponding incomingLinks
and outgoingLinks, respectively.

The same constraint is also captured in OCL, see bottom part of Figure 9.5 for a comparison. Note
that graph patterns are normally ill-formedness constraints to capture erroneous situations while
OCL invariants capture the valid case, and violations are identified by their context. Another WF
constraint specifies that the frequency of a subfunction has to be equal to (or exactly twice or four
times as much as) the frequency of its parent function in order to enable communication. This WF

constraint is specified in Figure 9.6.

terminatorAndInformationLink(Ter,InfLnk) @Constraint
i pattern terminatorAndInformation
| Ter: FAMTerminator | ! | Ter: FAMTerminator | (Ter ,InfLink){
- dat 1 . dat FAMTerminator.data
VQL - data : - data .incomingLinks (Ter ,InfLink);
| __FD:Functionallnput |) | _FD:FunctionalOutput | } or {
L Lo ! -outgoingLinks FAMTerminator.data
i' incominglinks o'r l .outgoinglLinks (Ter,InfLink);}
| InfLink:InformationLink | || InfLink:InformationLink |
I
context InformationLink inv terminatorNoLink:
OCL (self.to <> null implies self.to.terminator = null) and
(self.from <> null implies self.from.terminator = null)
Figure 9.5: Definition of the WF constraints terminatorAndInformationLink and
terminatorNoLink
wrongFrequency(Func:Function,Sub:Function) @Constraint
pattern wrongFrequency (Func,Sub){
Func: Function Function.subElements (Func,Sub);
minimumFreq = freq I (freq == subfreq || Function.minimumFrequency (Func,freq);
VQL J subelements 2*freq == subfreq || Function.minimumFrequency (Sub,subfreq);
. K == ! ==
Sub: Function 4*freq subfreq) check(éiireq == suzireq : :
minimumFreq = subfreq req == sublreq
4xfreq == subfreq));
}
context Function inv RightFrequency:Function.allInstances()->
forAll (par,child|(child.parent=par)
implies child .minimumFrequency = par.minimumFrequenc or
OCL P q quency = p quency)
(child.minimumFrequency = par.minimumFrequency * 2) or
(child.minimumFrequency = par.minimumFrequency * 4)))
Figure 9.6: Constraint for the frequency of the subfunctions
9.2.5 Partial snapshots

Multiple PSs will be passed as an input parameter to the validation process, and the solver will try to
construct a valid instance model which satisfies each of them.

118

9.3. Overview of the approach

architecture

shareable communication

unmodifiable module

FMS: Function
. 3 N : type = ?
1: Function 2: Function !'Fl. FunctlonalElement! !'FZ. FunctlonalElement! minimunFrequency = 250
;{Eimzm;rz‘zgﬁgncy =2 ;{Eimzm;rz‘zgﬁgncy =2 interfaci?element elementTiinter’face subElementsszar‘ent
[if1: FunctionalInterface| [if2: FunctionalInterface| FCS: Function
il: Function i2: Function L 1 type = ?
type = ::Intermediate type = ::Intermediate data| |interface 1nterface¢$data minimumFrequency = 500
minimumFrequency = ? minimumFrequency = ? fi: FunctionalInput st?
[fo: Functionaloutput]| : p subElementsy Tparent
11: Function 12: Function ’ outgoingLinks ~_from to incomingLinks ACU: Function
type = ::Leaf type = ::Leaf " " n type = ::Leaf
minimumFrequency = ? minimumFrequency = ? 1: InformationLink minimumFrequency = 500
negative PS terminated_link
- - to - - terminator -
[1: InformationLink|—>{fi: FunctionalInput|——> t: FAMTerminator
t | t | t

Figure 9.7: Partial snapshots with semantic modifiers

Example 40. Figure 9.7 shows four PSs generalized from instance models by removing certain

model elements.

architecture: This PS defines a core structure of an IMA architecture prescribed to contain two
of each root, intermediate and leaf elements, but it does not define their exact structure. As
type attribute is a derived feature, the instance models that contain this PS must be arranged
in an architecture which evaluates to the correct literals.

« communication: This PS contains a communication link from an input FunctionalElement to
an output FunctionalElement via Functionallnterfaces.

« module: This PS defines a module with three functions (FMS: Flight Management System,
FCS: Flight Control System, ACU: Avionics Control Unit) arranged into a tree hierarchy via
subelement and parent edges.

« terminatedLink: This example shows a Functionallnput extracted from an invalid model as it
contains both a FAMTerminator and an InformationLink.

9.3

Overview of the approach

This section provides a high-level, functional overview of our DSL validation approach using an SMT-
solver. It gives the precise definition of the validation challenges for DSLs and describes how these
challenges can be addressed by appropriate configuration of the solver.

9.3.1 Functional overview of the approach

The validations are initiated and executed in well-defined context, which is treated as a set of axioms
for the validation run. This context can be customized during DSL validation by selecting (or de-
selecting) certain DSL artifacts from the following list. As a result, the output model M retrieved
during DSL validation needs to respect the context.

119

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

Structure Constraints Derived Features

Metamodel | Invariants | E Ill-formedness | i Derived Features
H Snapshots

| Search Parameters |—> Mapping

Consistency Check | Subsumption Check | Equivalence Check | Completeness Check | Ambiguity Check
Witness Model Counter Exampleﬂ | Equivalence @' | Complete %‘ | Unambiguous @l

| Inconsistency %’l | Subsumption %’l Difference % Elncomplete Case% EAmbiguous Case%l

ER3

Input

Output

M : Valid case B : Invalid case M : Model % : Contradiction E: EMF Artifact EEM: Graph Pattern [X: OCL constraint

Figure 9.8: Overview of validation tasks

« Metamodels: The selected set of domain classes allowed to be instantiated for constructing
models: M = MM.

« Derived Features: The values of the derived features have to be correctly evaluated with re-
spect to their definition yielding unique and complete results: M |= DF.

+ Constraints: The output model has to satisfy the selected well-formedness constraints: M |=
WF.

« Partial Snapshots: The output model M optionally has to contain partial snapshots: M |= PS.

+ Search Parameters: Additionally, the user may define some reasoning-specific input parame-
ters:

— Size: The number of objects used in the construction of an output model M = (O, Iyr)
can be restricted by a positive integer (defined by |Oy| = size). By default, size = *, which
means that the analysis covers all each possible model regardless of its size.

— Approximation level: Some DSL property (such as the acyclicity of the containment
hierarchy) cannot be represented in FOL. The method is customizable with the level of
approximation (see Section 3.2.3), which allows to set the limit of approximation level.
Higher approximation level will reduce the possibility of false positives.

The constraints serving as the context of DSL validation are summarized as DSL = MM A DF A
WF A PS, and it defines a possibly infinite (if size =) set of Mps = {M : M |= DSL, |Op| = size}. If
each parameter is set to the default value, the analysis covers the full range of valid instance models
(thus the full language is analyzed).

Figure 9.8 shows a more detailed overview of the different DSL validation tasks, their respective
input parameters (upper part) and the possible validation outputs (lower part) of our framework.

The input parameters allow to define the DSL validation context (as discussed above), and the
selected elements of the DSL context are mapped to FOL in accordance with further reasoning-
specific search parameters. We distinguish between five DSL validation tasks (consistency, subsump-
tion, equivalence, completeness and ambiguity checks), which are detailed below. In each case, the
validation run terminates with constructing an output model, or revealing a contradiction. The result
of the model generation is interpreted for each validation task, the valid and invalid outcomes are
highlighted in Figure 9.8. If an output model is retrieved it is presented as a witness model (for consis-
tency and subsumption check), or as a counterexample (e.g. a proof of ambiguity or incompleteness).

120

9.3. Overview of the approach

9.3.2 Consistency check

Consistency is a property of the whole DSL which means that there is no contradiction in its specifi-
cation, i.e. there is at least one valid instance model. A consistency check either reveals the conflicting
elements (constraints, derived features) of a DSL or proves that the DSL is consistent. Because any
statement can be proven from a contradicting set of axioms, an inconsistency invalidates the result
of any further DSL checks (like completeness, ambiguity and subsumption and equivalence checks).
A consistency check aims to prevent such a situation.

Definition 33 (Consistency) A DSL context is consistent if it has a valid instance model, i.e.
Mpst # 0. A DSL context is inconsistent if it is not consistent i.e. Mpsy = 0 (where Mpsy, =
{M: M |= DSL}).

Note that there are no further restrictions on the size of M to serve as a proof of consistency, i.e.
M might be as simple as a single object. In fact, many SAT-solvers would retrieve such a model by
default. Therefore, for practical DSL validation, stricter consistency requirements are necessitated,
such as every class and reference in the metamodel have to be instantiated at least once in an output
model.

Such consistency criteria can be encoded and checked in our framework using partial snapshots.
The use of partial snapshots and flexible model size limit (and further search parameters) make the
generation of output model highly customizable. The underlying solver is called with the metamodels,
the derived features, the constraints and partial snapshots as input. The output model is interpreted
as a witness model of consistency, while a contradiction is a proof of inconsistency. In practice, con-
sistency checks are typically used to (1) identify contradictions in a DSL specification, (2) check if
each language element can be instantiated or (3) generate instance models for a given context (e.g.
relevant contexts for test cases).

9.3.3 Subsumption check

A complex DSL may contain a large number of independent language properties (well-formedness
constraints, derived features, partial snapshots). With a growing number of language properties (i.e.
DSL context), a redundant property is difficult to be identified merely by human inspection. While
consistency checks reveal a contradicting language specification, it would be advantageous to reveal
if a new constraint really imposes further restrictions on valid instances, or it is already covered by
the existing DSL specification. Subsumption checks of a language property aims to detect this latter
case. A subsumed constraint does not express any additional restriction over the DSL therefore it can
be removed without any further consequences.

Definition 34 (Subsumption) A property P is subsumed by a DSL context if DSL = P. A P
property is not subsumed by a DSL context if DSL | P. A P property is independent from a DSL
context if DSL | P A DSL |~ —P.

Informally, property P is subsumed by a DSL specification when every model that satisfies the
DSL specification will also satisfy this property P (formally, VM : DSL |= M = M |= P). If property
P is not subsumed then there is a valid instance model that satisfies the DSL specification but not the
property itself (formally, 3M : DSL |= M A M |~ P). Finally, the property is independent from a DSL
context if it is consistent with it but not subsumed by it.

121

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

Given the DSL context as a set of axioms, we carry out traditional theorem proving to decide if
property P is derivable from the set of axioms. For this purpose, we aim to prove that adding —P as
an axiom to DSL makes the new specification {DSL, =P} inconsistent. Therefore, an output model
retrieved by the solver is interpreted as a counterexample to testify that property P is not subsumed.
In order to show the independence of a property P, the axiom set {DSL, P} is aimed to be refuted as
well, and we require both validation runs to retrieve an output model.

9.3.4 Equivalence check

Language properties can be defined in multiple ways, potentially using different languages and for-
malisms. A well-formedness constraint or a derived feature can be captured as a graph pattern, as an
OCL invariant or as positive or negative partial snapshots. In practical scenarios, a DSL specification
in fact uses a mixture of such techniques. Moreover, automated transformations are defined to convert
OCL constraints into graph patterns and vice versa. Equivalence checks aim to prove the correctness
of conversions between the language properties in a DSL.

Definition 35 (Equivalence) Properties A and B are equivalent in a context DSL if
DSL |= A & DSL [B.

According to the definition, two validation runs are initiated for checking the consistency of sets
{DSL, =A} and {DSL, =B}, respectively. The result of the validation is the proof of the equivalence, or
an example to highlight the semantic difference between the two property, which presents an example
where one property is satisfied, but the other is not.

9.3.5 Completeness and ambiguity check of DFs

Derived features specified by model queries (defined by graph patterns or OCL constraints) are inte-
gral parts of a DSL specification. However, the definition of such DFs is error-prone as the correspond-
ing query has to yield a well-defined result in all situations. Here, we aim to check the completeness
and unambiguity of derived features.

Completeness of a derived feature means that the DF satisfies the lower multiplicity constraint of
the target structural feature. For example, in case of a reference with 1..? multiplicity, completeness is
achieved if the DF evaluates to at least one value for every occurrence of the derived feature. If there
is a model where no values can be assigned to an occurrence of the derived feature it is incomplete.

Let mul}/\'(F) denote the lower multiplicity and mul}as (F) denote the upper multiplicity of feature
F by appropriate constraints, which is enforced by axioms Mul{"" and Mul"®* respectively. Further-
more, let DSL \ C denote a DSL context where the language constraint C is removed. Completeness
is then defined as follows:

Definition 36 (Completeness of Derived Features) A derived feature F is complete in a DSL
context if DSL \ Mul{™" |= Mul{"". Otherwise, DF is incomplete.

Ambiguity allows the upper limit of the multiplicity to be exceeded. For example, a DF complies
with the ?..1 multiplicity if it evaluates to at most one value for every occurrence of the DF. An output
model where multiple values can be assigned to some occurrence of the DF means that the DF is
ambiguous.

122

9.4. A case study on DSL validation

DsL \ DSL Specification Validation Context
Development

Q Valid error?
1. Extend Correct i

} Refine
O_) Metamodel DF

Context 9
Ambiguous?

Incomplete?
Inconsistent?

A 4
+

Features

X

Correct

WE Refine

Context

\ 4
Well-

formednes

Inconsistent?
Subsumption?

+

Valid DSL

e
. Equivalent? Q O
Properties e q e

v

Figure 9.9: DSL validation workflow

Definition 37 (Unambiguity of Derived Features) A derived feature F is unambiguous in a
DSL context if DSL \ Mul{"™ |= Mul{"®. Otherwise DF is ambiguous.

In accordance with the definitions above, the corresponding multiplicity constraints are extracted
from the DSL context and their negation is added back and checked for contradiction. The result of
the validation task could be either the proof of completeness / unambiguity of the checked DF with
respect to the validation context, or a counterexample that, although satisfies the specification of the
DF, violates its multiplicity.

9.4 A case study on DSL validation

Complex DSL specifications may contain multiple inconsistencies, and the erroneous language prop-
erties are difficult to identify and localize. To assist the developers finding such inconsistencies, we
propose an iterative workflow that defines the practical order of addressing and completing the dif-
ferent validation steps. By following this workflow, our framework will reveal the design flaws one by
one so with the help of the counterexamples the root cause of the error can be better detected. This
iterative approach can be applied in any stage of DSL development (including also on incomplete
language specifications) thus specification errors can be detected in an early phase of DSL design.
Additionally, the workflow can guide the developer through a complete language validation process.

9.4.1 Overview of DSL validation workflow

The validation workflow is illustrated in Figure 9.9.
1. First, a metamodel is added to the validation context process and checked for consistency.
2. Derived features are iteratively added (extending it with one new DF at a time)

3. The unambiguity and completeness of the DF as well as the consistency of the entire validation
context are automatically checked.

123

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

4. After checking all DFs, validation continues with the WF constraints, which are added to the
validation context iteratively (one-by-one).

5. Our framework inspects whether the current WF constraint causes inconsistency or it is already
subsumed by the current validation context.

6. If the validation of the DSL succeeds with all DF and WF constraints included in the context,
then the DSL is valid under the assumptions imposed by the search parameters and the partial
snapshots. The DSL validation process succeeds.

7. Partial snapshots retrieved in the validation context can be turned into WF constraints of the
DSL. In such a case, our framework formally proves that the WF constraint and the PS in the con-
text are formally equivalent, therefore, the corresponding WF is not required to be re-validated.

ER If the validation fails at any step, the language engineer has to correct the DSL artifact based
on the counterexample, and continue the validation from the modified element. In case of false
positives (which are detected by checking the result model whether it truly satisfies the con-
straints), the parametrization of the search needs to be fine-tuned. If the result is an error but
the framework provide a spurious counterexample, then the validation context should be ex-
tended by the missing constraints.

Starting the validation of derived features prior to WF constraints is based on the observation
that each DF eliminates a large set of trivial, non-conforming instance models (which are not valid
instances of the DSL). Moreover, adding a single constraint at a time to the validation problem helps
identify the location of the problem, because the solver provides only very restricted traceability
information. This eases the refinement in case of an erroneous DF or WF is added in the actual step
based on the proof provided by the solver.

The rest of this section demonstrates how this DSL validation workflow can be applied on the
running example from the avionics domain.

9.4.2 Derived type validation

For illustration purposes, we artificially inject two conceptual flaws into the query defining the derived
feature type in the IMA example (depicted in Figure 9.10, and see Figure 9.3 for its correct original
definition):

1. The pattern body representing the intermediate case has been removed, which makes the DF
incomplete.

2. The constraint defines that the leaf elements cannot be connected by rootElements reference
is also removed. This will lead to an ambiguity as the body representing the leaf case becomes

more permissive.

The validation process is presented in Table 9.1.

« First (Step 1) we add the type DF to the DSL context and its consistency is successfully vali-
dated.

124

9.4. A case study on DSL validation

Modifications |
Intermediate Costraint from
@ body removed @ Leaf body removed
type(This, Target) 1 2

This:Function

| _F: FuncArchModel | i

:rootElements I “parent NEG

This:Function |_Ch|: FuncElement
Target == ‘Root’ [EECIEH Target == ‘Leaf’
1

Figure 9.10: Modifications on the type pattern

Validation step Outcome | Action
1) Consistency : type V]
2) Completeness: type [X]—=CE1 | Acyclicity approximation = 2
3) Completeness: type [X]—CE2 | + body to type
4) Completeness: type [V]
5) Unambiguity : type [X]—CE3 | + constraint to type
6) Unambiguity : type V] + constraint to type
7) Consistency :model V]
8) Completeness: model [x]—CE4 | Partial snapshot = PS1
9) Completeness: model [?] Checked in boundend size
10) Unambiguity : model [v]
11) Consistency : termAndInfLink [V]
12) Consistency : InfAndTerm [V]
13) Subsumability: InfAndTerm [X] Remove InfAndTerm
14) Equivalence :termAndInf&termNoLink [V]
15) Equivalence :termNoLink&terminatedLink | [X]—CE5

Table 9.1: Example DSL validation run

« Then (Step 2), the completeness of the derived feature type is checked resulting in a failure
illustrated by the Counterexample 1 showing three functions without type to form a cycle in
the containment hierarchy. This counter example is visualized in Figure 9.11 where the invalid
elements are highlighted in red, and the containment references are represented with black di-
amonds. Note that almost all properties of the instance model are correct, only the containment
hierarchy is violated (along the n1-n3-n4 cycle). This is a false positive case since the acyclicity
of the containment hierarchy can only be approximated in first order logic. In our framework,
this problem can be easily solved by simply raising the level of approximation for transitive
acyclicity .

« In Step 3, our tool shows a real counterexample (middle part of Figure 9.11) where the interme-
diate function n4 does not have type attribute. This is fixed by adding (back) the second pattern
body with the Intermediate definition to the type pattern.

« After correcting it, the validation is successfully executed in Step 4.

+ Then the ambiguity of attribute type is checked (Step 5), which fails again with a single function
that is both a Leaf and a Root. This counterexample is also visible in the right part of Figure 9.11.

125

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

Counterexample 1

Counterexample 2

Counterexample 3

[tn2: FunctionalArchitectureModel
: !

parent]|
1n2: Function|—#

ent

parent

subElements
subElements

:

In3: Function

Inl: FunctionalArchitectureModel
: !

!nl: FunctionalArchitectureModel
t |

type = ::Root

¢

model

rootElement%

In2: Function

Figure 9.11: Counterexamples of the type validation

Counterexample 4

Partial Snapshot 1

Counterexample 5

?

model

!nl: Function

type = ::lLeaf

Figure 9.12: Counterexample and partial snapshot for validating model DF, and counterexample 5 for

failed equivalence check

« This issue is fixed by adding the missing NAC condition on the rootElements to the third pattern

body of type in Step 6.

[fam: FunctionalArchitectureModel
: !

9.4.3 Derived reference validation

Now the validation process (see Table 9.1) of DF model is presented that defines a reference to the

!n2: FAMTerminator
dat. - erminator

!nl: FunctionalOutput

!n3: InformationLink

container FunctionalArchitctureModel from a FunctionalElement.

« Step 7 adds the model DF to the specification, and the consistency check is executed success-

fully.

+ Then in Step 8, completeness validation fails as pointed out in Counterexample 4 in Figure 9.12
since a model with a single Function element does not have anything to refer to with the model
link. This result represents a spurious counterexample, because Functions are only used in the
context of a FunctionalArchitectureModel. For this purpose, a partial snapshot is defined with a
FunctionalArchitectureModel object to prune the search space and avoid such counterexamples

(Figure 9.12).

« However, its revalidation (Step 9) ends in a Timeout (more than 2 minutes) and thus this feature

can only be validated on a concrete bounded domain of a maximum of 5 model objects.

« Finally in Step 10, the unambiguity of the model DF is validated without a problem.

126

9.4. A case study on DSL validation

IL2T(Ter,InfLnk) Modifi-
cations

I:FAMTerminator || :InformationLink | Redundant

: terminator ‘to constraint
:Functionallnput @

@Constraint pattern InformationAndTermintator (
T : FAMTerminator, I : InformationLink) =
{ InformationLink.to.terminator(I, T); }

Figure 9.13: Definition of the redundant InformationAndTermintator pattern

9.4.4 Validation of well-formedness constraints

To demonstrate the subsumption check, another WF constraint is added to the DSL specification

expressed by the InformationAndTermintator query (Figure 9.13, bottom part), which prohibits

that an InformationLink is connected to a FAMTerminator. This constraint only differs from the first

body of the original WF constraint (see Figure 9.5) in that it uses the inverse edges, thus it is redundant.
The validation process of WF constraints is illustrated in Table 9.1.

. At first, the consistency validation of the WF constraint terminatorAndInformationLink
(Step 11) is executed with a success.

« Then the redundant InformationAndTermintator is added which remains consistent (Step
12).

« Finally, the last constraint is checked for subsumption (Step 13) and found positive. Thus it
is already covered by the DSL specification, therefore it can be deleted from the set of WF
constraints.

9.4.5 Equivalence check

We selected two use cases to demonstrate the equivalence check in DSL validation in Table 9.1.

« First (Step 14), we used our framework to show the equivalence of the WF constraint defined
by the terminatorAndInformation graph pattern and terminatorNoLink OCL invariant
(see Figure 9.5). There was no valid instance model found, that violates only one of these two
constraints, so the equivalence of the two different representations is successfully proved, thus
they can replace each other in the DSL.

« Then in Step 15, we tried to check the equivalence of the terminatorNoLink (see Figure 9.5)
OCL invariant and terminated_link negative PS (see Figure 9.7).

Our framework returned with the Counterexample 5 (see in Figure 9.12), which highlights the
semantic difference between the two constraints. The PS cannot be matched on this counterex-
ample and since it is a negative PS, the constraint is not violated. On the other hand, the second
part of the OCL constraint is violated, because there is a FAMTerminator connected to an In-
formationLink through a FunctionalOutput. This counterexample proves the inequality of this
DSL property.

127

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

subElements o8(architecture/il,
- - - communication/f2,
o2(architecture/i2): Function communication/f1,
type = ::Intermediate module/FCS): Function
minimumFrequency = 1000
Y 4 type = ::Intermediate
parent minimumFrequency = 500

[n1: FunctionalArchitectureModel]
: !

r'ootElementsv—T rootlement }

: N : 07 (module/FMS
c:gizr‘:h.l'iiz’tcur‘e/r‘z) : Function ar‘chitectur‘é/r‘l) : Function

Y _ type = ::Root
minimumFrequency = 2001 minimumfrequency = 250

A
Y par‘entT parent
’ subElements

r R Y A element
subElements | P2"en
subElements‘ y interface
o5(module/ACU,

architecture/12): Function " . T T T
03(ate e/12): Fu architecture/11): Function o4 (communication/if1, X
type = ::lLeaf communication/if2): FunctionalInterface

ini - type = ::Leaf
minimumFrequency = 2000 minimumFrequency = 500 L 3]
data
interface interface data
|ol(communication/‘Fo): FunctionalOutput| |010(communication/'Fi): FunctionalInput|
1 1

L L

'Fronr+—4> ?_r_m incomingLinks ’—+t°
utgoinglin

[09(communication/1): InformationLink]|
: !

Figure 9.14: Screenshot of a valid model satisfying all partial snapshots of Figure 9.7

9.4.6 Model generation for partial snapshots

Our framework can also be used for generating instance models satisfying a DSL specification un-

der

certain assumptions (partial snapshots). This is, in fact, very useful in test generation [Mic+12;

Abd+18] or quick fix generation purposes. Below we only briefly demonstrate how to derive a valid
model of minimal size (see Figure 9.14) which contains all PSs from Figure 9.7.

« Partial snapshot architecture is satisfied in the output model by objects 02, 03, 05, 06, 07, 08.

« Partial snapshot shareable communication is satisfied along objects 01, 04, 08, 09, 010, (and their
corresponding links). Note that Function 08 and Functionallnterface 04 is shared for the source
and target end of the InformationLink.

« Partial snapshot unmodifiable module can be transformed to objects 05, 07, 08.

Our example demonstrates that a single object in the output model can satisfy multiple roles in

different PSs. Furthermore, the same object can be shared when matching shareable PSs.

9.5 Runtime measurements

In order to assess the performance of our approach, we carried out initial experimental evaluation.

9.5.1 Measurement environment

The execution of our validation framework consists of four phases:

128

1. the transformation of the validation task (DSL2FOL), which is proportional to the size of models

and the number of constraints;

9.5. Runtime measurements

2. the execution of the reasoner tool (FOL2FOL), which can be complex and time consuming

3. the resolution of the output model (FOL2PS), which is proportional to the size of the output FOL
model

4. the visualization of the output model (PS2DSL), which is proportional to the size of output partial
snapshot

We concluded that the runtime of Steps 1, 3 and 4 is predictable and negligible compared to the
execution of the reasoning step, which is, in fact, difficult to predict. Therefore, below we restrict our
runtime measurements to assess the performance of the reasoning step for various validation tasks
on the avionics DSL presented in the paper (see Table 9.2 for an overview of properties used for our
experiments).

Abbr. Property Defined in
Freq-GP wrongFrequency Figure 9.6
Freq-OCL | RightFrequency Figure 9.6
T&I-GP | terminatorAndInformation Figure 9.5
T&I-OCL | terminatorNoLink Figure 9.5
Half-GP InformationandTermintator | Figure 9.13
Half-PS negative terminated_link Figure 9.7

Table 9.2: Properties in experimental validation

The tasks serving as test cases are marked with the expected output, which can be positive or neg-
ative. The analysis can prove the selected property, check the absence of violations within a bounded
context, or result in a timeout. The marking used in this section are illustrated in Table 9.3.

['] | Positive result is expected

[X] | Negative result is expected

[?] | Checked in a bounded context, but not proven
- | Timeout

Table 9.3: Measurement outcomes

Each validation task was executed on the DSL three times for both the Z3 SMT solver and the
Alloy Analyzer (with SAT4j-solver), then the median of the execution times was calculated. The mea-
sures are executed with a 5 minute timeout on an average personal computer!. Execution times are
presented in seconds.

9.5.2 Evaluation of language-level validation

Consistency Analysis. First, consistency analysis of the full DSL (without the use of partial snap-
shots) is executed for arbitrary model size (|O| = *), then it is repeated for exactly 10 and 100 number
of objects. The results are presented in Table 9.4. As the results show, consistency analysis is easily
solved with each reasoning approach for small models. The Alloy Analyzer is unable to solve large
models (with ~ 100 elements), while the SMT-solver easily solves consistency check for larger size by
generating highly symmetric models.

LCPU: Intel Core-i5-m310M, MEM: 16GB, OS: Windows 8.1 Pro, Reasoners: Alloy Analyzer 4.2 and Z3 4.3.0.

129

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

|M| =
*[v] | 10 [vV] | 100 [V]
73, int=Z 0.02 1.85 0.1
Alloy, int=undef | 0.06 0.26 -

Table 9.4: Consistency check measurements

type ‘ type w. error model
Comp [v']Unamb []JComp [X]Unamb [x]Comp [x]Unamb []
73, Complete 0.27 0.03 0.70 0.08 0.02 0.01
Alloy, |M|<10, int=[—64;63] [20.65[?]| 15.23 [?] | 24.75 23.54 29.06 | 30.13[?]

Table 9.5: Derived feature validation measurements

DSL = Freq DSL = T&l DSL |= Half
GP[x] | OCL[x] | GP[x] | OCL[x] | GP[V] PS [V]
73, Complete 0.46 1.50 0.85 1.50 0.01 0.02
Alloy, |M|<10, int=[—64;63] | 0.27 0.18 33.26 32.85 | 2258 [?] | 24.16 [?]

Table 9.6: Subsumption check measurements of DSL constraints

These measurements indicate that consistency analysis on the language level (i.e. without PSs) is

an easy DSL validation task as the output models retrieved as consistency proofs are trivial in most
practical cases (e.g. consisting of a single model element).
Derived Features. Next, we checked completeness and unambiguity for derived features type and
model, and the measurement results are summarized in Table 9.5. The complete validation problem
was given to the SMT solver, while we restricted the analysis to at most 10 model elements and a [-64;
63] interval for integers in case of Alloy. This is an underapproximation due to the limited expressive
power of SAT problems, therefore the UNSAT result from the Alloy SAT-solver can not be used as a
proof.

Since completeness and unambiguity still leads to a real theorem proving problem, the SMT solver
excels in these cases (both for proving correctness without assumptions and retrieving counterexam-
ples). Furthermore, the lack of counter-examples in case of SAT solvers is still not a general proof due
to the bounded context.

Subsumption and equivalence checks

We also carried out subsumption checks to decide if a certain constraint (captured in GP, OCL or
PS formalism in the different cases) is already covered by the DSL specification. Measurement results
are summarized in Table 9.6. The SMT solver is particularly good for proving subsumption (3rd case)
but it also has predictable runtime for the negative cases (1st and 2nd). It is interesting to note that FOL
formulae derived from OCL constraints required more time, which might indicate some inefficiencies
in our OCL transformation.

We also aimed to prove equivalence for certain constraints captured in different formalisms (graph
patterns vs. OCL invariants; partial snapshots vs. graph patterns or OCL invariants). Measurement
results are listed in Table 9.8. In this validation setup, Alloy also performed well - but the SMT solver

130

9.6. Related Work

Freq [V] T&I[V] | Half [/] | T&l- OCL &
GP & OCL | GP & OCL | GP & PS | Half - PS [x]
73, Complete 0.04 0.03 0.02 1.14
Alloy, [M|<10, int=[—64; 63] - 1.40 [?] 1.11[?] 0.40

Table 9.7: Equivalence check measurements of DSL constraints

still had a predictable runtime.

Our experiments to carry out various language-level validation tasks clearly indicates that the
Z3 SMT solver outperforms the SAT-based Alloy reasoner tools, which coincides with our a priori
expectations.

9.5.3 Model generation evaluation

In DSL validation properties are decided by detecting contradicting requirements or providing small
examples. Valid instance models of increasing size are generated to measure its efficiency.

By customizing the validation context, our approach generates various instance models with des-
ignated properties. To avoid empty and symmetric models, the generation processes are executed
with three PSs as input: architecture, shareable communication and unmodifiable module which are
defined in Figure 9.7, so the results are similar to the model in Figure 9.14. Models are generated with
10 to 20 objects, where the smallest model (with 10 objects) is too small to contain each PS, but with
11 or more objects the problem is satisfiable. The results are presented in Table 9.8.

In the first series of measurements (with arbitrary integers), the Z3 solver generated models up
to 16 elements, with increasing execution times, while the Alloy Analyzer was unable to initialize.
The reason of the Alloy failure is that the unmodifiable module contains large integers (around 500),
which is difficult for SAT-solvers.

In the second series of measurements, the minimalFrequency values are reduced to 2 and 4 (from
250 and 500), and the range of the integers is reduced to the [—-64; 63] interval for both solvers. With
this integer range, the two solvers produced models after about the same runtime, but the Alloy An-
alyzer ran out of memory for models with over 14 elements. Note that using a integer limit decreased
the efficiency of model generation for the Z3 solver.

When the interval of the integers is further reduced, the Alloy Analyzer clearly outperforms the
Z3 solver. A third series of measurement were executed, where the integers are removed from the
DSL, only objects and enums are present. In this case the Alloy Analyzer has close to zero runtime,
and even models with 80 objects can be generated within 145 seconds. The Z3 solver also generates
models without integers with higher efficiency.

Our measurements indicate that SMT-solvers are strong in proving language-level properties and
handling integer attributes, while SAT-solvers can generate larger instance models as witness or
counter-example. Part of our future work will be directed to combine the strengths of the two ap-
proaches.

9.6 Related Work

In Model-Driven Engineering language analysis and validation has become a very hot topic, espe-
cially in the safety critical design and development domain (e.g., DO-178C [Do1] for the civil avionics

131

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

M| =
10[x] L[V 2[VTB3[/T 14T [151v] 161 [17[/] 18 [1911 20[]
Z3, int=7 8.29 [11.16 |22.13 |26.31 [194.93 [236.15 363.39 - - - -
Alloy, int=500 - - - - - - - - - - -
73, int=[—64;63] 24.31 [41.81 |31.03 |83.24 [125.32 235.29 416.71 [357.33| - - -
Alloy, int=[—64;63] 29.85 [33.46 [38.00 |68.54 - - - - - - -

73, int=0 20.80 | 8.81 |11.87 | 18.2 |23.43 |38.24 |41.71 |51.02 |57.01 |77.29 |94.91
Alloy, int=0 0.33 {0.22 | 0.24 | 0.21 | 0.20 | 0.20 | 0.21 | 0.46 |0.32 | 0.31 | 0.32

Table 9.8: Model generation with increasing size

domain) that accepts formal verification as certification artifacts. In the current section we provide
an insight to similar approaches in a broader research scope.

Metamodeling framework validation- Formula [JLB11] is a tool for validating DSLs, which takes
ametamodel, a partial instance model and a set of constraints and rewriting rules as input, and it aims
to extend the partial instance model so that the dedicated state can be reached from it by applying
the rewriting rules. As a technological difference, our tool is compliant with standard Eclipse based
technologies, while Formula uses its own modeling language. Most validation tasks identified in the
paper are not yet supported in Formula, which is specialized in reachability and consistency checks.
The Formula tool also uses the Z3 SMT-solver as underlying engine.

Clafer [BCW10] is a lightweight structural modeling language used for feature modeling with
minimalistic syntax and rich semantics equivalent to first-order relational logic. The specification
language supports structural modeling, constraints (well-formedness constraints are written in their
own language, which is said to be equivalent to FOL) and also partial configurations. Partial configu-
rations are like partial snapshots in our approach: instance models with undefined attributes and fea-
tures that can be the basis of model completion. DSL specification given in Clafer are validated using
the Clafer Tools [Ant+13] that supports various tasks for domain engineering, like consistency check-
ing and instance model generation based on backend reasoners like Alloy or Choco [Cho; Lia12]. The
provided solution for model completion (ClaferIG - Instance Generator) for structural requirements
and another solution for model optimization (ClaferMOO - Multi-Objective Optimizer) [Ola+12] for
attributed models to find a set of Pareto-optimal model instances based on given a set of optimization
objectives.

The main difference between the Clafer and our approach is that we support EMF as our meta-
modeling language compared to the Clafer specification language, which is only supported by their
own framework. However, one interesting feature of the Clafer tooling is that it uses two different
tools for the structural and attribute rule validation therefore it might scale better in case of complex
DSLs and thus is one of our future goal to adapt such approach.

Validation of OCL enriched metamodels. There are several approaches and tools aiming to
validate models enriched with OCL constraints [GBR05] relying upon different logic formalisms
such as constraint logic programming [CCR07; CCR08; BC12], SAT-based model finders (like Alloy)
[SAB09; Ana+10; Buit+12; KHG11; Soe+10], first-order logic [BKS02], constructive query containment
[Que+12], higher-order logic [BW07; GRR09], or rewriting logics [CE08]. Some of these approaches
(like e.g. [CCRO8; But+12; KHG11; SAB09]) offer bounded validation (where the search space needs
to be restricted explicitly) in order to execute the validation and thus results can only be considered
within the given scope, others (like [BW07; BKS02]) allow unbounded verification (which normally

132

9.6. Related Work

results in increased level of interaction and decidability issues).

One of the most relevant mapping from a subset of OCL into first order logic (OCL2FOL) is pre-
sented in [CEDO09], that proposes an approach using theorem provers and SMT solvers to automati-
cally check the unsatisfiability of non-trivial sets of OCL constraints without generating the SMT code.
In [DC13] the authors present the extension of their previous mapping, called OCL2FOL*, which deals
with a four-valued logic defined in the OCL standard that is not yet supported by our approach. These
works support consistency checking between a set of OCL invariants, while our approach aims to deal
with the whole specification and is able to detect inconsistencies between the different DSL artefacts.

In [CGR13] the transformation is done in a reverse direction, but includes similar approach for
mapping the Alloy language elements to UML and OCL. The main difference between our work and
this solution is that the engineer should use Alloy to formalize the model and do the V&V tasks, while
we allow the usage of pure EMF and OCL. As a key difference is that our work covers (1) multiple
inheritance in metamodels and (2) handling of float arithmetics while the rest of OCL coverage is
similar. Their work can better exploit some higher order features in Alloy to capture OCL constructs
like size(), min() - where our approach can only provide an approximation.

In [KG12a] a mapping from UML and OCL to Relational Logic Formulae is presented. As a dif-
ference our paper covers (1) multiple inheritance in metamodels and (2) the new transitive closure
construct in OCL by approximation (3) handling of float/double arithmetics. On the other hand, their
approach covers equality between strings and other collections like Bags. Some technical details of
their mapping relies upon advanced language features available in Alloy, which we do not use as
being independent of target back-end solvers.

The [CCR14] presents a mapping from UML models enriched with OCL formulae to CSP, but the
main goal is the consistency check and provides formal verification for the models. Additionally their
solution provides similar consistency checks and formal verifications (like subsumption, equivalence
and advanced consistency checks). As a difference, our approach handles multiple inheritance, and
approximate transitive closure, but they support higher order OCL constructs like size (), min() or
max ().

Additionally, we proposed a translation [Ber14] of a subset of OCL to graph patterns to provide
a effective model validation on the instance level as opposed to the current work, which aims DSL
specification validation. There are also mappings from programming languages extended with OCL
constraints to reasoners such as Testera [MKO01] (from Java to Alloy) and Pex [Res] (from C# to Z3).

Analysis of model and graph transformations. SMT solvers have also been used to verify declar-
ative ATL transformations [BEC12] allowing the use of an efficiently analyzable fragment of OCL
[CEDO09]. The main advantage of using SMT solvers is that it is refutationally complete for quantified
formulae of uninterpreted and almost uninterpreted functions and efficiently solvable for a rich subset
of logic. Our approach uses SMT-solvers both in a constructive way to find counterexamples (model
finding) as well as for proving theorems. In case of using approximations for rich query features, our
approach converges to bounded verification techniques.

Graph constraints captured as a subset of graph transformation rules are used in [Win+08] as
means to formalize a restricted class of OCL constraints in order to find valid model instances by
graph grammars. An inverse approach is taken in [Cab+10] to formalize graph transformation rules
by OCL constraints as an intermediate language and carry out verification of transformations in UML-
to-CSP tool. These approaches mainly focus on mapping core graph transformation semantics, but
does not cover many rich query features of the EMF-IncQuery language (such as transitive closure
and recursive pattern calls). Many ideas are shared with approaches aiming to verify model transfor-
mations [Cab+10; LBA10; BEC12], as they built upon the semantics of source and target languages

133

9. VALIDATION OF COMPLEX DOMAIN-SPECIFIC LANGUAGES

to prove or refute properties of the model transformation. However, the validation tasks identified in
the paper are different from the verification challenges of model transformations.

Model extensions using partial models. The idea of using partial models, which are extended to
valid models during verification also appears in [Sen+12; JLB11; KG12b]. These initial hints are pro-
vided manually to the verification process, while in our approach, these models are assembled from
a previous (failed) verification run by adding partial snapshots of the spurious counterexamples or
increase the level of approximation. [KHG11] presents an approach for the completion of partial snap-
shots where OCL constraints have to be satisfied. Instead of creating new PS notation the structure
is defined by a concrete model and the relaxed properties are specified by dedicated invariants and
queries.

Partial models also share certain similarity with uncertain models, which offer a rich specification
language [FSC12a] amenable to analysis by the Alloy Analyzer [SFC12]. Uncertain models provide a
richer language for partial snapshots for a different purpose: to document semantic variation points
generically for instance models. Different potential system models are then synthesized by Alloy ac-
cordingly as design decisions. However, their formalism does not support the instantiation of abstract
classes, while semantic modifiers are defined individually for model elements (and not for snapshots).

However, any approximations are only used in [JSB12] to propose a type system and type infer-
ence algorithm for assigning semantic types to constraint variables to detect specification errors in
declarative languages with constraints. The PSs are constructed from fully specified instance models
in a similar way. However, we additionally propose semantic modifiers which simplifies the specifi-
cation of complex partial snapshots. On the technological level, our approach handles standard EMF
models.

9.7 Conclusion

In this chapter, we presented a validation technique for domain-specific language specifications by
a transforming to a first-order logic formulae. The main added value of our approach is to cover
rich DSL constructs such as derived features and well-formedness constraints captured in declarative
languages such as graph patterns and OCL invariants. We identified several validation tasks (such
as consistency, completeness, unambiguity, subsumption and equivalence checks) which are relevant
in a DSL validation context. We also proposed a workflow to systematically address these validation
tasks for a DSL. We also enhanced this context with partial snapshots to capture further (instance-
level) assumptions on valid models. Our mapping tries to transform language features into a decidable
fragment of first-order logic (called effectively propositional logic), and to handle language features
which cannot be represented in FOL, we proposed powerful approximations.

134

CHAPTER 1 O

Summary of the Research Results

In this chapter I summarize the results of the thesis by formally stating my novel scientific contribu-
tions. A previous version of this contribution structure was presented in [C4].

10.1 A graph solver for model generation

My first group of contributions deals with the background logic solvers that required for model gen-
erators to address Research Question 4.

3-valued Partial Modeling framework: | PMy: Empty model }—l

Graph Solver

Partial constraint evaluation Refinement as
by graph query engine Graph Transformation
Graph encoding SAT-solving with
as States Design Space Exploration

Concrete well-formed models: | M, | | M, | | M, |

Figure 10.1: Model refinement strategy

Approach As a generalized formalism for all model generation tasks I used first order relational
logic, which is commonly used as a background theorem for model queries [VB07] and other model
generation approaches [TJ07; KJS11]. As an extension, I introduced an extended relational logic with
3-valued logic, so it is able to represent abstract and partial (unfinished) models as graphs. Based on the
framework of partial models I constructed a novel automated solver technique (outlined in Figure 10.1)
to efficiently generate models by exploiting and innovatively combining a multitude of advanced
graph-based techniques:

135

10. SUMMARY OF THE RESEARCH RESULTS

—_

. Incremental graph query evaluation of the VIATRA engine [Ujh+15] is used to efficiently eval-
uate violations of constraints over partial models during the model generation process.

2. We formulate model generation as a refinement of partial models where models are gradually
refined and concretized during exploration with partial model refinement rules formalized as
graph transformation rules.

3. We exploit rule-based design space exploration [HHV15] to drive the generation process directly
over graph shapes as decision and unit propagation steps by following core SAT-solving tech-
niques [DLL62].

4. We integrate shape analysis as state encoding [RD06; Ren04; RSW04] for graphs to efficiently
detect if two partial models should be treated as equivalent during exploration.

Contribution group 1. I proposed a novel logic solver that operates directly on graph models.
Iintegrated existing SAT [Jac02; TJ07; LBP10; ES03] and SMT [DMBO08] solvers to the framework.

1.1. Partial Modeling with 3-Valued Logic.

I introduced a partial modeling formalism that uses 3-valued logic with interpreted equivalence
and existence symbols. I showed that the new formalism is able to represent other popular partial
modeling techniques (MAVO and TVLA) [C5][C7].

1.2. Evaluation of Graph Patterns on Partial Models.

I presented a graph predicate rewriting technique to enable the evaluation of under- and over-
approximation of predicates directly over the representation of a partial model [C5] by graph
query engines. I applied the technique to derive additional validation constraints to highlight
unrepairable inconsistencies in modeling environments. [J1].

1.3. Graph Solver approach.

I created an efficient logic solver that generates consistent graph models for domain-specific lan-
guages. The approach uses (i) partial (graph) models as states and (ii) partial model refinement
decision and unit propagation rules. The generation is is controlled by (iii) a design-space ex-
ploration engine which (iv) continuously evaluates the approximations of well-formedness con-
straints on partial solutions [C6].

1.4. Implementation: VIATRA Solver framework.

I developed an open-source implementation of the graph solver [Vs], which also integrates ex-
isting logic solvers like Z3 or Alloy. The tool is available both as an integrated modeling tool and
as a standalone application [C8].

1.5. Experimental Evaluation.

I carried out experimental scalability evaluation of the graph solver in three case studies of in-
dustrial DSLs.

Added value The proposed approach is implemented in a framework [Vs][C8] that is able to solve
model generation problems with three underlying solvers, including the novel graph generation tech-
nique which operates directly on graph models. The proposed partial modeling technique introduced
a sophisticated encoding technique, which enabled the efficient evaluation of constraints on abstract,
partial solutions (Ch1: Encoding and Ch2: Abstraction). In [C6] we showed that the graph solver is
able to synthesize consistent graph models with over 500-6000 objects with similar consistency guar-
antees as other solvers (thus significantly outperforming them in Ch3: Scalability). The scalability

136

10.2. Language-level validation for domain-specific languages

of our solver is 1-2 orders of magnitude better than existing mapping based approaches using Alloy
[TJ07] with state-of-the-art SAT-solver in the background (which scaled only up to models with 80
objects). In [C11] we showed that the generated models are also more diverse (Ch4: Diversity).

Additional applications and related contributions Our research line on model generators is
preceded by the development of several performance benchmarks for modeling and model man-
agement tools [VSV05; Ber+08] culminating in major open benchmarks like the Train Benchmark
[Sza+17][C18] and the CPS Benchmark [Cps] developed by current and former members of the re-
search group. Those benchmarks required the automated creation of a set of graph models with in-
creasing size in order to compare the performance of modeling and query tools. However, those mod-
els are constructed with manually defined generation rules, which (i) makes them domain-specific,
and (ii) and provide no completeness or coverage guarantees needed for testing.

Design-space exploration (DSE) is a related technique for creating model candidates which are
optimal with respect to given objective functions using a set of transformation rules. As the main
difference, VIATRA Solver uses generic logic reasoning rules instead of custom domain-specific oper-
ations, thus it could generate the complete set of valid model (within the given scope). VIATRA-DSE is
a rule-based design space exploration technique for (graph) models [HHV15; Abd+14], which is the
contribution of Akos Horvath, Abel Hegediis and Andras Szabolcs Nagy. In the proposed graph solver
technique [C6] I use VIATRA-DSE as an efficient execution engine for reasoning rules, where Andras
Szabolcs Nagy developed custom exploration strategies for reasoning [C6]. Finally, in her master the-
sis under my supervision Alexandra S6lyom used VIATRA-DSE using the prototype of decision rules
[Sol16].

In [C7], we extended 3-valued partial models [C5] as a background theory for representing in-
consistent and ambiguous views models. The original theoretical background is my contribution, and
the view modeling approach is a separate contribution from Kristof Marussy.

10.2 Language-level validation for domain-specific languages

The second group of contributions focuses on the language level validation of domain-specific lan-
guages to address Research Question 1.

Approach I created a novel approach to analyze the language specification of modeling tools by
mapping them into first order logic (FOL) formulae that can be processed by advanced reasoners such
as SMT solvers (Z3) or SAT solvers (Alloy, see Figure 10.2). The outcome of a reasoning problem is either
satisfiable or unsatisfiable. If the problem is satisfiable, the solver constructs an output (or completed)
model (which is interpreted as a witness or a counterexample depending on the validation task), while
an unsatisfiable result means a contradiction. Because certain validation tasks are undecidable in FOL
it is also possible that validation terminates with an unknown answer or a timeout.

We carried out a wide range of validation tasks by automated theorem proving based on this
formalization to prove different properties of a DSL such as consistency, subsumability, completeness
and unambiguity. To highlight such design flaws directly in modeling environments, analysis results
of all validation problems are back-annotated in the form of regular instance models. Linking the
independent reasoning tool to the modeling tool allows the DSL developer to make mathematically
precise deductions over the developed languages.

137

10. SUMMARY OF THE RESEARCH RESULTS

Modelling Tool Reasoning Result

| Validation |
Mapping

) 1
Graph Solver

Metamodels

Derived Features
WF Constraints

Snapshots

Invalid:
Counter-example

Figure 10.2: Functional overview of the approach

Contribution group 2. I proposed formal analysis techniques for the language-level validation
of domain-specific languages by mapping them to formal logic specifications.

2.1. Mapping of graph patterns to effectively propositional logic.

Iintroduced a technique to transform WF and DF rules captured by graph patterns to a decidable
fragment of FOL [PMB08] by using over- and underapproximation techniques [C9].

2.2. Identification of context dependent DSL validation criteria.

I defined completeness and unambiguity properties of derived features, subsumption and equiva-
lence relations of well-formedness constraints, derived features and instance models. These prop-
erties can be checked on the full DSL, or on a specific fragment of it [J2].

2.3. Uniform validation of DSL specification.

I introduced a technique that uniformly translates DLS elements to FOL to analyze the con-
sistency of the whole DSL specification, which includes metamodels, instance models, well-
formedness (OCL or graph pattern) and derived features. I proposed a validation process for
the DSL which systematically checks the language properties, and highlights inconsistencies by
deriving representative counterexamples which violate the target properties [C9][J2].

2.4. Application: Validation of an avionics DSL.

I carried out the validation of a functional architecture modeling language of avionics systems
developed in Trans-IMA project [Hor+14].

Added value The main added value of the approach is to cover rich DSL constructs such as derived
features and well-formedness constraints captured in declarative languages such as graph patterns
and OCL invariants (Ch1: Encoding). While other approaches use bounded verification or simply
ignore unsupported features, I proposed approximations to transform language features into a de-
cidable fragment of first-order logic (called effectively propositional logic [PMB08; GM09]), and to
handle language features which cannot be represented in FOL. Therefore, the correctness of a DSL
can be proved using our method, while others only can detect errors (Ch2: Abstraction).

Our approach is supported by a prototype tool integrated into Eclipse, which takes EMF metamod-
els, instance models and VIATRA graph patterns input to carry out DSL validation. As a technological
difference, our tool is compliant with standard Eclipse-based technologies, while Formula and Alloy
use their own modeling language. When an output model is derived as a witness or counterexam-
ple, this model is back-annotated to the DSL tool itself so that language engineers could observe the
source of the problem in their custom language without the need for theorem proving skills.

Related contributions The case study for language level validation was originally developed in
the Trans-IMA project [Hor+14] where Akos Horvéath was the technical lead. The mapping technique

138

10.3. Iterative model generation techniques for modeling tools

of OCL constraint to first order logic [J2] is developed by Agnes Barta (included to Section A.1 for the
sake of completeness). Additional underlying theorem provers [RV99; KV13] are being integrated by
Aren Babikian as part of his research.

10.3 Iterative model generation techniques for modeling tools

In my third group of contributions, I developed automated test generation (to address Research
Question 2) and view synchronization (to address Research Question 3) techniques using under-
lying model generators.

Approach Test generation and view synchronization necessitate the synthesis of nontrivial in-
stance models for complex DSL specifications, which is rarely feasible with a single direct call to the
underlying solver. In my thesis, I proposed an iterative process for generating valid instance models
by calling existing model generators in multiple steps (as seen in Figure 10.3), and using various ab-
stractions and approximations of the previous solution to improve the overall scalability the approach
or quality of the models. In particular, I used three iterative techniques:

« Positive feedback: instance models can be incrementally generated in multiple steps as a se-
quence of extending partial models My, . .., M,,, where each step is an independent call to the
underlying solver. The main idea behind this approach is that the solver can be guided by smaller
logic problems, where only the newly created elements have to be added (marked by A), thus
increasing their scalability and performance.

« Change feedback: in view model synchronization, a sequence of historical source model states
M, ..., M, are kept consistent with a sequence of view model states Vi, .. ., V,,. As each change
Ay from V; to V4 affects only a small fragment of the view model, most M; remain unaffected
in M; ;. Therefore, using an iterative generation technique, only the changing part of the source
model (A) needs to be reconstructed by the solver, which results in significantly smaller logic
problems.

« Shape feedback: best practices of testing (such as equivalence partitioning [Rei97]) recom-
mend the synthesis of a diverse set of graph models Mj, ..., M,, where any pairs of models
are structurally different from each other to achieve high coverage or diverse solution space.
By extracting the shape [Ren04; RD06] of previous models, an iterative model generation tech-
nique is obtained to automatically synthesize a diverse set of models (large A between models)
by enforcing different graph shape for each new model.

Step 1 v Step 2 v Step 3 v
- Transformation by Transformation Transformation
My Mos +/- My
+A +A
Logic Logic Logic
Solver Solver Solver

Figure 10.3: Overview of iterative model generation

139

10. SUMMARY OF THE RESEARCH RESULTS

Contribution group 3. I proposed iterative techniques for generating a diverse set of input
models with increasing model size and source model candidates using the output of logic solvers.

3.1. Iterative and Incremental Model Generation.

I elaborated a decomposition technique for instance models in order to specify a partial solutions
for model generation using partial modeling, and metamodel pruning. I proposed an iterative
workflow to incrementally generate instance models of increasing size [C10].

3.2. Diversity and Distance Metrics.

I proposed a distance metric based on graph shapes [Ren04; RD06] for measuring the diversity
of a single model and set of models. I showed correlation between diversity and mutation score
in using such models for mutation testing. I proposed an iterative technique for the generation
of a diverse set of models using this distance metric [C11][J3].

3.3. Incremental Synthesis for Bidirectional Transformations of View Models.

I transformed query-based view specification into logic formulae to automatically synthesize
possible source model changes consistent to a view model change [C12][C13][C7].

3.4. Applications of Results.

I demonstrated the applicability of the view model maintenance approach in the context of health-
care models developed in the Concerto ARTEMIS project [Con]. I successfully derived a diverse
set of statechart models for the industrial Yakindu Statechart Modeling tool [Yak].

Added value Incremental generation simultaneously improves the quality and size of models cre-
ated by logic solvers. First, significantly larger model instances can be generated with the same solvers
using iterative model generation technique (Ch3: Scalability). Furthermore, the diversity metrics
based on neighborhood shapes [RD06] generalizes existing metrics (such as metamodel coverage and
graph isomorphism used in many research papers). Moreover, our model generation technique derives
a structurally diverse set of models by calculating the shape of the previous solutions and avoiding
those shapes in the next generated model (Ch4: Diversity). Finally, incremental model generation
also enables to deduce valid source candidates in case of multiple view models with favorable scala-
bility (Ch3: Scalability).

Additional applications and related contributions InR3-COP Artemis project [R3c], we carried
out test environment generation for autonomous laser guided forklift robots. In collaboration with
Agnes Barta, Zoltan Szatmari and Istvin Majzik we developed a test track generation technique that
combines two solvers (Alloy [TJ07] with Sat4j [LBP10] and Z3 [MBO08] as backend solvers) in multiple
iterative steps to create complex test rooms [Szal6; HMM13].

The proposed diverse model generation approach is applied for testing model-based access control
policies in the MONDO collaboration framework [Deb+17]. In collaboration with Gabor Bergmann
and Rebeka Farkas, we developed additional distance metrics (e.g. cosine similarity) and proposed a
test selection policy. With Maria Beké we developed test Cypher query [Fra+18] generation frame-
work for graph databases like Neo4j [Web12] using diverse model generation. The approach is pre-
sented in the bachelor thesis of Maria Bek$ [Bek18] under my supervision.

The forward transformation approach [Deb+14; Gho+15] used in the proposed bidirectional syn-
chronization is developed by Csaba Debreceni and Zoltan Ujhelyi. Publications [C12][C13] introduc-
ing backward change propagation are shared contributions with Csaba Debreceni. My contribution
was the mapping of view models to logic using a selected part of the model that needs to change. The
impact analysis responsible for selecting the changing part is the contribution of Csaba Debreceni.

140

10.4. Future work

(For the sake of completeness, a simplified version of impact analysis is included to Section A.5.) [C7]
presents another view modeling technique using 3-valued partial model as background framework.

Finally, a multi-phase homework assignment generation is used in the automation of System Mod-
eling course [Rem], where we generated personalized statechart modeling tasks in [Yak].

10.4 Future work

Recent ongoing research of Krist6f Marussy aims to develop an incremental stochastic analysis frame-
work for industrial modeling environments using view models [MM18][C7]. In the proposed frame-
work, view models are used to automatically and continuously derive reliability and fault models (like
stochastic Petri nets [AMCB84]), that can be incrementally analyzed by suitable numerical solvers.
Therefore, the framework is able to give immediate analysis feedback to the developer, or it can pre-
pare optimization processes (like [Heg+11]) for optimizing extra-functional properties (like reliability
or mean time to failure).

Our long-term research goal is to unify and develop automated graph model generation tech-
niques, which are currently used in several independent research areas. Object-oriented data struc-
tures requires diverse generation of valid models [Mil+07; MKO01]. Verification techniques like
[Ren04; RSW04] are required graph consistency analysis to check (concurrent) data structures. Auto-
generated graphs help the testing and benchmarking of graph databases [Bag+17] and modeling en-
vironments [FSB04b; Ara+15; Ali+13; Sza+17]. Benchmarking graph databases and modeling applica-
tions requires a realistic set of graphs with increasing sizes. Automated generation can help synthesize
such a benchmark suite since obtaining real graphs from business use cases is often difficult to due
to the protection of intellectual property rights. Automated synthesis of prototypical test contexts
[Mic+12; Abd+18] aims to systematically derive previously unanticipated contexts for smart cyber-
physical systems (CPS). To unify those research lines in [B14] we outlined the properties of an ideal
model generator family which is abbreviated as CoRe-Di1Sc:

« CoNSISTENT: A model generator is consistent, if it derives well-formed models (soundness), and
able to derive all well-formed models for a given scope (completeness). In this classification, the
main focus of this thesis was consistent model generation [C6][]2].

« REALISTIC: A model generator is realistic if it is able to create models that are close to real ones
with respect to some metrics. While several graph metrics have been proposed [Ber+13; BNL14;
NL15; Izs+13], the characterization of realistic models is a major challenge [Sza+16].

« DIVERSE: A model generator is diverse if it is able to guarantee given a difference between
models with respect to some designated distance metrics. As a secondary objective of my work,
I proposed neighborhood-based distance metrics in [C11].

« ScaLABLE: A model generator is scalable if it is able to create large models in proportional time.
Existing benchmarks are typically [Sza+17; Cps] scalable.

Currently, existing model generation approaches developed in different research areas usually
support one (or rarely at most two) of these properties. The grand challenge of CoRe-D1Sc is to de-
velop an automated model generator which simultaneously satisfies multiple (ideally, all four) prop-
erties.

141

Publications

Number of publications: 17

o

Number of peer-reviewed journal papers (written in English):
Number of articles in journals indexed by WoS or Scopus: 2
Number of publications (in English) with at least 50% contribution: 5

Number of peer-reviewed publications: 17
Number of independent citations (26 March 2019): 53

Publications linked to the theses

Journal International conference Book Extended
papers and workshop papers chapters abstracts
Thesis 1 [J1] [C4]-[C5]-[Cé6]-[CT7]-[C8] [B14] [A15]

Thesis 2 [J2] [C4]-[C9] — —
Thesis 3 [J3]* [C4]-[C10]-[C11]-[C12]-[C13] [B14] —

* These publications are currently under revision.

This classification follows the faculty’s Ph.D. publication score system.

Journal Papers

(1]

(2]

Oszkar Semerath and Daniel Varré. Evaluating Well-Formedness Constraints on Incomplete
Models. Acta Cybernetica 23(2), 2017, pp. 687-713. po1: 10.14232/actacyb.23.2.2017.15

Oszkar Semerath, Agnes Barta, Akos Horvath, Zoltan Szatméari, Daniel Varré. Formal Valida-
tion of Domain-Specific Languages with Derived Features and Well-Formedness Constraints.
Software and System Modeling 16(2), 2017, pp. 357-392. por: 10.1007/s10270-015-0485-x

Oszkar Semerath, Rebeka Farkas, Gabor Bergmann, Daniel Varré. Diversity of Graph Models
and Graph Generators in Mutation Testing. International Journal on Software Tools for Technol-
ogy Transfer (STTT), 2019

> Under revision

143

https://doi.org/10.14232/actacyb.23.2.2017.15
https://doi.org/10.1007/s10270-015-0485-x

PUBLICATIONS

International Conference and Workshop Papers

[C4]

[Cé]

[C8]

[C10]

[C11]

[C12]

144

Oszkar Semerath. Formal Validation and Model Synthesis for Domain-specific Languages by
Logic Solvers. In: Proceedings of the ACM Student Research Competition at MODELS 2016 co-
located with the 19th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS 2016), St. Malo, France, October 3-4, 2016. 2016

Oszkar Semerath and Daniel Varrd. Graph Constraint Evaluation over Partial Models by Con-
straint Rewriting. In: Theory and Practice of Model Transformation - 10th International Confer-
ence, ICMT 2017, Held as Part of STAF 2017, Marburg, Germany, July 17-18, 2017, Proceedings,
pp- 138-154. 2017. por: 10.1007/978-3-319-61473-1_10

Oszkar Semerath, Andras Szabolcs Nagy, and Daniel Varr6. A Graph Solver for the Automated
Generation of Consistent Domain-Specific Models. In: 40th International Conference on Software
Engineering (ICSE 2018), Gothenburg, Sweden: ACM, 2018

Krist6f Marussy, Oszkar Semerath, and Daniel Varr6. Incremental View Model Synchroniza-
tion using Partial Models. In: Proceedings of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS 2018, Copenhagen, Denmark, October 14-19,
2018, pp- 323-333. 2018. por: 10.1145/3239372.3239412

Oszkar Semerath, Aren A. Babikian, Sebastian Pilarski, Daniel Varr6é. VIATRA Solver: A
Framework for the Automated Generation of Consistent Domain-Specific Models. In: Proceed-

ings of the 41th International Conference on Software Engineering: Demonstrations, pp. 43—46.
IEEE / ACM, 2019

Oszkar Semerath, Akos Horvath, and Daniel Varré. Validation of Derived Features and Well-
Formedness Constraints in DSLs - by Mapping Graph Queries to an SMT-Solver. In: Model-
Driven Engineering Languages and Systems - 16th International Conference, MODELS 2013, Miami,
FL, USA, September 29 - October 4, 2013. Proceedings, pp. 538—554. 2013. po1: 10.1007/978-3-
642-41533-3_33

> IEEE/ACM Best Paper Award

Oszkar Semerath, Andras Vords, and Daniel Varr6. Iterative and Incremental Model Genera-
tion by Logic Solvers. In: Fundamental Approaches to Software Engineering - 19th International
Conference, FASE 2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings, pp. 87-103. 2016.
por: 10.1007/978-3-662-49665-7_6

Oszkar Semerath and Daniel Varré. Iterative Generation of Diverse Models for Testing Speci-
fications of DSL Tools. In: 21st International Conference on Fundamental Approaches to Software
Engineering (FASE), Thessaloniki, Greece: Springer, 2018

Oszkar Semerath, Csaba Debreceni, Akos Horvath, Daniel Varré. Change Propagation of View
Models by Logic Synthesis using SAT solvers. In: Proceedings of the 5th International Workshop
on Bidirectional Transformations, Bx 2016, co-located with The European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 8, 2016. Pp. 40—
44. 2016

https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1145/3239372.3239412
https://doi.org/10.1007/978-3-642-41533-3_33
https://doi.org/10.1007/978-3-642-41533-3_33
https://doi.org/10.1007/978-3-662-49665-7_6

Additional publications (not linked to theses)

[C13] Oszkar Semerath, Csaba Debreceni, Akos Horvath, Daniel Varré. Incremental backward

change propagation of view models by logic solvers. In: Proceedings of the ACM/IEEE 19th In-
ternational Conference on Model Driven Engineering Languages and Systems, Saint-Malo, France,
October 2-7, 2016, pp. 306-316. 2016

Book Chapters

[B14] Daniel Varr6, Oszkar Semerath, Gabor Szarnyas, Akos Horvath. Towards the Automated Gen-

eration of Consistent, Diverse, Scalable and Realistic Graph Models. In: Graph Transformation,
Specifications, and Nets - In Memory of Hartmut Ehrig, pp. 285-312. 2018. por: 10.1007/978-
3-319-75396-6_16

Extended Abstracts

[A15]

Oszkar Semerath and Déniel Varrd. Validation of Well-formedness Constraints on Uncertain
Models. In: THE 10TH JUBILEE CONFERENCE OF PHD STUDENTS IN COMPUTER SCIENCE,
Szeged, Hungary, 2016

Additional publications (not linked to theses)

International Conference and Workshop Papers

[C16]

[C17]

[C18]

Gébor Szarnyas, Oszkar Semerath, Benedek 1zs6, Csaba Debreceni, Abel Hegediis, Zoltan
Ujhelyi, Gabor Bergmann. Movie Database Case: An EMF-IncQuery Solution. In: Proceedings
of the 7th Transformation Tool Contest part of the Software Technologies: Applications and Foun-
dations (STAF 2014) federation of conferences, York, United Kingdom, July 25, 2014. Pp. 103-115.
2014

Zoltdn Micskei, Raimund-Andreas Konnerth, Benedek Horvath, Oszkar Semerath, Andras
Voros, Daniel Varro. On Open Source Tools for Behavioral Modeling and Analysis with f{UML
and Alf. In: Proceedings of the 1st Workshop on Open Source Software for Model Driven Engineering
co-located with ACM/IEEE 17th International Conference on Model Driven Engineering Languages
& Systems, OSS4MDE@MoDELS 2014, Valencia, Spain, September 28, 2014. Pp. 31-41. 2014

Gébor Szarnyas, Oszkar Semerath, Istvan Rath, Daniel Varr6. The TTC 2015 Train Benchmark
Case for Incremental Model Validation. In: Proceedings of the 8th Transformation Tool Contest, a
part of the Software Technologies: Applications and Foundations (STAF 2015) federation of confer-
ences, L’Aquila, Italy, July 24, 2015. Pp. 129-141. 2015

145

https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1007/978-3-319-75396-6_16

[Abd+14]

[Abd+18]

[ADW16]

[AF12]

[Ali+13]

[Ali+16]

[All]
[AMCB84]

[Ana+10]

Bibliography

Hani Abdeen, Daniel Varrd, Houari A. Sahraoui, Andras Szabolcs Nagy, Csaba De-
breceni, Abel Hegediis, and Akos Horvath. Multi-objective optimization in rule-based
design space exploration. In: ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pp. 289-300. 2014. poTr:
10.1145/2642937.2643005.

Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing vision-
based control systems using learnable evolutionary algorithms. In: Proceedings of the
40th International Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, pp. 1016-1026. 2018. por: 10.1145/3180155.3180160.

Ahmad Salim Al-Sibahi, Aleksandar S. Dimovski, and Andrzej Wasowski. Symbolic ex-
ecution of high-level transformations. In: Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, Amsterdam, The Netherlands, Octo-
ber 31 - November 1, 2016, pp. 207-220. 2016.

AV Arkhangel’Skii and VV Fedorchuk. General topology I: basic concepts and construc-
tions dimension theory. Vol. 17. Springer Science & Business Media, 2012.

Shaukat Ali, Muhammad Zohaib Z Igbal, Andrea Arcuri, and Lionel C Briand. Generating
test data from OCL constraints with search techniques. IEEE Trans. Software Eng. 39(10),
2013, pp. 1376-1402.

Shaukat Ali, Muhammad Zohaib Igbal, Maham Khalid, and Andrea Arcuri. Improving
the performance of OCL constraint solving with novel heuristics for logical operations:
a search-based approach. Empirical Software Engineering 21(6), 2016, pp. 2459-2502. DOT:
10.1007/s10664-015-9392-6.

Alloy online tutorial. 2017.

Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. A class of generalized
stochastic petri nets for the performance evaluation of multiprocessor systems. ACM
Transactions on Computer Systems (TOCS) 2(2), 1984, pp. 93-122.

Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and Indrakshi Ray. On challenges
of model transformation from UML to Alloy. Software and Systems Modeling 9(1), 2010,
pp. 69-86.

147

https://doi.org/10.1145/2642937.2643005
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1007/s10664-015-9392-6

BIBLIOGRAPHY

[Anj+14]

[Ant+13]

[Ara+15]

[ARI]

[AUT13]
[BA05]

[Bag+17]

[Bak+16]

[Bau+06]

[Bau+14]

[BC12]

[BCE15]

[BCW10]

[BEC12]

[Bek13]

148

Anthony Anjorin, Sebastian Rose, Frederik Deckwerth, and Andy Schiirr. Efficient model
synchronization with view triple graph grammars. In: Modelling Foundations and Appli-
cations, pp. 1-17. Springer, 2014.

Michat Antkiewicz, Kacper Bak, Alexandr Murashkin, Rafael Olaechea, Jia Liang, and
Krzysztof Czarnecki. Clafer tools for product line engineering. In: SPLC, 2013.

Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule, Benoit Baudry, and
Jean-Luc Dekeyser. Towards an automation of the mutation analysis dedicated to model
transformation. Softw. Test., Verif. Reliab. 25(5-7), 2015, pp. 653—683.

ARINC - Aeronautical Radio, Incorporated. A653 - Avionics Application Software Stan-
dard Interface. http://www.aviation-ia.com/standards.

AUTOSAR Consortium. The AUTOSAR Standard. http://www.autosar.org/. 2013.

Behzad Bordbar and Kyriakos Anastasakis. Uml2alloy: a tool for lightweight modelling
of discrete event systems. In: JADIS AC, pp. 209-216. 2005.

G. Bagan, A. Bonifati, R. Ciucanu, G. H. L. Fletcher, A. Lemay, and N. Advokaat. gMark:
schema-driven generation of graphs and queries. IEEE Transactions on Knowledge and
Data Engineering 29(4), 2017, pp. 856—869.

Kacper Bak, Zinovy Diskin, Michat Antkiewicz, Krzysztof Czarnecki, and Andrzej Wa-
sowski. Clafer: unifying class and feature modeling. Software & Systems Modeling 15, 3
2016, pp. 811-845.

Benoit Baudry, Trung Dinh-Trong, Jean-Marie Mottu, Devon Simmonds, Robert France,
Sudipto Ghosh, Franck Fleurey, and Yves Le Traon. Model transformation testing chal-
lenges. In: Integration of Model Driven Development and Model Driven Testing, 2006.

Benoit Baudry, Martin Monperrus, Cendrine Mony, Franck Chauvel, Franck Fleurey, and
Siobhan Clarke. Diversify: ecology-inspired software evolution for diversity emergence.
In: Software Maintenance, Reengineering and Reverse Engineeringn, pp. 395-398. 2014.

Fabian Biittner and Jordi Cabot. Lightweight string reasoning for OCL. In: Antonio Val-
lecillo, Juha-Pekka Tolvanen, Ekkart Kindler, Harald Storrle, and Dimitrios S. Kolovos
(eds.), Modelling Foundations and Applications - 8th European Conference, ECMFA 2012,
Lyngby, Denmark, July 2-5, 2012. Proceedings, LNCS, vol. 7349, pp. 244-258. Springer,
2012.

Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum, eds. 37th IEEE/ACM Inter-
national Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 2. IEEE Computer Society, 2015.

Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. Feature and meta-models in
clafer: mixed, specialized, and coupled. In: 3rd International Conference on Software Lan-
guage Engineering, 2010. po1: 10.1007/978-3-642-19440-5_7.

Fabian Biittner, Marina Egea, and Jordi Cabot. On verifying ATL transformations using
‘off-the-shelf” SMT solvers. In: Proc. of the 15th Int. Conf. on MODELS, LNCS, vol. 7590,
2012.

Maria Bekd. Functional Testing of Graph Query Engines by Automated Graph Genera-
tors. Bachelor thesis. Budapest University of Technology and Economics, 2018.

http://www.aviation-ia.com/standards
http://www.autosar.org/
https://doi.org/10.1007/978-3-642-19440-5_7

Bibliography

[Ber+08]

[Ber+10]

[Ber+11]

[Ber+12]

[Ber+13]

[Ber14]

[BKS02]

[BNL14]

[Bro+06]

[Bru+15]

[BS16]

[Bar+15]

[Biit+12]

[BW07]
[Cab+10]

Gébor Bergmann, Akos Horvéath, Istvan Rath, and Daniel Varrd. A benchmark evaluation
of incremental pattern matching in graph transformation. In: Graph Transformations,
4th International Conference, ICGT 2008, Leicester, United Kingdom, September 7-13, 2008.
Proceedings, pp. 396—-410. 2008. po1: 10.1007/978-3-540-87405-8\ _27.

Gébor Bergmann, Akos Horvath, Istvan Rath, Daniel Varrd, Andras Balogh, Zoltan
Balogh, and Andras Okrés. Incremental Evaluation of Model Queries over EMF Mod-
els. In: MODELS’10, LNCS, vol. 6395, Springer, 2010.

Gébor Bergmann, Zoltan Ujhelyi, Istvan Rath, and Daniel Varré. A graph query language
for emf models. In: Jordi Cabot and Eelco Visser (eds.), Fourth International Conference
on Theory and Practice of Model Transformations, LNCS, vol. 6707, pp. 167-182. Springer,
2011.

Gabor Bergmann, Istvan Rath, Gergely Varro, and Daniel Varr6. Change-driven model
transformations. Software & Systems Modeling 11(3), 2012, pp. 431-461. por: 10.1007/
510270-011-0197-9.

Michele Berlingerio et al. Multidimensional networks: foundations of structural analysis.
World Wide Web 16(5-6), 2013, pp. 567-593. po1: 10.1007/s11280-012-0190-4.

Gabor Bergmann. Translating OCL to Graph Patterns. In: ACM/IEEE 17th International
Conference on Model Driven Engineering Languages & Systems, MODELS 2014, Springer,
2014.

B. Beckert, U. Keller, and P. H. Schmitt. Translating the Object Constraint Language into
First-order Predicate Logic. In: Proc. of the VERIFY, Workshop at Federated Logic Confer-
ences (FLoC), Copenhagen, Denmark, 2002.

F. Battiston, V. Nicosia, and V. Latora. Structural measures for multiplex networks. Phys-
ical Review E - Statistical, Nonlinear, and Soft Matter Physics 89(3), 2014.

E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon. Metamodel-based Test Gener-
ation for Model Transformations: an Algorithm and a Tool. In: 17th International Sym-
posium on Software Reliability Engineering, 2006. ISSRE ’06. Pp. 85-94. 2006.

Hugo Bruneliere, Jokin Garcia Perez, Manuel Wimmer, and Jordi Cabot. Emf views:
a view mechanism for integrating heterogeneous models. In: Conceptual Modeling,
pp- 317-325. Springer, 2015.

Edouard Batot and Houari Sahraoui. A generic framework for model-set selection for
the unification of testing and learning MDE tasks. In: MODELS, pp. 374-384. 2016. Do1:
10.1145/2976767.2976785.

Marton Br, Zoltan Ujhelyi, Akos Horvath, and Daniel Varré. Local search-based pattern
matching features in EMF-IncQuery. In: 8th International Conference on Graph Transfor-
mation, 2015.

Fabian Biittner, Marina Egea, Jordi Cabot, and Martin Gogolla. Verification of ATL trans-
formations using transformation models and model finders. In: 14th International Conf.
on Formal Engineering Methods,ICFEM’12, pp. 198-213. LNCS 7635, Springer, 2012.

A. D. Brucker and B. Wolff. The HOL-OCL tool. http://www.brucker.ch/. 2007.

Jordi Cabot, Robert Claris6, Esther Guerra, and Juan de Lara. A UML/OCL framework
for the analysis of graph transformation rules. Softw. Syst. Model. 9(3), 2010, pp. 335-357.

149

https://doi.org/10.1007/978-3-540-87405-8_27
https://doi.org/10.1007/s10270-011-0197-9
https://doi.org/10.1007/s10270-011-0197-9
https://doi.org/10.1007/s11280-012-0190-4
https://doi.org/10.1145/2976767.2976785
http://www.brucker.ch/

BIBLIOGRAPHY

[CCRO7]

[CCRO8]

[CCR14]

[CE08]

[CED09]

[CGR13]

[CGT90]

[Cho]
[Cic+10]

[CK13]

[Cra+96]

[DC13]

[Deb+14]

[Deb+17]

[Dif]

150

Jordi Cabot, Robert Clarisd, and Daniel Riera. UMLtoCSP: a tool for the formal verifica-
tion of UML/OCL models using constraint programming. In: Proc. of the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE’07), pp. 547-548. ACM,
2007.

J. Cabot, R. Clariso, and D. Riera. Verification of UML/OCL class diagrams using con-
straint programming. In: Software Testing Verification and Validation Workshop, 2008.
ICSTW °08. IEEE International Conf. on, pp. 73-80. 2008.

Jordi Cabot, Robert Clarisd, and Daniel Riera. On the verification of UML/OCL class
diagrams using constraint programming. Journal of Systems and Software 93, 2014, pp. 1-
23.

M. Clavel and M. Egea. The ITP/OCL tool. http://maude.sip.ucm.es/itp/ocl/.
2008.

Manuel Clavel, Marina Egea, and Miguel Angel Garcia de Dios. Checking unsatisfiability
for OCL constraints. ECEASST 24, 2009.

Alcino Cunha, Ana Garis, and Daniel Riesco. Translating between alloy specifications
and uml class diagrams annotated with ocl. Software & Systems Modeling, 2013, pp. 1-21.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. Syntax and semantics of datalog. In: Logic
Programming and Databases. Springer Berlin Heidelberg, 1990, pp. 77-93. po1: 10. 1007/
978-3-642-83952-8_6.

Choco. http://www.emn.fr/z-info/choco-solverp.

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. JTL: a
bidirectional and change propagating transformation language. In: Software Language
Engineering, pp. 183-202. Springer, 2010.

Glenn Callow and Roy Kalawsky. A satisficing bi-directional model transformation en-
gine using mixed integer linear programming. Journal of Object Technology 12(1), 2013,
1: 1-43.

CONCERTO ARTEMIS project. concerto-project.org/.

CPS Benchmark. https : //github . com/viatra/viatra- cps-benchmark. The
Eclipse Project. 2017.

James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. KR 96, 1996, pp. 148—159.

Carolina Dania and Manuel Clavel. OCL2FOL+: coping with undefinedness. In: Jordi
Cabot, Martin Gogolla, Istvan Rath, and Edward D. Willink (eds.), OCL@MoDELS, CEUR
Workshop Proceedings, vol. 1092, pp. 53-62. CEUR-WS.org, 2013.

Csaba Debreceni, Akos Horvath, Abel Hegediis, Zoltan Ujhelyi, Istvan Rath, and Daniel
Varr6. Query-driven incremental synchronization of view models. In: Proceedings of the
2nd Workshop on View-Based, Aspect-Oriented and Orthographic Software Modelling, p. 31.
2014.

Csaba Debreceni, Gabor Bergmann, Istvan Rath, and Déaniel Varr6. Enforcing fine-
grained access control for secure collaborative modelling using bidirectional transfor-
mations. Software & Systems Modeling, 2017. por: 10.1007/s10270-017-0631-8.

EMF DiffMerge. wiki.eclipse.org/EMF_DiffMerge. The Eclipse Project.

http://maude.sip.ucm.es/itp/ocl/
https://doi.org/10.1007/978-3-642-83952-8_6
https://doi.org/10.1007/978-3-642-83952-8_6
http://www.emn.fr/z-info/choco-solverp
concerto-project.org/
https://github.com/viatra/viatra-cps-benchmark
https://doi.org/10.1007/s10270-017-0631-8
wiki.eclipse.org/EMF_DiffMerge

Bibliography

[DLL62]

[DMBO08]

[Do1]

[Do3]

[DPV06]

[Ehr+06]

[EKT09]

[Emf]
[ERK99]

[ES03]

[Fam+13]

[Fle+07]

[Fos+07]

[Fra+18]

[FSB04a]

[FSB04b]

Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM 5(7), 1962, pp. 394-397.

Leonardo De Moura and Nikolaj Bjerner. Z3: an efficient SMT solver. In: Proceedings of
the Theory and practice of software, 14th international conference on Tools and algorithms
for the construction and analysis of systems, TACAS’08/ETAPS’08, pp. 337-340. Springer-
Verlag, 2008.

DO-178C, Software Considerations in Airborne Systems and Equipment Certification.
Special Committee 205 of RTCA, 2011.

DO0-330, Software Tool Qualification and Considerations, Radio Technical Commission
for Aeronautics., 2011.

Andrea Darabos, Andras Pataricza, and Daniel Varr6. Towards testing the implementa-
tion of graph transformations. In: GTVMT, ENTCS, Elsevier, 2006.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of Al-
gebraic Graph Transformation. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, 2006. po1: 10.1007/3-540-31188-2.

Karsten Ehrig, Jochen Malte Kiister, and Gabriele Taentzer. Generating instance models
from meta models. Softw. Syst. Model 8(4), 2009, pp. 479-500. por: 10. 1007 /510270~
008-0095-7.

Eclipse Modeling Framework. http://www.eclipse.org/emf. The Eclipse Project.

Hartmut Ehrig, Grzegorz Rozenberg, and Hans-] rg Kreowski. Handbook of graph gram-
mars and computing by graph transformation. Vol. 3. world Scientific, 1999.

Niklas Eén and Niklas Sérensson. An extensible sat-solver. In: International conference
on theory and applications of satisfiability testing, pp. 502—-518. 2003.

Michalis Famelis, Rick Salay, Alessio Di Sandro, and Marsha Chechik. Transformation of
models containing uncertainty. In: International Conference on Model Driven Engineering
Languages and Systems, pp. 673—-689. 2013.

Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon. Towards de-
pendable model transformations: qualifying input test data. SoSyM, 2007.

J Nathan Foster, Michael B Greenwald, Jonathan T Moore, Benjamin C Pierce, and Alan
Schmitt. Combinators for bidirectional tree transformations: a linguistic approach to the
view-update problem. ACM Transactions on Programming Languages and Systems 29(3),
2007, p. 17.

Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Vic-
tor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. Cypher:
an evolving query language for property graphs. In: SIGMOD, pp. 1433-1445. ACM, 2018.
por: 10.1145/3183713.3190657.

F.Fleurey, J. Steel, and B. Baudry. Validation in model-driven engineering: Testing model
transformations. In: International Workshop on Model, Design and Validation, pp. 29-40.
2004.

Franck Fleurey, Jim Steel, and Benoit Baudry. Validation in model-driven engineering:
testing model transformations. In: Model, design and validation, 2004. Proceedings. 2004
first international workshop on, pp. 29-40. 2004.

151

https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/s10270-008-0095-y
https://doi.org/10.1007/s10270-008-0095-y
http://www.eclipse.org/emf
https://doi.org/10.1145/3183713.3190657

BIBLIOGRAPHY

[FSC12a]

[FSC12b]

[GBRO5]

[GC14]

[Gho+15]

[GK15]

[GM09]

[Gon+12]

[GRR09]

[GS15]

[Hay+01]

[Heg+11]

[Heg+16]

[Her+15]

152

Michalis Famelis, Rick Salay, and Marsha Chechik. Partial models: towards modeling
and reasoning with uncertainty. In: Proceedings of the 34th International Conference on
Software Engineering, pp. 573-583. IEEE Press, 2012.

Michalis Famelis, Rick Salay, and Marsha Chechik. The semantics of partial model trans-
formations. In: Proceedings of the 4th International Workshop on Modeling in Software
Engineering, pp. 64-69. 2012.

Martin Gogolla, Jorn Bohling, and Mark Richters. Validating UML and OCL models in
USE by automatic snapshot generation. Software and Systems Modeling 4, 2005, pp. 386
398.

Carlos A. Gonzalez and Jordi Cabot. Test data generation for model transformations
combining partition and constraint analysis. In: ICMT, pp. 25-41. 2014. po1: 10.1007/
978-3-319-08789-4_3.

Hamid Gholizadeh, Zinovy Diskin, Sahar Kokaly, and Tom Maibaum. Analysis of source-
to-target model transformations in quest. In: Proceedings of the 4th Workshop on the Anal-
ysis of Model Transformations, pp. 46—55. 2015.

Loic Gammaitoni and Pierre Kelsen. F-alloy: an alloy based model transformation lan-
guage. In: Theory and Practice of Model Transformations, pp. 166—180. Springer, 2015.

Yeting Ge and Leonardo Moura. Complete instantiation for quantified formulas in satis-
fiabiliby modulo theories. In: Ahmed Bouajjani and Oded Maler (eds.), Computer Aided
Verification, LNCS, vol. 5643, pp. 306—-320. Springer Berlin Heidelberg, 2009. por: 10 .
1007/978-3-642-02658-4_25.

Carlos A. Gonzalez, Fabian Biittner, Robert Clarisd, and Jordi Cabot. Emftocsp: a tool
for the lightweight verification of EMF models. In: Proceedings of the First International
Workshop on Formal Methods in Software Engineering - Rigorous and Agile Approaches,
FormSERA 2012, Zurich, Switzerland, June 2, 2012, pp. 44-50. 2012. por: 10 . 1109/
FormSERA.2012.6229788.

Hans Gronniger, Jan Oliver Ringert, and Bernhard Rumpe. System model-based defi-
nition of modeling language semantics. In: Formal Techniques for Distributed Systems,
LNCS, vol. 5522, pp. 152-166. Springer, 2009.

Esther Guerra and Mathias Soeken. Specification-driven model transformation testing.
Softw. Syst. Model. 14(2), 2015, pp. 623-644. por: 10.1007/s10270-013-0369-x.

Kelly J Hayhurst, Dan S Veerhusen, John J Chilenski, and Leanna K Rierson. A practical
tutorial on modified condition/decision coverage, 2001.

Abel Hegedis, Akos Horvéth, Istvan Rath, and Déniel Varré. A model-driven frame-
work for guided design space exploration. In: 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), IEEE Computer Society, 2011.

Abel He gedis, Akos Horvath, Istvan Rath, Rodrigo Rizzi Starr, and Daniel Varré. Query-
driven soft traceability links for models. Software & Systems Modeling 15(3), 2016,
pp. 733-756.

Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki, Zinovy Diskin,
Yingfei Xiong, Susann Gottmann, and Thomas Engel. Model synchronization based on
triple graph grammars: correctness, completeness and invertibility. Software & Systems
Modeling 14(1), 2015, pp. 241-269.

https://doi.org/10.1007/978-3-319-08789-4_3
https://doi.org/10.1007/978-3-319-08789-4_3
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1109/FormSERA.2012.6229788
https://doi.org/10.1109/FormSERA.2012.6229788
https://doi.org/10.1007/s10270-013-0369-x

Bibliography

[Het10]

[HHV15]

[Hid+15]

[HLRO6]

[HMM13]

[Hor+14]

[Izs+13]

[Jac02]

JH11]

[JLB11]

[JS06]

[JS07]

[JSB12]

[JSS13]

[KG12a]

Thomas Hettel. Model round-trip engineering. PhD thesis. Queensland University of
Technology, 2010.

Abel Hegediis, Akos Horvéth, and Daniel Varr6. A model-driven framework for guided
design space exploration. Automated Software Engineering 22(3), 2015, pp. 399-436.

Soichiro Hidaka, Massimo Tisi, Jordi Cabot, and Zhenjiang Hu. Feature-based classifi-
cation of bidirectional transformation approaches. Software & Systems Modeling, 2015,
pp- 1-22. por: 10.1007/510270-014-0450-0.

David Hearnden, Michael Lawley, and Kerry Raymond. Incremental model transforma-
tion for the evolution of model-driven systems. In: Model Driven Engineering Languages
and Systems, pp. 321-335. Springer, 2006.

Gerg6 Horanyi, Zoltan Micskei, and Istvan Majzik. Scenario-based automated eval-
uation of test traces of autonomous systems. In: Matthieu Roy (ed.), Proceedings of
ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Systems (DECS)
at SAFECOMP’13, pp. 181-192. 2013.

Akos Horvath, Abel Hegediis, Marton Bur, Daniel Varrd, Rodrigo Rizzi Starr, and Samoel
Mirachi. Hardware-software allocation specification of ima systems for early simulation.
In: Digital Avionics Systems Conference (DASC), IEEE, 2014.

Benedek Izs6, Zoltan Szatmari, Gabor Bergmann, Akos Horvath, and Istvan Rath. To-
wards precise metrics for predicting graph query performance. In: ASE, pp. 421-431.
2013. por: 10.1109/ASE.2013.6693100.

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol. 11(2), 2002, pp. 256—290.

Yue Jia and Mark Harman. An analysis and survey of the development of mutation test-
ing. IEEE transactions on software engineering 37(5), 2011, pp. 649-678.

Ethan K Jackson, Tihamer Levendovszky, and Daniel Balasubramanian. Reasoning about
metamodeling with formal specifications and automatic proofs. In: Model Driven Engi-
neering Languages and Systems, pp. 653—-667. Springer, 2011.

Ethan K. Jackson and Janos Sztipanovits. Towards a formal foundation for domain spe-
cific modeling languages. In: Proceedings of the 6th ACM / IEEE Int. Conf. on Embedded
Software, EMSOFT °06, pp. 53-62. ACM, 2006.

Ethan K Jackson and Janos Sztipanovits. Constructive techniques for meta-and model-
level reasoning. In: Model Driven Engineering Languages and Systems, pp. 405-419.
Springer, 2007.

Ethan K. Jackson, Wolfram Schulte, and Nikolaj Bjerner. Detecting specification errors
in declarative languages with constraints. In: Proc. of the 15th Int. Conf. on MODELS,
LNCS, vol. 7590, pp. 399-414. 2012.

Ethan K Jackson, Gabor Simko, and Janos Sztipanovits. Diversely enumerating system-
level architectures. In: Proceedings of the 11th ACM Int. Conf. on Embedded Software, p. 11.
2013.

Mirco Kuhlmann and Martin Gogolla. From UML and OCL to relational logic and back.
In: Model Driven Engineering Languages and Systems - 15th International Conference,
MODELS 2012, Innsbruck, Austria, September 30-October 5, 2012. Proceedings, pp. 415-
431.2012. por: 10.1007/978-3-642-33666-9_27.

153

https://doi.org/10.1007/s10270-014-0450-0
https://doi.org/10.1109/ASE.2013.6693100
https://doi.org/10.1007/978-3-642-33666-9_27

BIBLIOGRAPHY

[KG12b]

[KHG11]

[KJS11]

[Kle+52]

[KPP09]

[KV09]

[KV13]

[LBA10]

[LBP10]

[Lia12]
[Mat]

[MBO08]

[MBTO06]

[MC13]

[MHTO04]

154

Mirco Kuhlmann and Martin Gogolla. Strengthening SAT-based validation of UML/OCL
models by representing collections as relations. In: European Conf. on Modelling Foun-
dations and Applications, LNCS, vol. 7349, pp. 32-48. 2012.

Mirco Kuhlmann, Lars Hamann, and Martin Gogolla. Extensive validation of OCL mod-
els by integrating SAT solving into use. In: TOOLS’11 - Objects, Models, Components and
Patterns, LNCS, vol. 6705, pp. 290-306. 2011.

Eunsuk Kang, Ethan Jackson, and Wolfram Schulte. An approach for effective design
space exploration. In: Radu Calinescu and Ethan Jackson (eds.), Foundations of Computer
Software. Modeling, Development, and Verification of Adaptive Systems, LNCS, vol. 6662,
pp- 33-54. Springer Berlin Heidelberg, 2011.

Stephen Cole Kleene, NG De Bruijn,] de Groot, and Adriaan Cornelis Zaanen. Introduc-
tion to metamathematics. Vol. 483. van Nostrand New York, 1952.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. On the evolution of ocl
for capturing structural constraints in modelling languages. In: Rigorous Methods for
Software Construction and Analysis, pp. 204-218. 2009.

Laura Kovacs and Andrei Voronkov. Interpolation and symbol elimination. In: Renate A.
Schmidt (ed.), Automated Deduction — CADE-22, LNCS, vol. 5663, pp. 199-213. Springer
Berlin Heidelberg, 2009.

Laura Kovacs and Andrei Voronkov. First-order theorem proving and vampire. In: Com-
puter Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia,
July 13-19, 2013. Proceedings, pp. 1-35. 2013. por: 10.1007/978-3-642-39799-8_1.

Levi Lucio, Bruno Barroca, and Vasco Amaral. A technique for automatic validation
of model transformations. In: Proc. of the 13th Int. Conf. on MODELS, LNCS, vol. 6394,
pp. 136-150. 2010.

Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 2010, pp. 59-64.

Jia Liang. Solving clafer models with choco. (GSDLab-TR 2012-12-30), 2012.

Mathworks. Matlab Simulink - Simulation and Model-Based Design. http : / / www .
mathworks.com/products/simulink/.

Leonardo de Moura and Nikolaj Bjerner. Z3: an efficient SMT solver. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Conference (TACAS
2008), LNCS, vol. 4963, pp. 337-340. Springer, 2008.

Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. Mutation analysis testing for
model transformations. In: ECMDA-FA, LNCS, vol. 4066, pp. 376-390. Springer, 2006.
por: 10.1007/11787044_28.

Nuno Macedo and Alcino Cunha. Implementing QVT-R bidirectional model transfor-
mations using Alloy. In: Fundamental Approaches to Software Engineering, pp. 297-311.
2013.

Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An injective language for re-
versible computation. In: Mathematics of Program Construction, pp. 289-313. 2004.

https://doi.org/10.1007/978-3-642-39799-8_1
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
https://doi.org/10.1007/11787044_28

Bibliography

[Mic+12]

[Mil+07]

[Mil+15]

[MK01]

[MM16]

[MM18]

[Mot+15]

[Mou+09]

[NL15]

[NNZ00]

[Ocl]
[Ola+12]

[OMG]

[Pen08]

Zoltan Micskei, Zoltan Szatmari, Janos Olah, and Istvan Majzik. A concept for testing
robustness and safety of the context-aware behaviour of autonomous systems. In: KES-
AMSTA, LNCS, vol. 7327, pp. 504-513. Springer, 2012. por: 10 . 1007 /978 - 3~ 642 -
30947-2_55.

Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khurshid. Korat: A
tool for generating structurally complex test inputs. In: 29th International Conference on
Software Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007, pp. 771-774.
2007. po1: 10.1109/ICSE. 2007 .48.

Aleksandar Milicevic, Joseph P. Near, Eunsuk Kang, and Daniel Jackson. Alloy*: A
general-purpose higher-order relational constraint solver. In: 37th IEEE/ACM Int. Conf.
on Software Engineering, ICSE, pp. 609-619. 2015.

Darko Marinov and Sarfraz Khurshid. Testera: A novel framework for automated testing
of java programs. In: 16th IEEE International Conference on Automated Software Engineer-
ing (ASE 2001), 26-29 November 2001, Coronado Island, San Diego, CA, USA, p. 22. 2001.
por: 10.1109/ASE.2001.989787.

Ferenczi Miklés and Széts Miklés. Mathematical Logic for Applications. In: Varasdi
Karoly (ed.), Typotex, 2016.

Kristof Marussy and Istvan Majzik. Constructing dependability analysis models of re-
configurable production systems. In: 14th IEEE International Conference on Automation
Science and Engineering, CASE 2018, Munich, Germany, August 20-24, 2018, pp. 1158—-1163.
2018. po1: 10.1109/COASE.2018.8560551.

Jean-Marie Mottu, Sagar Sen Simula, Juan Cadavid, and Benoit Baudry. Discovering
model transformation pre-conditions using automatically generated test models. In: IS-
SRE, pp. 88-99. IEEE, 2015. por: 10.1109/ISSRE.2015.7381802.

Alix Mougenot, Alexis Darrasse, Xavier Blanc, and Michele Soria. Uniform random gen-
eration of huge metamodel instances. In: Proceedings of the 5th European Conference on
Model Driven Architecture - Foundations and Applications, ECMDA-FA ’09, pp. 130—-145.
Springer-Verlag, 2009.

Vincenzo Nicosia and Vito Latora. Measuring and modeling correlations in multiplex
networks. Phys. Rev. E 92, 3 2015, p. 032805. por: 10.1103/PhysRevE.92.032805.

Ulrich Nickel, Jorg Niere, and Albert Ziindorf. The fujaba environment. In: Proceedings
of the 22nd international conference on Software engineering, pp. 742-745. 2000.

Object Constraint Language, v2.4. The Object Management Group. 2014.

Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and Derek Rayside. Modeling and
multi-objective optimization of quality attributes in variability-rich software. In: Inter-
national Workshop on Non- functional System Properties in Domain Specific Modeling Lan-
guages, 2012.

OMG. MOF 2.0 Query/View/Transformation specification (QVT), version 1.1. http :
//www.omg.org/spec/QVT/1.2/.

Karl-Heinz Pennemann. Resolution-like theorem proving for high-level conditions. In:
International Conference on Graph Transformation, pp. 289-304. 2008.

155

https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1109/ICSE.2007.48
https://doi.org/10.1109/ASE.2001.989787
https://doi.org/10.1109/COASE.2018.8560551
https://doi.org/10.1109/ISSRE.2015.7381802
https://doi.org/10.1103/PhysRevE.92.032805
http://www.omg.org/spec/QVT/1.2/
http://www.omg.org/spec/QVT/1.2/

BIBLIOGRAPHY

[PMB08]

[Que+12]

[R3c]

[Rad+15]

[Rat+08]

[RDO6]

[Rei97]

[Rem]

[Ren04]

[Ren06]
[Res]
[RHV12]

[RSW04]

[RV16]

[RV99]

[RZ12]

[SAB09]

156

Ruzica Piskac, Leonardo de Moura, and Nikolaj Bjorner. Deciding Effectively Propo-
sitional Logic with Equality. Microsoft Research, MSR-TR-2008-181 Technical Report.
2008.

Anna Queralt, Alessandro Artale, Diego Calvanese, and Ernest Teniente. OCL-Lite: finite
reasoning on UML/OCL conceptual schemas. Data Knowl. Eng. 73, 2012, pp. 1-22.

R3-COP (Resilient Reasoning Robotic Co-operative Systems). ARTEMIS project n°
100233, http://http://www.r3-cop.eu/.

Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Habel, and Gabriele
Taentzer. Translating essential ocl invariants to nested graph constraints focusing on
set operations. In: International Conference on Graph Transformation, pp. 155-170. 2015.

Istvan Rath, Gabor Bergmann, Andras Okros, and Daniel Varrd. Live model transforma-
tions driven by incremental pattern matching. In: Proc. First International Conference on
the Theory and Practice of Model Transformations (ICMT 2008), LNCS, vol. 5063, pp. 107-
121. Springer Berlin-Heidelberg, 2008. po1: 10.1007/978-3-540-69927-9_8.

Arend Rensink and Dino Distefano. Abstract graph transformation. Electronic Notes in
Theoretical Computer Science 157(1), 2006, pp. 39-59.

Stuart C Reid. An empirical analysis of equivalence partitioning, boundary value analy-
sis and random testing. In: Software Metrics Symposium, pp. 64-73. 1997.

System Modeling. https://portal.vik.bme.hu/kepzes/targyak/VIMIAAOO/en/.
Budapest University of Technology and Economics.

Arend Rensink. Canonical graph shapes. In: Programming Languages and Systems, 13th
European Symposium on Programming, ESOP 2004, pp. 401-415. 2004. po1: 10 . 1007/
978-3-540-24725-8_28.

Arend Rensink. Isomorphism checking in GROOVE. ECEASST 1, 2006.
Microsoft Research. Pex. http://research.microsoft.com/projects/pex/.

Istvan Rath, Abel Hegediis, and Déniel Varré. Derived features for EMF by integrating
advanced model queries. In: Modelling Foundations and Applications, LNCS, pp. 102-117.
Springer Berlin / Heidelberg, 2012.

Thomas W Reps, Mooly Sagiv, and Reinhard Wilhelm. Static program analysis via 3-
valued logic. In: International Conference on Computer Aided Verification, pp. 15-30. 2004.

Daniel Ratiu and Markus Voelter. Automated testing of DSL implementations: expe-
riences from building mbeddr. In: AST@ICSE 2016, pp. 15-21. 2016. por: 10 . 1145/
2896921.2896922.

Alexandre Riazanov and Andrei Voronkov. Vampire. In: Automated Deduction - CADE-
16, 16th International Conference on Automated Deduction, Trento, Italy, July 7-10, 1999,
Proceedings, pp. 292-296. 1999. por: 10.1007/3-540-48660-7_26.

Arend Rensink and Eduardo Zambon. Pattern-based graph abstraction. In: Graph Trans-
formations - 6th International Conference, ICGT 2012, Bremen, Germany, September 24-29,
2012. Proceedings, pp. 66—80. 2012. por: 10.1007/978-3-642-33654-6_5.

Seyyed M. A. Shah, Kyriakos Anastasakis, and Behzad Bordbar. From UML to Alloy and
back again. In: MoDeVVa ’09: Proceedings of the 6th International Workshop on Model-
Driven Engineering, Verification and Validation, pp. 1-10. ACM, 2009.

http://http://www.r3-cop.eu/
https://doi.org/10.1007/978-3-540-69927-9_8
https://portal.vik.bme.hu/kepzes/targyak/VIMIAA00/en/
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.1007/978-3-540-24725-8_28
http://research.microsoft.com/projects/pex/
https://doi.org/10.1145/2896921.2896922
https://doi.org/10.1145/2896921.2896922
https://doi.org/10.1007/3-540-48660-7_26
https://doi.org/10.1007/978-3-642-33654-6_5

Bibliography

[SAE]

[Sal+15]

[SBM09]

[SC15]

[SCG12]

[Sch+13]

[Sch94]

[Sen+09]

[Sen+12]

[SEC12]

[Sir]
[SLO17]

[Soe+10]

[Sol16]

[SSB17]

SAE - Radio Technical Commission for Aeronautic. Architecture Analysis & Design Lan-
guage (AADL) v2, AS-5506A, SAE International, 2009.

Rick Salay, Marsha Chechik, Michalis Famelis, and Jan Gorzny. A methodology for ver-
ifying refinements of partial models. Journal of Object Technology 14(3), 2015, 3:1-31.

Sagar Sen, Benoit Baudry, and Jean-Marie Mottu. Automatic model generation strategies
for model transformation testing. In: ICMT, pp. 148—164. 2009. por: 10.1007/978-3-
642-02408-5_11.

Rick Salay and Marsha Chechik. A generalized formal framework for partial modeling,.
In: Alexander Egyed and Ina Schaefer (eds.), Fundamental Approaches to Software Engi-
neering, LNCS, vol. 9033, pp. 133-148. Springer Berlin Heidelberg, 2015.

Rick Salay, Marsha Chechik, and Jan Gorzny. Towards a methodology for verifying par-
tial model refinements. In: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, pp. 938-945. 2012.

J. Schonbock, G. Kappel, M. Wimmer, A. Kusel, W. Retschitzegger, and W. Schwinger.
TETRABox - a generic white-box testing framework for model transformations. In:
APSEC, pp. 75-82. IEEE, 2013. por: 10.1109/APSEC.2013.21.

Andy Schiirr. Specification of graph translators with triple graph grammars. In: Graph-
Theoretic Concepts in Computer Science, pp. 151-163. 1994.

Sagar Sen, Naouel Moha, Benoit Baudry, and Jean-Marc Jézéquel. Meta-model Pruning.
In: Proceedings of the International Conference on Model Driven Engineering Languages
and Systems (MODELS), 2009.

Sagar Sen, Jean-Marie Mottu, Massimo Tisi, and Jordi Cabot. Using models of partial
knowledge to test model transformations. In: 5th Int. Conf. on Theory and Practice of
Model Transformations, LNCS, vol. 7307, pp. 24-39. 2012.

Rick Salay, Michalis Famelis, and Marsha Chechik. Language independent refinement
using partial modeling. In: Juan de Lara and Andrea Zisman (eds.), Fundamental Ap-
proaches to Software Engineering, LNCS, vol. 7212, pp. 224-239. Springer Berlin Heidel-
berg, 2012.

Sirius. http://www.eclipse.org/sirius. The Eclipse Project. 2017.

Sven Schneider, Leen Lambers, and Fernando Orejas. Symbolic model generation for
graph properties. In: International Conference on Fundamental Approaches to Software
Engineering, pp. 226-243. 2017.

Mathias Soeken, Robert Wille, Mirco Kuhlmann, Martin Gogolla, and Rolf Drechsler.
Verifying UML/OCL models using boolean satisfiability. In: Design, Automation and Test
in Europe, (DATE’10), pp. 1341-1344. IEEE, 2010.

Alexandra Anna Solyom. Tesztkornyezetek el6allitasa automatikus szabalyalapt mod-
ellgeneralas segitségével. Masters thesis. Budapest University of Technology and Eco-
nomics, 2016.

Ghanem Soltana, Mehrdad Sabetzadeh, and Lionel C. Briand. Synthetic data generation
for statistical testing. In: Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, Urbana, IL, USA, October 30 - November 03,
2017, pp. 872-882. 2017. por: 10.1109/ASE.2017.8115698.

157

https://doi.org/10.1007/978-3-642-02408-5_11
https://doi.org/10.1007/978-3-642-02408-5_11
https://doi.org/10.1109/APSEC.2013.21
http://www.eclipse.org/sirius
https://doi.org/10.1109/ASE.2017.8115698

BIBLIOGRAPHY

[Ste08]

[Sza+16]

[Sza16]

[Sza+17]

[Sz419]

[THR10]

[TJ07]

[Ujh+15]

[Val+12]

[Var+16]

[Web12]

[WHR14]

[Wie+12]

158

Perdita Stevens. Bidirectional model transformations in gvt: semantic issues and open
questions. Software & Systems Modeling 9(1), 2008, pp. 7-20. por: 10. 1007 /s10270~
008-0109-9.

G. Szarnyas, Z. K6vari, A. Salanki, and D. Varrd. Towards the characterization of realistic
models: evaluation of multidisciplinary graph metrics. In: MODELS, 2016. po1: 10. 1145/
2976767 .2976786.

Zoltan Szatmari. Metamodel-based model generation and validation techniques with ap-
plications. PhD dissertation. Budapest University of Technology and Economics, 2016.

Géabor Szarnyas, Benedek 1zsd, Istvan Rath, and Daniel Varrd. The Train Benchmark:
cross-technology performance evaluation of continuous model queries. Softw. Syst.
Model. 2017. por: 10.1007/s10270-016-0571-8.

Gabor Szarnyas. Query, Analysis, and Benchmarking Techniques for Evolving Property
Graphs of Software Systems. PhD thesis. Budapest University of Technology and Eco-
nomics, 2019.

Paolo Torrini, Reiko Heckel, and Istvan Rath. Stochastic simulation of graph transforma-
tion systems. In: FASE, LNCS, vol. 6013, pp. 154-157. Springer, 2010. po1: 10.1007/978-
3-642-12029-9_11.

Emina Torlak and Daniel Jackson. Kodkod: a relational model finder. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, pp. 632—647. Springer, 2007.

Zoltan Ujhelyi, Gabor Bergmann, Abel Hegedis, Akos Horvath, Benedek Izs6, Istvan
Réth, Zoltan Szatmari, and Daniel Varr6. EMF-IncQuery: An integrated development
environment for live model queries. Sci. Comput. Program. 98, 2015, pp. 80-99.

Antonio Vallecillo, Martin Gogolla, Loli Burguefio, Manuel Wimmer, and Lars Hamann.
Formal specification and testing of model transformations. In: SFM, pp. 399-437. 2012.
poI: 10.1007/978-3-642-30982-3_11.

Daniel Varr6, Gabor Bergmann, Abel Hegedis, Akos Horvéath, Istvan Rath, and Zoltan
Ujhelyi. Road to a reactive and incremental model transformation platform: three gen-
erations of the VIATRA framework. Software and System Modeling 15(3), 2016, pp. 609—
629. po1: 10.1007/s10270-016-0530-4.

Daniel Varr6 and Andrés Balogh. The Model Transformation Language of the VIATRA2
Framework. Science of Computer Programming 68(3), 2007, pp. 214-234.

Viatra Solver. 2018.

Gergely Varr6, Andy Schiirr, and Déaniel Varrd. Benchmarking for graph transformation.
In: 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC
2005), 21-24 September 2005, Dallas, TX, USA, pp. 79—-88. 2005. po1: 10 .1109/VLHCC .
2005.23.

Jim Webber. A programmatic introduction to Neo4;j. In: SPLASH, pp. 217-218. 2012. pOTI:
10.1145/2384716.2384777.

Jon Whittle, John Hutchinson, and Mark Rouncefield. The state of practice in model-
driven engineering. IEEE software 31(3), 2014, pp. 79-85.

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager. SWI-Prolog. The-
ory and Practice of Logic Programming 12(1-2), 2012, pp. 67-96.

https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1007/s10270-008-0109-9
https://doi.org/10.1145/2976767.2976786
https://doi.org/10.1145/2976767.2976786
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/978-3-642-12029-9_11
https://doi.org/10.1007/978-3-642-12029-9_11
https://doi.org/10.1007/978-3-642-30982-3_11
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1109/VLHCC.2005.23
https://doi.org/10.1109/VLHCC.2005.23
https://doi.org/10.1145/2384716.2384777

Bibliography

[Wil12]

[Win+08]

[WKCO06]

[Xio+07]

[Xte]
[Yak]

E. D. Willink. An extensible OCL virtual machine and code generator. In: Proc. of the
12th Workshop on OCL and Textual Modelling, pp. 13-18. ACM, 2012.

Jessica Winkelmann, Gabriele Taentzer, Karsten Ehrig, and Jochen M. Kiister. Trans-
lation of restricted OCL constraints into graph constraints for generating meta model
instances by graph grammars. ENTCS 211(0), 2008. Proc. of the 5th Int. Workshop on
Graph Transformation and Visual Modeling Techniques, pp. 159 —170. por: 10.1016/
j.entcs.2008.04.038.

Junhua Wang, S-K Kim, and David Carrington. Verifying metamodel coverage of model
transformations. In: Software Engineering Conference, 10—pp. 2006.

Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato Takeichi, and Hong Mei.
Towards automatic model synchronization from model transformations. In: Proceedings
of the 22nd IEEE/ACM Int. Conf. on Automated Software Engineering, pp. 164-173. 2007.

Xtext. http://www.eclipse.org/Xtext/. The Eclipse Project.
Yakindu. http://statecharts.org/. Yakindu Statechart Tools. 2017.

159

https://doi.org/10.1016/j.entcs.2008.04.038
https://doi.org/10.1016/j.entcs.2008.04.038
http://www.eclipse.org/Xtext/
http://statecharts.org/

APPENDIX A

Appendix

A.1 Transforming OCL invariants to first order logic

OCL constraints (invariants) are widely used means to express well-formedness rules of DSLs which
has to be satisfied by all valid instance models. Here we present a transformation from a subset of
OCL invariants to FOL. As a result, DSL validation tasks (e.g. consistency check, subsumption check)
can be executed even when certain WF constraints are defined by graph patterns while others are
captured by OCL invariants. This is a very practical setup to allow DSL engineers to mix specification
languages.

While there are existing OCL-to-FOL transformations (e.g. [CED09; DC13]) which cover a larger
portion of the OCL language (and its semantic cornercases), our technique allows to detect inconsis-
tencies between WF constraints with different representations (OCL vs GP) and allows to reason about
subsumption or equivalence of such constraints. Furthermore, the combined use of our rich partial
snapshot language and OCL invariants also allows to gain additional insight into DSL specifications.
Finally, we also introduce approximations for certain OCL language elements.

A.1.1 An overview of OCL transformation

The syntax of an OCL invariant expression is presented in the template below, where context specifies
the environment (e.g. class) on which the constraint is interpreted, the name of the constraint can be
given after the inv keyword and finally the expression is specified.

context (C) inv (name): (expression)

Our transformation takes an OCL invariant as input and synthesizes FOL formulae as output. Cer-
tain OCL language elements are too expressive to be represented in FOL, but they can be approximated
by appropriate FOL formulae. Each supported language element is presented in this subsection.

The OCL standard defines a four valued logic (with true, false, null and undefined values), while
we mostly restrict our mapping to a two-valued logic and the null is also supported as input of the
comparison operators.

The structure of an OCL invariant is similar to its FOL counterpart, so the mapping algorithm
transforms the elements explicitly, one-by-one to FOL formulae.

The mapping algorithm traverses the abstract syntax tree (AST) of the OCL invariant recursively
and applies the corresponding rules to each subexpression element. However, there are some special
cases which require pre- or post-processing the result, e.g. for comparison functions, null references

A. APPENDIX

and collection operators. The mapping also handles a restricted set of higher-order structures (like
sets) which structures are unfolded and represented by FOL predicates.

A.1.1.1 Basic expressions

The mapping rules of the basic expressions (primitive-type, simple arithmetic and bool expression
and variable) of OCL are depicted in Table A.1. In OCL, we cover the primitive types Integer, Boolean
and Real, while the String types is not yet supported. The logic and arithmetic operators are directly
transformed to FOL, since they have their equivalent counterpart in the FOL if they are interpreted
on Integers, Reals and Booleans.

OCL ‘var‘ a+b‘ a-b‘ a*b‘ a/b‘ a=b
FOL ‘ var ‘a+b‘a—b‘a-b‘a/b‘a:b

OCL ‘a and b‘a or b‘a implies b‘not a‘
FOL‘ anb ‘ aVvb ‘ a=b ‘ -a

Table A.1: Mapping of basic OCL expressions

The OCL function oc1IsKindOf (Class) is translated to a type predicate of EClass, which is
satisfied if and only if the object has the same type as the argument of the function.

OCL ‘v.oclIsKindOf((C))
FOL | C(v)

Objects, as complex structures require special transformation rules. Single-valued attributes of
objects are translated to functions.

OCL |v;.(F) = v, ,F € Ref yy or F € Attryy
FOL | F(v1, vy)

The equal operator of OCL (==) is transformed similarly to other mathematical operators unless
objects need to be compared. The transformation of such equality expressions are divided into two
cases: (1) if a variable is placed on the right hand side, then an existential quantifier is used to avoid
undefined values, (2) if the comparison is to value null, then the expression is transformed using a
negated existential qualifier in FOL.

OCL ‘ v1 - {F)=0, ‘ v1.{F)=null
FOL ‘ 302 : F(Ul,Uz) ‘ —E]vz : F(Z)l,Uz)

The transformation of the not equal operator of OCL (<>) uses the dual counterparts of equal
operation by adding a negation to the corresponding FOL expressions.

A.1.2 Collections

OCL collections are special sets in the mathematical aspect obtained mostly by specific language
constructs (e.g. allInstances or navigations along references).

2

A.1. Transforming OCL invariants to first order logic

In our approach, every collection C is represented by a characteristic predicate Pc(x) captured
in FOL, where the predicate evaluates to true on a model element only if it is the member of the
collection:

Pe(x) © x € C.

If the collection can be implied by the context, the index of the collection is omitted: P(x).

The OCL operation allInstances refers to all instances of a certain type, that way, the cor-
responding FOL formula collects the objects with the referred type. We also can refer to the set of
elements with a certain type as defined by the context of the invariant using self keyword, which is
handled exactly as the allInstances construct.

OCL | context(C)inv:...self..., C € Clsym
OCL (C).allInstances(), C € Clsyu
FOL P(x):=C(x)

A set of instances can be also referred by a reference with more than one multiplicity. The pred-
icate of the reference and the predicate of the variable is included in the FOL expression during the

mapping.

OCL ‘ v.(F),F € Refp or F € Attrp
FOL ‘ P(x):=F(v, x)

Navigation along references (see next example) with more than one multiplicity is also alloved
in OCL, but it is a shorthand of the collect operator and is transformed to this operator directly
by the OCL parser (see below). The equivalent FOL expression contains the predicates of the refer-
ences included in the path and a temporary variables with universal quantifier for the intermediate
points. The predicates of the intermediate- and endpoints are not needed, since the predicates of the
references include them.

OCL | v.(Fy).....(Fy),for 0 < i < n: F; € Ref or F; € Attry
P(x):=3vy,...,0n-1 :Fi(v,01)A
FOL No<i<n—2Fi(Vie1, vi)A
Fn(vn—l’x)

The collect operator derives a collection from another by applying an exp(v) OCL expression
on the elements of the collection v, which is defined by other mapping rules.

OCL ‘C -> collect (vlexp(v))
FOL ‘P(x):zﬂv : Po(v) A exp(v) = x

The closure operator derives a collection using an exp(v) expression by iteratively applying on
the elements of the collection until it reaches fix point. The transitive closure in ocl approximated sim-
ilarly as in the case of graph patterns. The following transformation presents the overapproximation
of the closure operator by 3 steps:

A. APPENDIX

OCL |¢ -> closure (vlexp(v))

FOL |Po=3(x):=P.(x) V Jv : P.(v)A

((x = exp(v) A distinct(v, x))V

(x = exp*(v) A distinct(v, exp(v), X))V

(x = exp’(v) A distinct(v, exp(v), exp?(v), x))V
(true A distinct(v, exp(v), exp?(v), exp®(v), x)))

The select and reject operators are used to define a special subset of the collection by an
expression exp(v). The select constructs a condition, which elements should be included, while the
reject defines the elements that should be excluded from the collection. The transformation of these
operators appends the transformation of the expression to end of the predicate of the collection.

OCL |C->select (vlexp(v)) ‘C—>reject (vl exp(v))
FOL ‘P(x)::Pc(x) A exp(x) ‘P(x)::Pc(x) A —exp(x)

A.1.2.1 Collection operators

We now overview the transformation of different OCL operators which are applicable to collections.

The OCL operation includes is evaluated to true if the collection contains at least one element
satisfying the argument expression of the function. This function is translated to a predicate which
checks containment. The excludes OCL function is the dual of includes, so it is transformed to the
negated FOL expression of includes. This expression is satisfied if the elements of the collection do
not satisfy the condition.

OCL ‘ C->includes (v) ‘ C->excludes (v)
FOL | Pc(v) | —Pc(v)

OCL operation forAll is an iterator over a collection to state that certain conditions hold for
each member of the collection. We restrict our transformation to set semantics, and then the FOL
equivalent is the universal quantifier. The OCL operation exists implements an iterator and the
FOL equivalent is the existential quantifier.

OCL ‘ C->forAll(vlexp(v)) ‘ C->exists(v|exp(v))
FOL ‘ Vv : Pc(v) = exp(v) ‘ Jv : Pe(v) A exp(v)

The OCL function notEmpty is applied on collections and is satisfied if the collection is not empty.
This operation is transformed to an existentially quantified predicate which means that there is at
least one object in the given set or collection. The OCL function isEmpty handled with an additional
negation.

OCL ‘ C->notEmpty () ‘ C->isEmpty ()
FOL | Jv:Pc(v) | -3v:Pc(v)

The OCL function size returns the size of the collection. In FOL the size of a collection cannot
be formulated in general, but if the complarison of the size of the collection to an integer is translated
similarly as in case of handling multiplicities in metamodels (see Section 3.3.2.2).

4

A.1. Transforming OCL invariants to first order logic

We implemented transformations using approximation for every comparison operators. The
transformation of the less than (=<) and greater than (=>) operators provides the basis for the mapping
of the equality and inequality operators.

The translation of the greater than (=>) operator is carried out by introducing temporary variables
(as much as needed), adding the predicates of the reference for each variable and finally declare pair-
wise inequality.

OCL | C->size()>=n,n € Z*
FOL ‘ Joy, ..., vy« distinct(vy, ..., V) A Ni<i<n Pe(vi)

The translation of the less than (=<) operator is similar, but the equality is declared at least for
one pair of the temporary variables.

OCL | C->size()<=nn € Z*
FOL ‘ =3vy, ..., v, ¢ distinct(vy, ..., Up) A Ni<i<n Pe(vi)

Finally, the equality operator is divided into two parts before the mapping:

OCL ‘ C->size()=n,n e Z*
OCL ‘ C->size()<=n and C->size()>=n

The handling of equality and inequality operators has specific rules if two collections are passed
as input. Two collections are equal if and only if neither of them contains an element which is not in
the other set.

OCL | =Gy
FOL ‘ -Jdu: (PC1 (’U) A _'PCZ(U)) \4 (_'PC1 (’U) A PCZ(U))

Passing two collections as input, the inequality operator evaluates to true if there exists at least
one element which is not contained by both of them.

OCL | C1<>Cy
FOL | 3o : (Pe(v) A ~P4(v)) V (=Pe(v) A Py4(v))

A.1.2.2 Restrictions and expressiveness

The expressiveness of OCL is higher than first-order logic, so some language constructs are obviously
not covered by our transformation. Due to the undecidable nature of the full OCL language, it cannot
be expected to come up with an automated unsatisfiability checker for all the OCL expressions. Still,
we believe that covering a subclass of OCL expressions and support language-level validation on them
is a practical solution.

In our approach, the OCL constructs like OrderSet, Bag and Sequence and operations like max()
and min() are not handled. We only focus on OCL invariants and do not support general OCL queries
or operation constraints captured by pre- and postconditions. The list of the supported language
elements is overviewed in Table A.2.

A. APPENDIX

Features of the OCL FOL | EPR | BA
Logic operators + + +
Arithmetic operators + - A
oclIsTypeOf + + +
Attributes + + +
References + + +
Collections (Sets) + + +
Collections (Bag, Sequence) - - -
alllnstances, self + + +
Iterator expressions (e.g. exists, forAll) | + - +
notEmpty + - +
isEmpty + + +
Transitive closure + A +
Aggregated expressions - - -

+: Expressible, —: Inexpressible, A: Approximable

Table A.2: Expressing OCL features in FOL

A.2 Implicit equivalence check rewriting

First, we present a rewriting technique to eliminate implicit equivalence checks. For the rewriting
variables in a predicate, we use the following construction:

Definition 38 (Variable rewriting) Let ¢(vy,...,v,) denote a first order logic predicate,

01,...,0m, be variable occurrences in ¢(vy,...,v,), and vy,...,v, be variable symbols. A
variable rewriting of ¢(vy,...,v,) from o01,...,0, t0 U1,...,Uy is a predicate (denoted by
Poy—vy,....omvm (V15 - - -, Un)), wWhere each occurrence o; (1 < i < m) of is replaced with a new

occurrence of variable symbol v;.

Example 41. Let ¢(v):=Transition(e)Asource(e ,v)denote a predicate with two variable
—— ——

01 0y
occurences o1 and o, of variable symbol e, and let n; and n, denote new variable symbols. Then

Poy-ny.0p-n, (€) = Transition(n;) A source(ng, v)

The input of a the rewriting is a first order logic predicate ¢(vy,...,v,), and the output
is an unfolded predicate unf[p(vy,...,v,)], which is semantically equivalent ¢(vy,...,v,) <
unfe(vy, . . .,v,)], but it does not contain any implicit equivalence checks. The unfolding is con-
structed in two steps: unfy3[-] rewrites all quantified variables, and unfz[-] rewrites the free variables.
Thus, the predicate is rewritten to

unflp(vs,, vn)l=unfrlunfyale(vr, . . ., vn)]l.
First, the quantified variables are unfolded with unfy3[-] recursively:
« If p(vy,...,0,):=R(---) or R*(:,-) is an atomic expression, then it is not changed:

unfyale(vy, ..., vp)]=0(vy, ..., 0n)

A.2. Implicit equivalence check rewriting

o Ifp(vy,...,00):=Xv: @'(v],...,vy,) is a quantified expression (where X denote either V or 3),
then let oy, . . ., 0; denote the occurrences of symbol v in ¢’ bound by ¢, and u;,

..., u; denote a
set of new variable symbols.

unfya[Xv : @' (vf, ..., vp) =X Jug, . up s unfyaleg o opow (V1 s UR)IA /\ {u; ~ v}

+ Otherwise, unfyg[¢(vy, .. .,v,)] rewrites all subexpressions recursively.

Next, free variables are unfolded with unfr[-]. In predicate ¢(vy,...,v,) let O = {o01,...,0m}
denote all variable occurrences of free variable symbols V = {vy, ..., v,}, and let function ref : O —
V denote the referred variable of an occurrence. Then, all variable occurrences O are renamed to a
new set unused variable symbols uy, . . ., uy,. Then, the unfolded predicate of ¢ is created as follows:

Wlﬁ“[qﬂ(vl, ceey Un)]::EIula e UL Qorsuy,. .., o (ul’ ey um) A /\ {ui ~ ref(ui)}

1<i<m

Example 42. Let ¢(v):=3e : Transition(e) A source(e, v) denote a predicate. The unfolding of this
predicate is the follows:

unfle(v)] = e : Juy, up : Transition(u) A source(us, v) Ae ~ug Ae~ up

Next, lets rewrite the free variables:

unfplunf|e(v)]] = Jus : e : Juy, u, : Transition(ug) A source(ug, us) Ae~uy Ae~ug Ao~ us

A. APPENDIX

A.3 Partial models

First, we show that the information ordering relation (E) ensures the under- and over-approximation
rules for any 3-valued truth value.

Lemma 1 (Information order vs Under- and over-approximation) IfX andY are 3-valued
truth values with X C Y, then X = 1) = (Y = 1) and (Y = 1) = (X > %).

Proof First, if X = 1 then according to the definition of information ordering, (1 = %) vV (Y = 1) thus
Y=1.

Now if Y = 1 then similarly (X = %) V (X = 1) thus X > %. [|
Selected mathematical operations respect the information ordering:

Lemma 2 (Information order vs Mathematical operations) IfX; C Y,...,X, C Y, then
[1]1-X,C1-Y,
[2] min{Xy,...,X,} C min{Yy,...,Y,}
[3] max{Xi,...,X,} E max{Ys,...,Y,}
Proof

[1] Since X; C Y; then either X; = Y; or X; = %. If X; = Y7, then 1 — X; = 1 — Y; and therefore
1—-X; C1-Y;is true. Otherwise, if X; = %, then 1 — X; = % and % C Y; holds for any Y;.

[2] Ifsome X; = 0thenY; = 0. Thus min{Xy,...,X,} = 0and min{Yy,...,Y,} = 0,and 0 C 0 holds.
Otherwise, if all X; = 1 then all Y; = 1, therefore min{Xy,...,X,} = min{Yy,...,Y,} = 1,and
1 C 1is satisfied. Finally, if there is no X; with X; = 0 but some X; = % then min{Xy,..., X, } =
%, and % C min{Yy, ..., Y,} holds for any Yi, ..., Y, values.

[3] If there is an X; = 1, then Y; = 1. Thus max{Xy,...,X,} = 1 and max{Yy,...,Y,} = 1,
and 1 C 1 holds. Otherwise, if all X; = 0 then all Y; = 0, therefore max{Xi,...,X,} =

max{Yy,...,Y,} = 0, and 0 C 0 is satisfied. Finally, if there is no X; with X; = 1, but some
X; = % then max{Xy,...,X,} =%, and % C max{Yy,...,Y,} holds for any Y3, ..., Y, values.

|
Our the refinement relation respects information ordering for each formula ¢.

Theorem 13 (Approximation) Let P, Q be partial models with P T Q and ¢ be a graph pattern.
e Ifl@]* = 1 then [ell© = 1; if [¢]F = 0 then [ell© = 0 (called under-approximation).

o If[[@]° = 0 then [[@]|” < %; ifl[[@]© = 1 then [¢]|F > ¥% (called over-approximation).

Proof Correctness of under- and over-approximation Let ¢ be a graph pattern formula, and let P and
Q be two partial models where P C Q with a refinement function ref : Op — 29¢.

First, based on the definition of refinement, for each p;, p, € Op and q; € ref(p;1), g2 € ref(pz), the
following statements hold for atomic predicates:

- [C@IE,, EIC@5,,

A.3. Partial models

P
° [[R(Ulva)]]lepl,vzl—)pz E [[R(Ul, UZ)]]ngql,vquz
o [[og ~ UZ]]il—»pl,vzl—»pz C [log ~ UZ]]zQ)lqu,vzr—nh
Next, let ¢; and ¢, be two formulae, and let Zf’ , ZZP , ZlQ and ZZQ be variable bindings with:

P Qo P Q
* loadize £ [[‘Pl]]ZlQ and [l]Iy © [[902]]Z2Q,

. Zf and ZlQ maps each variables of ¢, to Op and Og
. Z; and ZZQ maps each variables of ¢, to Op and Ogp
« for all variables v in ¢;: ZIQ (v) € ref (Z{D (v))
« for all variables v in ¢,: ZZQ (v) € ref (ZéD (v))
Then the following refinements of formulae hold due to Lemma 2:
. [[“‘Pl]]glp =1- [[%]]glp C1- [[%]]ZQ = [[_'(pl]]glg

Q

P o P P . Q Q0 _
* llos Agallzeze = min{lledize. le2llZe} © mm{[[tpl]]zlg, [[<pz]]ZZQ} = [lo1 A <pz]lzlgUZZQ

Q

P _ P P Q Q y_
 [p1Vv (pZ]]Zf’uZ{’ = max{[[%]]zlp, [[902]125} C max{[[q)l]]zlgs [[902]]229} =[lo1 Vv 402]]ZIQUZZQ

e [Fo: q)l]]glp = max{[[e(v) A qo]]gf),v'—)p :p€Op} C
C max{le@) A olSo g€ ref(P) =130 o],

ZIQUUH

e [Vo: (pl]]glp = min{[[e(v) V (p]]glp,v'_)p :peOp}C
C min{[le(v) V qo]]Q . cq€ref(p)} =[[Vo: <P1]]§Q

ZlQUUD—)

Since all these refinement relations hold, the statement of the theorem is now a direct consequence
of Lemma 1. [|

A. APPENDIX

A.4 Refinement operations

Theorem 14 (Refinement operations ensure refinement) Let P be a partial model and op be

a refinement operation. If Q is the partial model obtained by executing op on P (formally, P 2, Q)
then P C Q.

Proof We split the proof cases along the refinement operations. We investigate changes in the truth
evaluation of different predicates implied by executing these operations, since each partial model is a
refinement of itself if no changes occur.

« In case of concretize(p, val):

— For each class predicate p = C;(0), only operation concretize(p, val) can potentially change
its value to 1(or 0) if [C;(0)]]¥ = #%.But then [C(0)]]* = % C [C(0)]€ = 1(or [C(0)]€ = 0),
which satisfies the refinement relation.

— Reasoning is identical for each reference predicate R(oy, 03).

— An equivalence predicate 0; ~ 0; can be manipulated by operation concretize(p, val) to
set an % value to 1 (for self-loop equivalence predicates) or to either 1 or 0 (for non-self
loops). In this case, the refinement conditions are trivally satisfied.

« When splitAndConnect(o, mode) is applied then two 0; and 0, nodes of Q will be derived from
a single node o in P.

— At-least-two mode:
Since [Jo ~ o]’ = % and both [[o; ~ 01]¢ = % and [lo, ~ 02]]° = %, but [[o; ~ 0,]¢ = 0,
the refinement condition is satisfied.

— At-most-two mode:
Since [[o ~ o]’ = % and both [Jo; ~ 01]° = 1 and [Jo, ~ 0,]° = 1 while [Jo; ~ 0,]° = %,
the refinement condition is satisfied.

Corollary 5 (Open derivations does not lead to 1) Let P, RSN Py be an open derivation
sequence of refinement operations wrt. ¢. Then for each 0 < i < k, [¢]F" < u.

Proof This is a direct consequence of Theorem 13. If we indirectly assume that [¢]|7* < % but [¢]*" =
1 for some P; along the derivation sequence, then all subsequent partial models P; derived from P;
(j > i) should be [[q)]]P ? = 1 which contradicts our assumption for j = k. |

Corollary 6 (Soundness of model generation) Let P, OPr Ok, Py be a finite and open

derivation sequence of refinement operations wrt. ¢. If Py is a concrete instance model M (i.e. P = M)
then M is consistent (i.e. [¢]™ = 0).

Proof We require that [[¢]]" < % for each i which includes the last partial model P. Since Py is a
concrete instance model, thus the 2-valued and 3-valued evaluation of ¢ must be identical. Therefore
[[(p]]M =1or [[(p]]M = 0, but only the latter case satisfies our assumption that [[(p]]P k<n. [|

10

A.4. Refinement operations

Theorem 15 (Finiteness of model generation) For any finite instance model M, there exists a

. L op1;- - -;0Pk . . .
finite derivation sequence Py ———— Py of refinement operations starting from the most generic

partial model Py leading to P = M.

Proof Sketch
An instance model can always be generated:

[1] Assume that M contains exactly n objects. Since Py consists of a single object, we need to create
n — 1 new objects as part of the construction.

[2] Execute action splitAndConnect(o, mode) in at-least-two mode for n — 1 times, thus n (uncertain)
objects will be available.

[3] Concretize all [Jo ~ o]"* = 1and [[o; ~ 0,]]F* = 0 (where 01 # 0,).

[4] Concretize all class and reference predicates in accordance with M by setting appropriate values
in concretize(p, val) to 1 or 0. As a result, P,,_; is gradually refined into a P which no longer
contains an % value, thus it is an instance model.

Model generation is always finite:

[1] First, note that only splitAndConnect(o, mode) actions are able to create new objects,
concretize(p, val) operations only fix values. Moreover, there are only finite number of uncertain
values of p which still needs to be concretized.

[2] The only recursive (thus potentially infinite) computation is carried out when action
splitAndConnect(o, mode) is executed in at-least-two mode.

[3] Assume that in our computation, splitAndConnect(o, mode) has been applied in at-least-two
mode n times, thus P, contains at least n + 1 objects, while our instance model has only n
objects. We claim that this is a dead end derivation, thus we can cut it off and backtrack.

[4] Due to the specification of the at-least-two model, all these objects are non-equivalent to each
other, i.e. [o; ~ 02]]P n = 0 for 0; # 0y, thus they can never be merged during concretization.
Now any consistent concretization of P, will contain at least n + 1 different objects, which
contradicts our indirect assumption that M has exactly n objects.

Theorem 16 (Completeness of model generation) For any finite and consistent instance

: . : : : 0p1;. - -;0p,
model M with [@]M = 0, there exists a finite open derivation sequence P, 7, P of re-

finement operations wrt. @ starting from the most generic partial model Py and leading to Py = M.

Proof First, M is derivable by a finite derivation sequence due to Corollary 8. Now, for an indirect

proof, let us assume that [¢]¥ = 0 yet there exist some partial model P; along the finite deriva-

. op1;...;0pP;i OpPi+1s---30Pk P; .
tion sequence P, P; Pr where [[¢]I"? = 1. However, the properties of under-

approximation (in Theorem 13) imply that for all refinements P; of P;, [o]?7 = 1. But since M is also a
refinement of P; (as each refinement operation ensures refinement, see Theorem 7), [o]™ = 1, which
is a contradiction to our indirect assumption, thus it concludes the proof. |

11

A. APPENDIX

Theorem 17 (Decidability of model generation in finite scope) Given a graph predicate ¢
and a scope n € N, it is decidable to check if a concrete instance model M exists with |Oy| < n
where [[qo]]M = 0.

Proof (Sketch) While Theorem 9 ensures that there exists one finite derivation path, this does not
directly guarantee that model generation would terminate along all derivation paths. Fortunately, the
designated target scope n for the instance model implies an upper bound (i.e. scope) for the length of
operation sequences that derive instance models of size n.

For any model M with n nodes and r edges, one can derive an operation sequences with n
splitAndConnect operations followed by r - n? concretize operations. Our refinement operations ensure
that any derivation longer than n + r - n? can be terminated as even smallest concrete instance model
will exceed the target model scope n.

[|

Corollary 7 (Incrementality of model generation) Let us assume that no consistent models
M" exist for scope n, but there exists a larger consistent model M™ of size m (where m > n) with

OPi+1;---30

[[qo]]Mm = 0. Then M™ is derivable by a finite derivation sequence P} P P where P! =

M™ starting from a partial model P} of size n.

Proof As an indirect proof, let us assume that there exists a consistent model M™ of size m while

there are no consistent models M" up to scope n, but no derivation sequence P}
exists which would yield M™ = P starting from a partial model P} of size n.
Since M™ is consistent and finite, it is derivable thanks to the completeness theorem (Theorem 9)

. . 0p1;---:0p1 .
along some other derivation sequence Py ———— P where P = M™. Since each refinement
operation used in opy; . . . ; op; increases the size of P; with at least one, the derivation sequence should

reach a partial model P} of size n.

With the trivial concretization (of turning all % values to 1for all class and reference predicates and
to 0 for equivalence predicates), P}' can be turned into an instance model M} which is also exactly
of size n. Now if M} is consistent, then our assumption is violated that no consistent models exist

. . Opjs---:0P1 . . — L.
for scope n Otherwise, the tail of P} —/ P is a designated derivation sequence, which is a
contradiction to our indirect assumption. |

Corollary 8 (Completeness of refutation) If all derivation sequences are closed for a given
scope n, but no consistent model M" exists for scope n for which [[o]]™" = 0, then no consistent
models exist at all.

Proof As an indirect proof, let us assume that a consistent model M™ exists for some scope m > n,
while all derivation sequences are closed for a given scope n and no consistent models M" exist for
that scope.

. 0P13---30Pm
Since M™ is consistent and finite, then there shall be a derivation sequence P, S N P,

where P™ = M™. However, all derivation sequences are closed for a given scope n, which holds for
the prefix of this derivation sequence as well. Thus there shall be an intermediate partial model Py
along that sequence where (1) either no further refinement operations are executable or (2) ¢ has a
match in Py ie. [¢]]’* = 1.In the former case, P would not be reachable by refinement operations. In
the latter case, all refinements of Py (including P™ = M™) would have a match of ¢ due to Theorem 13.
This is a contradiction which concludes our proof. |

12

A.5. Change partitioning of view models

A.5 Change partitioning of view models

A.5.1 Affected parts of view model changes

Table A.3 contains the calculation of affected parts in case of modifying a view model My. When a
view object v is removed, the affected parts are determined by its defining pattern ¢ and its activation
Z that is stored in the trace model T. When a reference ref is removed from My, the affected part
of the source v; and the target v; are returned. When a new view element is created, then there are
obviously no activations of forward rules.

A.5.2 Affected parts of pattern activations

A pattern predicate ¢ with its activation Z marks the union of the bodies defined in Table A.4. Each
body consists of several conditions const that may introduce additional internal variables Params;.
Hence, an activation of a body is extended with Z; all the possible bindings of internal variables. The
affected part of a body body is the union of the affected parts of each constraints const.

A.5.3 Affected parts of source constraints

Affected parts of source constraints are defined in Table A.5. A class (class) condition returns the
object that is bound to its parameter along activation Z. Similarly, attribute(attr) and reference(ref)
conditions (together feature conditions feature(feat) select respective parameters (x and both x, y)
from Z. A path(feat; . ..feat,) condition can be split into several feature(feat) to calculate its affected
part. For equal(=) and not equal(#), the bound objects of parameters from both side of the operators
are returned.

A pattern ¢ may call another pattern ¢’ (find[¢’] or transitively with find+[¢’]) by mapping
symbolic parameters Params, of the called pattern to concrete values of the caller. Thus given a
binding : Params,y — Params,, a match Z’ is composed from Z by getting objects from the original
activation Z, formally:

Z'oZ = Z': Z(binding(var’)) — Owmg, var’ € Params),

However, a negative application condition (neg find[p’]) is separated into two cases: if the sub
predicate ¢’ does not introduce any internal variable, the affected part returns the referenced objects
from the activation Z. Otherwise, we restrict the affected part to all the objects that has the same type
as the introduced internal variables have.

A.5.4 Categorization of affected source model objects

The affected objects of the source model can be categorized into three groups:

. Mg : neither changeable nor removable: It includes all objects of Mg which are not in the affected
part of the change from the view A e+, .

ME = Ms — affected(Apicw)

. MSC : changeable but non-removable objects: It includes all objects in the affected part of the
change from the view A, .., Which are responsible for the existence of other activations.

MSC = affected(Ayjew) — {0]o referred by Ty}

13

A. APPENDIX

—class(v)—affected(¢(2)) : lookupy s() = @(Z)
—ref(vy, vy)—affected(¢(2)) : lookupy(vi, v2) = ¢(2)
—attr(v, val)—affected(¢(2)) : lookupy (v, v2) = ¢(2)

Table A.3: Affected changes of view model
¢(Z) — | affected(body;, Z)
body(Z) — | affected(cond;(Z + Z;))

Table A.4: Affected activations
class[objl, (Z)—{00p;|Z(0bj) = 0op;}
attr[x, val], (Z)—{ox|Z(x) = 0}
reflx,], (Z)—{ox, 04| Z(x) = 0x, Z(y) = 0y}
affected(attr(m)) if feat is attr
feat(m)—) '
affected(ref(m)) if feat is ref
feat; ... feat,[x, y](m)—J affected(feat;(m))
x=y,(2) _ _
x ¢ y’ (Z)_>{OX’ OylZ(x) = Ox, Z(y) - Oy}
find[p'|(m)—affected(p’(m’)),Z" o Z
find*[p’(m)— affected(p’(m’)), Z' o Z

, {ox|m(x) = oy, }, if no inner var
neg find[p|(m)—> , ,
{oi|o;.type € inner types of p’}

Table A.5: Affected changes of source constraints

. MSO : changeable and removable objects: All objects in the affected part of the change from the
view Ayjew Which are not responsible for the existence of any other activations.

Mg = affected(Ayiew) — Mg

14

	1 Introduction
	1.1 Domain-specific modeling languages
	1.2 Towards the validation of modeling environments
	1.2.1 Architecture of a modeling environment
	1.2.2 Language level validation
	1.2.3 Testing modeling environments
	1.2.4 Backward view synchronization
	1.2.5 Graph model generation

	1.3 Challenges in model generation
	1.4 Research method
	1.4.1 Avionics Architecture
	1.4.2 Yakindu Statecharts
	1.4.3 Remote Healthcare System

	1.5 Contribution overview and thesis structure

	2 First order relational logic
	2.1 Syntax of first order relational logic
	2.2 Semantics of relational logic
	2.2.1 Theories and models
	2.2.2 Approximations

	2.3 Restrictions of relational logic
	2.4 Extensions of relational logic
	2.5 Summary

	3 Mapping of Domain-Specific Languages to Logic
	3.1 Modeling preliminaries
	3.1.1 Metamodeling
	3.1.2 Instance models
	3.1.3 Model queries

	3.2 Transformation overview
	3.2.1 Functional overview of the transformation
	3.2.2 Foundations of the transformation
	3.2.3 Approximation techniques

	3.3 Transforming metamodels and partial snapshots
	3.3.1 Objects and Primitive Values
	3.3.2 References and Attributes
	3.3.3 Transformation of instance models as partial snapshots

	3.4 Transforming constraints to first order logic
	3.4.1 Structure of graph queries
	3.4.2 Constraint Mapping
	3.4.3 Patterns for advanced DSL constructs
	3.4.4 Expression power of graph patterns

	3.5 Summary

	4 Graph Constraint Evaluation over Partial Models by Constraint Rewriting
	4.1 Introduction
	4.2 Motivating example: Validation of partial models
	4.3 Formalism of 3-valued partial models with interpreted equivalence and existence
	4.3.1 3-Valued Logic
	4.3.2 Signature of interpreted equivalence and existence
	4.3.3 Partial models with 3-valued logic and interpreted and symbols
	4.3.4 Refinement and concretization
	4.3.5 Evaluating predicates on 3-valued partial models

	4.4 Rewriting predicates
	4.4.1 Atomic must and may expressions
	4.4.2 Complex must and may expressions

	4.5 Transforming MAVO uncertainty to 3-valued partial models
	4.6 Scalability evaluation
	4.7 Related work
	4.8 Conclusion

	5 A Graph Solver for the Automated Generation of Models
	5.1 Introduction
	5.2 Modeling preliminaries
	5.2.1 Partial models
	5.2.2 Defining constraints over partial models

	5.3 Automated graph generation
	5.3.1 Refinement operations for partial models
	5.3.2 Consistency of model generation by refinement operations
	5.3.3 Decision rules
	5.3.4 Unit propagation rules
	5.3.5 Exploration
	5.3.6 Strengths and limitations

	5.4 Experimental evaluation
	5.5 Related work
	5.6 Conclusion

	6 Incremental Graph Model Generation with Logic Solvers
	6.1 Introduction
	6.2 Preliminaries
	6.3 Incremental model generation by approximations
	6.3.1 Metamodel pruning
	6.3.2 Constraint pruning and approximation
	6.3.3 Incremental Model Generation by Iterative Solver Calls

	6.4 Measurements
	6.4.1 Configurations
	6.4.2 Measurement setup
	6.4.3 Measurement results
	6.4.4 Analysis of results

	6.5 Related work
	6.6 Conclusion

	7 Diverse Graph Model Generation With Logic Solvers
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 Motivation: testing of DSL tools
	7.2.2 Fault model and detection

	7.3 Model diversity metrics for testing DSL tools
	7.3.1 Neighborhood shapes of graphs
	7.3.2 Metrics for model diversity

	7.4 Evaluation
	7.5 Related work
	7.6 Conclusion

	8 Change Propagation of View Models with Logic Solvers
	8.1 Introduction
	8.2 View models
	8.2.1 Motivating scenario
	8.2.2 Definition of view models
	8.2.3 Characterization of query-based transformation of view models

	8.3 Backward change propagation by logic solvers
	8.3.1 Overview of approach
	8.3.2 Change partitioning
	8.3.3 Model generation by logic solvers
	8.3.4 Properties of our approach

	8.4 Experimental evaluation
	8.4.1 Change propagation problem generator
	8.4.2 Measurement setup
	8.4.3 Measurement result
	8.4.4 Increasing model size
	8.4.5 Increasing target change size
	8.4.6 Incremental vs. full generation
	8.4.7 Limitations
	8.4.8 Threats to validity

	8.5 Related work
	8.6 Conclusion

	9 Validation of Complex Domain-Specific Languages
	9.1 Introduction
	9.2 Running example: Avionics modeling environment
	9.2.1 Motivating scenario
	9.2.2 Metamodeling
	9.2.3 Derived features
	9.2.4 Well-formedness constraints
	9.2.5 Partial snapshots

	9.3 Overview of the approach
	9.3.1 Functional overview of the approach
	9.3.2 Consistency check
	9.3.3 Subsumption check
	9.3.4 Equivalence check
	9.3.5 Completeness and ambiguity check of DFs

	9.4 A case study on DSL validation
	9.4.1 Overview of DSL validation workflow
	9.4.2 Derived type validation
	9.4.3 Derived reference validation
	9.4.4 Validation of well-formedness constraints
	9.4.5 Equivalence check
	9.4.6 Model generation for partial snapshots

	9.5 Runtime measurements
	9.5.1 Measurement environment
	9.5.2 Evaluation of language-level validation
	9.5.3 Model generation evaluation

	9.6 Related Work
	9.7 Conclusion

	10 Summary of the Research Results
	10.1 A graph solver for model generation
	10.2 Language-level validation for domain-specific languages
	10.3 Iterative model generation techniques for modeling tools
	10.4 Future work

	Publications
	Publications linked to the theses
	Additional publications (not linked to theses)

	Bibliography
	A Appendix
	A.1 Transforming OCL invariants to first order logic
	A.1.1 An overview of OCL transformation
	A.1.2 Collections

	A.2 Implicit equivalence check rewriting
	A.3 Partial models
	A.4 Refinement operations
	A.5 Change partitioning of view models
	A.5.1 Affected parts of view model changes
	A.5.2 Affected parts of pattern activations
	A.5.3 Affected parts of source constraints
	A.5.4 Categorization of affected source model objects

