
From BPEL to SAL And Back:
a Tool Demo on Back-Annotation with VIATRA2

Ábel Hegedüs, István Ráth and Dániel Varró
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary

Email: {hegedusa,rath,varro}@mit.bme.hu

Abstract—Model-driven analysis aims at detecting design
flaws early in high-level design models by automatically de-
riving mathematical models. These analysis models are sub-
sequently investigated by formal verification and validation
(V&V) tools, which may retrieve traces violating a certain
requirement. Back-annotation aims at mapping back the results
of V&V tools to the design model in order to highlight the real
source of the fault, to ease making necessary amendments.

In this tool demonstration we present an end-to-end V&V
tool for BPEL business processes that includes complex back-
annotation support for representing V&V results as process
execution traces in the design environment.

Keywords-back-annotation; traceability modeling; dynamic
traceability

I. OVERVIEW

Model transformations are increasingly involved in var-
ious fields of software engineering, from business process
modeling through formal verification to code generation.
The models acting as source and target for the transforma-
tions often represent different domains, thus identification of
correspondence between them is non-trivial. Although in the
field of critical systems and services the precise recording
of traceability information is a strict requirement, in most
industrial environments only ad-hoc solutions are used for
handling this information.

Throughout the lifecycle of a system or product trace-
ability information is generated and used for various tasks.
The correspondence records are most often created at the
time when the target model is produced using the source
model during the execution of the transformation. This
information can be later used for validation, verification,
change management, maintenance or back-annotation. It is
important to note that the traceability information itself may
be accessed with model transformations thus model-based
traceability solutions are advantageous.

Model-driven analysis (illustrated in Figure 1) aims at
revealing conceptual flaws early in the design process.
In the typical approach, high-level design models (UML,
BPEL [1], SysML, etc.) are automatically transformed into
mathematical models (e.g. Petri nets, transition systems,
process algebras) to carry out analysis by formal methods.

Figure 1. Methodological overview

The results of the analysis are then attempted to be back-
annotated to the original source model to highlight flaws
directly in the design models.

In case of dynamic modeling languages (e.g. statecharts,
workflows), the back-end formal analysis tools frequently
carry out simulation or model checking to ensure the func-
tional correctness of the design using analysis models like
Petri nets, process algebras or labeled transition systems. As
a result, back-end analysis tools retrieve an execution trace
(run) of the system as a designated or counter example.

A. Back-annotation

Counter-example traces can be very complex, resulting in
well over 100 elementary steps in industrial scenarios. As a
result, systems designers need to bridge a significant concep-
tual gap when they try to interpret what a counter-example
means in the original design model. Back-annotation aims at
automatically mapping back the results of V&V tools to the
original design model in order to highlight the real source
of the flaw.

Due to the semantic differences between high-level design
models and lower-level formal analysis models, we argue
in this paper that the general back-annotation problem
aiming to map a trace of a target model to a trace in
the source model can be very complicated. This is due

Figure 2. BPEL Verification overview

to the fact that most traditional source-to-target (design-
to-analysis) model transformations carry out an abstraction,
thus they are not reversible. However, in order to completely
hide the underlying formal model from systems engineers,
model-driven analysis need to provide automated support
the back-annotation of target (analysis) models to the source
(design) model.

Unfortunately, existing back-annotation approaches are
either dedicated to the source and target languages, or they
make strong assumptions on the back-annotation problem.

B. BPEL to SAL and back

In the demonstrated tool, BPEL business processes can be
verified against requirements and the results are presented
as an execution run of the business process. Since the
BPEL standard does not define precise formal semantics
for business process, formal languages (such as Petri nets
or labeled transition systems) are used to formalize their
behavior. In our tool, BPEL processes are transformed (using
the VIATRA2 framework [2]) to the labeled transition system
language of the Symbolic Analysis Laboratory (SAL) [3]
model checking framework (illustrated in Figure 2). Then
the analysis is carried out using SAL and results in a
counter-example which contains a sequence of transitions
which violate a requirement. The counter-example is back-
annotated to a BPEL execution and can be replayed in the
high-level domain.

We developed a model-based approach for persisting,
handling and back-annotating execution traces (e.g. counter-
examples, simulation traces). The foundation of the approach
is a generic metamodel for execution traces which can
describe the traces of various discrete event-based languages.
On top of this generic metamodel, we defined language-
independent methods for navigating through traces, and
replay their effects on the model itself (i.e. the SAL transi-
tion system). Furthermore, the back-annotation of traces is
possible by mapping the steps of the analysis trace to steps
of the original trace [4].

Generic trace metamodel: While execution traces are
traditionally interpreted as a sequence of elementary oper-
ations, in our approach, we use hierarchical trace models

(see Figure 2) consisting of micro steps (atomic operations,
m) and macro steps (complex operations, M), which is
compliant with recent approaches [5] to define semantics
for big-step DMLs like statecharts.

In the example illustrated in Figure 2, a macro step of
the counter-example is firing a transition (e.g. 1) in the SAL
system, while the micro steps are variable assignments (e.g.
variable B changes from St to R). In the BPEL execution
trace, a macro step is some activity event (e.g. B starts, A
finishes), while micro steps are either activity state changes
(Act) or variable manipulations (V ar).

Trace replay and Visualization: The demonstrated tool
is able to replay the persisted execution traces of both
analysis and design models as long as they conform to the
generic metamodel. Replaying can be navigated through a
user interface component of the Eclipse framework where
arbitrary BPEL processes and associated traces are handled.
The tool also includes an intuitive graphical representation
of execution trace replaying with a modified Eclipse BPEL
Designer [6]. The activities and variables of the BPEL
process are colored based on their runtime state.

C. Target audience amd benefits of using the tool

We believe that our tool demonstration can be beneficial
to the following groups:

• Researchers and industry members with an interest in
formal analysis and verification, as our tool includes
both a V&V method and an intuitive approach to rep-
resent analysis results in the design language context.

• Users of the BPEL language and generally process
modeling practitioners, who can benefit from a presen-
tation on how processes can be verified design-time
using hidden formal methods.

• Model transformation enthusiasts, who can gain an
insight on the use of the VIATRA2 framework in a com-
plex scenario including back-annotation and modeling
of execution traces.

The benefits of using the presented tool is the ability to
exploit the features of hidden formal methods for verifying
business processes with precise formal models while being
able to examine the results in the original design perspective.

II. TOOL DEMO CONTENTS

The tool demonstration is separated into three main parts.
First a short preliminary part introduces the main languages
and techniques used through the demonstration. Next a
longer part deals with the presentation of the tool itself
and its uses in a similar order to model-driven engineer-
ing methodology (see Figure 1). Finally, the underlying
model transformation techniques are detailed using the
VIATRA2 framework.

A. Preliminaries

1) BPEL Overview
First, we give a brief introduction on the BPEL process
description language and show the usage of the Eclipse
BPEL Designer developer tool with creating a sample
business process that we will use as an example in the
rest of the tutorial.

2) VIATRA2 basics
Here, we introduce the VIATRA2 model transforma-
tion framework including its model space, metamod-
eling capabilities, and transformation engine. We use
the created BPEL process as an example to show how
external models are imported into the model space
as static models and how VIATRA2 is used for code
generation to create external files.

3) Model checking with SAL - a quick overview
Finally, we present the SAL model checking frame-
work and its transition system description language.
We show how linear temporal logic theorems are used
to define requirements on the transition systems and
are verified by the SAL model checker. Furthermore,
we focus on the counter-examples that are the result
of model checking and how they represent execution
traces of the SAL model.

B. Applying hidden formal methods

1) Verification Tool UI and features
First, we show our approach in creating a user inter-
face for hidden formal methods. The created tool is
embedded in Eclipse and incorporates all the features
detailed above. BPEL processes can be transformed
to SAL and common requirements can be defined
without expertise in temporal logic. Requirements can
be verified using the SAL model checker from the
same tool and the results can be viewed as well.

2) Customizing the modeling tool
The BPEL Designer tool provides only process def-
inition support, it cannot show the dynamic state
of a process instance. Here, we briefly outline how
we modified the tool to be able to give graphical
representation to the dynamic state of BPEL processes.

3) Trace handling tool and features
Finally, we present the execution trace controller tool
that uses the output of the SAL2BPEL transformation
to update the dynamic state of the BPEL process
instance in the customized BPEL Designer tool.

C. Underlying VIATRA2 technology highlights

1) Metamodeling
First, we show how the operational semantics and
the dynamic behavior of a language can be used to
define metamodels in which trace information can
be persisted during simulation execution or using a
counter-example after model checking.

2) Transformation development
In this part, we present the transformation language
of VIATRA2 and its main features which are used to
implement the trace replaying and back-annotation.

3) Visualization
Finally, we show the visualization capabilities of the
framework, that can be used for visualizing model and
pattern graphs. Domain-specific graph layouts help
in debugging the transformations during development,
while they are also used for visualizing static and
dynamic traceability models in order to aid verification
and back-annotation [7].

III. TOOL AVAILABILITY AND MATURITY

The demonstrated tool is partially the result of the
SENSORIA European project where it was also used as a
demonstration tool [8] for the traceability visualization and
back-annotation capabilities of the VIATRA2 framework.
The tool itself is the result of a year of research and
development, and is available as an Eclipse update site, since
it is entirely developed as Eclipse components. Although
the SAL model checker framework is not Eclipse-based and
has to be installed and configured independently, it is a
completely free tool available from the Symbolic Analysis
Laboratory Website1. A simple webpage describing the tool
and the installation procedure is available2.

IV. SCREENSHOTS FROM THE TOOL

In this section we present the actual user interface of the
BPEL Verification and Animation tool and the underlying
VIATRA2 framework through screenshots.

Figure 3 shows the user interface of the BPEL Verification
Tool, where the structural transformation (from BPEL to
SAL) is executed and requirements can be defined, which are
then verified against the business process. Generic require-
ments can be selected from a drop-down list thus relieving
the user from using Linear Temporal Logic [9] expressions.
Process-specific requirements can be captured using the LTL
expression field, which also includes a basic syntax checker.

The tool provides an option for choosing either the sym-
bolic or the bounded model checker of the SAL framework
(which may have different performance on the same LTL
expression). Finally, verification of a given requirement can
be started with the Check Property button. Since model
checking may take a long time for complex processes, the
verification runs as a background task.

Figure 4 shows a part of a counter-example returned
by the SAL model checker for a requirement that is vio-
lated by the business process. The LTL expression for the
requirement (variable is never read while uninitialized) is
highlighted in the upper part. The steps of the counter-
example are presented in a textual format (retrieved straight

1http://sal.csl.sri.com/
2http://mit.bme.hu/∼hegedusa/exectraces/

Figure 3. Aided business process requirement definition

from the SAL output) at this stage. Each step (e.g. Step 90-
91) contains information about which transition fired (and
where it is located in the transition system description)
and the values of variables that changed as a result of the
transition. The counter-example can be exported at any time
into a file with a click of a button (Export Last Trace).

Figure 4. Verification results before back-annotation

Figure 5 shows the BPEL Animation Controller view,
where exported counter-examples (traces) can be opened
(Load Trace). After the textual file is processed, the
VIATRA2 framework initializes the trace models and the
back-annotation transformation. When the framework is
ready, the navigation buttons can be used to animate the

process execution. Apart from step-by-step navigation (Step
back/forward), the tool also includes continuous animation
mode (Animate!/Stop), quick return to the initial state (Reset)
and animation speed-up (Fast stepping) for easier handling
of long traces. Finally, the underlying model space can be
saved for further use (Save Modelspace).

Figure 5. Animation controller

Figure 6 shows the customized BPEL Designer at a given
state during the animation of an example BPEL process.
The activities and variables of the process are colored
depending on their dynamic state. Thus the counter-example
of the model checker can be observed visually in the design
perspective as an execution of the BPEL process. For the
activities, light blue means startable state, light green active,
dark green finished. For variables, yellow is uninitialized
state, green is correct and red is faulty.

Figure 6. Animation of execution trace

Figure 7 shows the default model space editor of the
VIATRA2 framework. Various models are stored in a con-
tainment hierarchy visualized in a tree view and model
transformation programs can operate on the whole model
space. Note that the models for the BPEL process and SAL
systems are in different subtrees and the static, dynamic and
trace models are separated as well. The metamodels which
the various models conform to are also stored in the same
model space.

Figure 7. Modelspace view (BPEL and SAL models)

Figure 8 shows the static traceability model presented us-
ing a domain-specific layout through the model space visual-
ization component of the VIATRA2 frameworkvisualization
framework. A relevant subset of BPEL model elements are
grouped on the left, the records of the static traceability
model are placed in the middle, while corresponding SAL
model elements are displayed on the right.

Figure 8. Visualized static traceability model (BPEL and SAL models)

Figure 9 shows the dynamic traceability model using
the same visualization component, though with a different
layout. The steps and substeps of the BPEL trace model are
grouped on the left, while the steps of the SAL trace model,
which are used in the back-annotation transformation are
displayed on the right.

ACKNOWLEDGMENT

This work was partially supported by the EU project
SecureChange (ICT-FET-231101) and CERTIMOT
(ERC HU 09).

Figure 9. Visualized dynamic traceability model (BPEL and SAL traces)

REFERENCES

[1] OASIS, “Web Services Business Process Execution Language
Version 2.0 (OASIS Standard),” 2007, ”http://docs.oasis-open.
org/wsbpel/2.0/wsbpel-v2.0.html”.

[2] Fault Tolerant System Research Group, BME, “VIATRA2
Model Transformation Framework, An Eclipse GMT Subpro-
ject,” http://www.eclipse.org/gmt/VIATRA2/.

[3] S. Bensalem, V. Ganesh, Y. Lakhnech, C. M. noz, S. Owre,
H. Rueß, J. Rushby, V. Rusu, H. Saı̈di, N. Shankar, E. Singer-
man, and A. Tiwari, “An overview of SAL,” in LFM 2000:
Fifth NASA Langley Formal Methods Workshop, C. M. Hol-
loway, Ed., Hampton, VA, jun 2000, pp. 187–196.

[4] Á. Hegedüs, I. Ráth, and D. Varró, “Back-annotation of Simu-
lation Traces with Change-Driven Model Transformations,” in
Proceedings of the Eigth International Conference on Software
Engineering and Formal Methods, 2010, accepted. http://home.
mit.bme.hu/∼hegedusa/assets/publ/sefm10-back-ann.pdf.

[5] S. Esmaeilsabzali and N. A. Day, “Prescriptive seman-
tics for big-step modelling languages,” in Fundamental Ap-
proaches to Software Engineering, 13th International Confer-
ence, FASE 2010, Proceedings, ser. LNCS, D. S. Rosenblum
and G. Taentzer, Eds., vol. 6013. Springer, 2010, pp. 158–172.

[6] “Eclipse BPEL Designer, An Eclipse Project,” http://www.
eclipse.org/bpel/.

[7] Á. Hegedüs, Z. Ujhelyi, I. Ráth, and Á. Horváth, “Visualization
of Traceability Models with Domain-specific Layouting,” in
Proceedings of the Fourth International Workshop on Graph-
Based Tools, 2010, accepted.

[8] L. Gönczy, Á. Hegedüs, and D. Varró, “Methodologies for
Model-Driven Development and Deployment: an Overview,” in
Rigorous Software Engineering for Service-Oriented Systems:
Results of the SENSORIA project on Software Engineering
for Service-Oriented Computing, M. Wirsing, Ed. Springer-
Verlag, 2010, to appear.

[9] E. A. Emerson, Temporal and Modal Logic. Elsevier, 1990,
vol. B, Formal Models and Semantics, pp. 995–1072.

St

2

1

St

R

R

R

3

F

F

F

BPEL SAL

Tr 3Tr 2Tr 1
next

Macro step

C PrMicro step

substep

AnalysisCounter-example

A

B

C

DS

AS DC

Act Var

B

BPEL execution trace

B

C

Pr

B

Transformation

Back-
annotation

Replay

BPEL process

BPEL to SAL and Back: An End-to End Business Process Verification Tool
Ábel Hegedüs, István Ráth, and Dániel Varró (Budapest University of Technology and Economics)

{hegedusa,rath,varro}@mit.bme.hu

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group
H-1117 Budapest, XI. Magyar Tudósok krt. 2
Phone: (+36 1) 463 3579

Business processes orchestrated from web-services using the Business Process Execution Language standard (BPEL) are widely used in business-
critical and high-availability systems. In order to detect design flaws early, various approaches exist for transforming BPEL processes into
mathematical models on which analysis (verification & validation) can be carried out, e.g. with the Symbolic Analysis Laboratory (SAL) framework. The
results of the analysis (often a sequence of steps, i.e. counter-example or trace) are back-annotated into the original BPEL process, where they can be
replayed for the developer. By providing automated solutions for these steps, business process verification is possible using hidden formal methods.

Publications & Links

1

23

4

The initial input of the tool is a BPEL process description (stored as an XML file), often
created using a graphical editor, which is imported into the model space of the VIATRA2
model transformation framework using a Java-based importer. The resulting BPEL model
is transformed into a transition system model, then the SAL description is created from
this model using code generation. The model checking capabilities of the SAL framework
is used to verify the BPEL process against requirements (defined in Linear Temporal
Logic). The results (counter-example) are imported into VIATRA2 and transformed into
BPEL trace (back-annotation). Traceability information created during the
transformation is stored as a model and is used repeatedly throughout the method.

Methodological overview

The complete verification and animation tool is built using the Eclipse
framework by integrating existing techniques and creating new
components and links between the parts of the toolchain. The
components on the left side of the figure provide the user interface and
are connected with two controllers. The controllers handle the low-
level transformation and verification tools in order to prepare data for
the user interface views.

· Transform BPEL business processes into a precise and formal
SAL transition system.

· Guided definition of generic and process-specific requirements.

· Automated model checking of defined require-ments using the
SAL framework.

· Model-based persistence and handling of SAL and BPEL
simulation traces.

· Automated back-annotation of SAL simulation traces into BPEL
execution traces.

· User-guided, graphical animation of BPEL execution traces
based on SAL traces.

· Graph visualization of static and dynamic traceability models
using domain-specific layout algorithms.

Tool featuresIntegrated toolchain

SEFM’2010
13-16th September,Pisa

· Tool available at:
http://mit.bme.hu/~hegedusa/exectraces/

· VIATRA2: An Eclipse GMT Subproject:
http://www.eclipse.org/gmt/VIATRA2/

· Symbolic Analysis Laboratory: http://sal.csl.sri.com

· Eclipse BPEL Project: http://www.eclipse.org/bpel/

· L. Gönczy, Á. Hegedüs, and D. Varró, “Methodologies for Model-Driven Development and Deployment:
an Overview,” in Rigorous Software Engineering for Service-Oriented Systems: Results of the SENSORIA project on Software Engineering

for Service-Oriented Computing, M. Wirsing, Ed. Springer-Verlag, 2010
· Á. Hegedüs, I. Ráth, and D. Varró, “Back-annotation of Simulation Traces with Change-Driven Model

Transformations,” in Proceedings of the 8th International Conference on Software Engineering and Formal Methods, 2010
· Á. Hegedüs, Z. Ujhelyi, I. Ráth, and Á. Horváth, „Visualization of Traceability Models with Domain-specific

Layouting”, in Proceedings of the 4th International Workshop on Graph Based Tools, 2010

BPEL

Designer

Verification

UI

Animation UI

Model

Controller

SENSORIA

Development

Environment

Verification

Controller

SAL

Integration

VIATRA

Integration

BPEL2SAL

Tool

SAL

Framework

VIATRA

Framework

Export

Manager

Importers

Functions

Existing Tool

New Tool

Existing
connection

New connection

Legend

Service call

λ λ λ

μ μ μ

Business
Process
Editor

(Eclipse)

BPEL model
(VIATRA2)

Code
generation
(VIATRA2)

Model
transformation

(VIATRA2)

Model
checking

(SAL)

BPEL
Importer

(Java)

BPEL
description

(XML)

Transition
system
model

(VIATRA2)

SAL
description

(text)

Counter-
example

(text)

Back-
annotation
(VIATRA2)

Execution
trace
(text)

Traceability
information

(VIATRA2)

Requirement
definitions

(text)

