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Abstract—Model-driven analysis aims at detecting design
flaws early in high-level design models by automatically de-
riving mathematical models. These analysis models are sub-
sequently investigated by formal verification and validation
(V&V) tools, which may retrieve traces violating a certain
requirement. Back-annotation aims at mapping back the results
of V&V tools to the design model in order to highlight the real
source of the fault, to ease making necessary amendments.

Here we propose a technique for the back-annotation of sim-
ulation traces based on change-driven model transformations.
Simulation traces of analysis models will be persisted as a
change model with high-level change commands representing
macro steps of a trace. This trace is back-annotated to the
design model using change-driven transformation rules, which
bridge the conceptual differences between macro steps in the
analysis and design traces. Our concepts will be demonstrated
on the back-annotation problem for analyzing BPEL processes
using a Petri net simulator.
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I. INTRODUCTION

Model-driven analysis with hidden formal methods has
become a popular approach in critical systems and services
design. Various approaches with close conceptual correspon-
dence has been proposed in various application domains
such as service-oriented computing [1], [2], dependable
systems [3]–[5], avionics [6], etc.

In order to detect design flaws early, high-level design
(engineering) models (such as UML Statecharts, BPEL [7],
AADL, SysML, etc.) are automatically mapped into dif-
ferent analysis models (such as transition systems, Petri
nets, process algebras, etc.) in order to carry out formal
verification and validation (V&V) by back-end analysis
tools. Since formal analysis models are derived by automated
model transformations, and the target analysis tools are also
typically fully automated, systems and services engineers
obtain a push-button technique for formally analyzing their
high-level design models. In the current paper, we primarily
focus on V&V tools like simulators and model checkers,
which aim at retrieving a trace as a counter-example that
violates a certain requirement.

However, such counter-example traces can be very com-
plex resulting with well over 100 elementary steps in indus-
trial scenarios. As a result, systems designers need bridge a
significant conceptual gap when they try to interpret what a
counter-example means in the original design model. Back-
annotation aims at automatically mapping back the results of
V&V tools to the original design model in order to highlight
the real source of the flaw.

Due to the semantic differences between high-level design
models and lower-level formal analysis models, we argue
in this paper that the general back-annotation problem
aiming to map a trace of a target model to a trace in
the source model can be very complicated. This is due
to the fact that most traditional source-to-target (design-
to-analysis) model transformations carry out an abstraction,
thus they are not reversible. However, in order to completely
hide the underlying formal model from systems engineers,
model-driven analysis need to provide automated support
the back-annotation of target (analysis) models to the source
(design) model.

Unfortunately, existing back-annotation approaches are
either dedicated to the source and target languages, or they
make strong assumptions on the back-annotation problem.

In the paper, we first provide a generic formulation of
the back-annotation problem (Sec. II) where back-annotation
is defined in the context of an arbitrary, but precisely
defined pair of source (design) and target (analysis) mod-
eling languages with dynamic behavior. Then we propose a
technique for the back-annotation of simulation traces based
on change-driven model transformations [8]. (1) First, simu-
lation traces of the target analysis model will be persisted as
a hierarchical change model capturing both the macro steps
and micro steps in a trace (Sec. III). (2) Then this target trace
is back-annotated to a trace of the source (design) model
using change-driven transformation rules, which bridge the
conceptual differences between macro steps in the analysis
and design traces (Sec. IV).

Our concepts will be demonstrated on the back-annotation
problem for analyzing BPEL processes using a Petri net
simulator. As a result of our back-annotation approach,
execution traces derived by a Petri net simulator can be
replayed directly on the BPEL level in order to completely
hide the underlying formal models.



II. GENERIC BACK-ANNOTATION FRAMEWORK FOR
DYNAMIC MODELING LANGUAGES

Back-annotation is the reverse model transformation prob-
lem to derive corresponding source design model informa-
tion from the results of a formal analysis carried out on
a target model. In case of discrete event-based dynamic
analysis languages, these results are typically represented
as an (execution) trace obtained from a simulation run or
as a counter-example (i.e. sequence of steps leading to the
violation of a requirement) of a model checker. Therefore
the back-annotation in this case consists of deriving a trace
of the source model from a given trace of the target model.

In the paper, we first propose a generic framework for the
back-annotation of simulation traces. In this framework, we
assume the existence of the following traditional modeling
and transformation concepts:

• static, dynamic and trace metamodels for both the
source and target domains to precisely define the tax-
onomy for instance models;

• operational semantics to specify the dynamic be-
haviour of the target analysis model during simulation;

• structural model transformation which derives a
(static) target model from an arbitrary source model;

• traceability links created by the model transformation
to store the structural correspondence between the
elements of the source and target models.

Using these concepts back-annotation necessitates the
definition of precise transformations for:

1) trace generation rules derived from the operational
semantic rules of the model to record a simulation run
as a trace model observing the changes of the dynamic
model.

2) trace processing rules to replay the execution of
a simulation run on the dynamic model using an
arbitrary trace of the same model.

3) trace mapping (back-annotation) rules to derive a
source trace model from the target trace model using
traceability links existing between the models.

In the current paper, we exclusively focus on the problem
of back-annotation (or target-to-source trace mapping). For
the details of trace generation and processing within a
dynamic language, the reader is referred to [9].

A. Metamodels of dynamic modeling languages

We assume the existence of various metamodels in the
context of a dynamic modeling language (DML), which are
exemplified together with main relationships in Fig. 1.

First, a static metamodel MMstat defines the static
structure of a language including possible types of model
elements, their main attributes and relations with other
model elements. An instance of this metamodel is called
the static model (Mstat), e.g. a concrete Petri net structure.

Figure 1. Metamodels and instances of a dynamic model

Next, a dynamic metamodel MMdyn uses and extends
the static metamodel MMstat for storing information re-
lated to dynamic behaviour (e.g. current state, value, con-
figuration) of a structural element. The dynamic model
(Mdyn) is an instance of the MMdyn, e.g. the current
marking of a given Petri net place.

Finally, a trace metamodel (MM trc) is defined for the
language to represent simulation runs of the Mdyn. The
MM trc uses the MMdyn for recording how the dynamic
model changed and the MMstat for describing which static
element is concerned. A trace model (M trc) is an instance
of the MM trc, e.g. the sequence of fired transitions of
a Petri net. The M trc describes the changes of Mdyn,
therefore it is represented as a change model in terms of [10].

While execution traces are traditionally interpreted as a se-
quence of elementary operations, in the current paper, we use
hierarchical trace models consisting of micro steps (atomic
operations on Mdyn) and macro steps (complex operations
on Mdyn), which is compliant with recent approaches [11]
to define semantics for big-step DMLs like statecharts.

Given the set of micro steps as terminal symbols T ,
the hierarchy of macro steps as non-terminal symbols NT ,
and a grammar Gr implied by the operational semantics
description of the language (see below), a trace model can
be formally interpreted as the abstract syntax tree AST of
a well-formed sentence of the grammar GR.

B. Operational semantics and traces for dynamic models

The simulation of a DML is performed in accordance
with the operational semantics of the language defined
by simulation rules. In our framework we assume that
simulation rules are defined as intra-model transformations
illustrated in Fig. 2 (see also [12]–[14]).

Figure 2. Simulation and trace generating transformation

The execution of a rule in the transformation MT sym :

(Mstat,Mdyn)
∆−→ Mdyn

′ modifies the Mdyn by also tak-
ing into account Mstat and results in a new Mdyn

′. During



a simulation run, the changes of the dynamic model are
recorded as a sequence of micro steps as part of the derived
trace model M trc. Furthermore, the hierarchy of macro steps
in M trc is in direct correspondence with the transformation
rules fired during the simulation run. Therefore, we assume
that the simulation rules MT sym imply a grammar GR,

which defines well-formed execution traces.

C. Forward model transformation with traceability links

We assume the existence of a unidirectional structural
model transformation MT src2trg (see Fig. 3) which gen-
erates a static target model M trg

stat from a given static source
model Msrc

stat. This MT is also responsible for deriving the
initial state of M trg

dyn from the initial state of Msrc
dyn.

Figure 3. Forward model transformation and back-annotation

We also assume that this transformation generates trace-
ability links (TR) between the source and target models in
order to record the structural correspondence between the
model elements. As we only rely upon these traceability
links for back-annotation, any kind of forward model trans-
formation approaches and tools can be used.

D. Back-annotation of dynamic execution traces

In the paper, back-annotation of a target DML to a source
DML is defined as a transformation CDT trg2src which is
able to generate the Msrc

trc from an arbitrary M trg
trc if such

source trace exists. The CDT trg2src makes use of the TR to
identify corresponding elements in source and target models.

Given that the traces contain model changes, we propose
to define the CDT trg2src as a change driven model trans-
formation [8] (see the overview in Sec. IV-A).

In many practical cases, no formal operational semantics
is available for the source DML (e.g. in case of UML or
BPEL). Or in other terms, their formal semantics is defined
in denotational way by mapping them to a formal target
DML like Petri nets [15], [16]. It is worth pointing out that
our back-annotation framework only assumes that
• a target trace M trg

trc is made available by some analysis
tool, which is compliant with the formal operational
semantics GRtrg of the target (analysis) DML,

• the macro steps of the source (design) DML can be
identified based on an informal behavioural description.

E. Challenges for back-annotation

There are various challenges are likely to arise when back-
annotating simulation traces between a given source and
target language.

Spurious target traces: In most cases in practice, the
MT src2trg transformation defines an abstraction of the
source model to derive the target model. This implies that
M trg

dyn simulates Msrc
dyn, i.e. for every source trace Msrc

trc

there is a corresponding target trace M trg
trc , but not neces-

sarily vice versa.
In the ideal case when the source language has formal

operational semantics, one can check the compatibility of
the derived source trace Msrc

trc with respect to the semantics
GRsrc by using model checking techniques for DMLs [17].
If the formal semantics GRsrc is undefined, it becomes the
role of back-annotation CDT trg2src to detect if a target trace
is spurious or not.

Mismatch between trace granularity: In many practical
cases, there is a mismatch between the granularity of traces
in the source and target models (see also Fig. 8) due to
semantic difference between the DMLs. In fact, many kinds
of mappings are possible in CDT trg2src to relate macro and
micro steps of the source and target DMLs:

• 1-to-1: One step in the target trace M trg
trc may corre-

spond to one step in the source trace Msrc
trc .

• 1-to-n: Several steps in the target trace M trg
trc may

correspond to one step in the source trace Msrc
trc (or

vice versa).
• m-to-n: Mappings can be defined between sequences

or groups of steps in M trg
trc and Msrc

trc .
• Ignore: Steps in the target trace M trg

trc may be com-
pletely ignored during back-annotation.

• Reorder: The ordering of certain target steps in M trg
trc

may not coincide with the ordering of the source steps
inMsrc

trc , which requires reordering by CDT trg2src.

Interleaving of simulation steps: This last problem of
reordering leads to the generic problem caused by the
interleaving of simulation steps. In the context of back-
annotation, interleaving occurs if the sequence of macro
steps in M trg

trc cannot be mapped into Msrc
trc by simply

slicing the sequence into subsequences. Simulation steps
NT 1

trg, NT 2
trg, NT 3

trg are interleaving if NT 1
trg, NT 3

trg are
mapped to NT 1

src and NT 2
trg is mapped to NT 2

src.
In our framework, interleaving simulation steps will be

handled using change patterns of change driven model
transformations which are able to recognise the aggregated
result of interleaving steps as they are persisted in the change
model of the M trg

trc .



III. DEFINITION OF DYNAMIC MODELING LANGUAGES

In our paper we motivate the back-annotation problem
of analyzing BPEL processes using a simulator. This back-
annotation needs to derive an execution trace of the business
process from the simulation run of the Petri net.

In this section, we first give a short introduction to
the back-annotation problem itself (Sec. III-A), and then
the metamodels of the DMLs of BPEL and Petri nets
(Sec. III-B), followed by the macro steps of the two DMLs
(Sec. III-C), the operational semantics of the target Petri
nets (Sec. III-D), and the traceability links derived by the
BPEL-to-Petri net transformation (Sec. III-E),

A. Motivating scenario

As the BPEL standard uses plain English for specification,
a formal analysis of BPEL necessitates a mapping to a
formal language, such as Petri nets, abstract state machines,
process algebras, etc. [18] in order to precisely define the
dynamic behavior of BPEL processes. In our motivating
example we use (highly similar) Petri net based approaches
[15], [16], which map BPEL structures into Petri net subnets
that can be embedded and combined using interface places.
Fig. 4 shows the overview of the motivating example.

Figure 4. Motivating Scenario

The BPEL process is created in a graphical editor, and
a transformation (BPEL2PN) is executed to generate the
formal Petri net model which is subject to formal analysis
using a Petri net simulator (or other analysis tool). In the
paper, we show how to provide back-annotation assuming
that (1) the simulator reports the changes in the Petri net
model (e.g. by notification support) and (2) the BPEL
designer has an interface for setting the actual state of a
process instance.

B. Static and dynamic metamodels

1) Business Process Execution Language: BPEL is an
industrial standard that defines an executable orchestration
language for specifying business processes based on Web
Services. During process execution, external Web Services
are called. The building blocks of BPEL processes are the
description of the parties interacting during the process, the
data variables used by the process and the activities describ-
ing the behavior of the process. The activities can be grouped
into two categories: basic and structured activities. Basic
activities are responsible for communicating with external
Web Services and for data manipulation of internal variables
of the business process. Structured activities implement the
control flow of business processes including activities like
“receive”, “reply”, “invoke”, “assign”, “sequence”.

The BPEL metamodel (see Fig. 5) describes the abstract
syntax of the BPEL language. Nodes (e.g. Activity) of the
metamodel are called classes. A class may have attributes
(e.g. the variable in Receive) that define some kind of
properties of the specific class. Inheritance may be defined
between classes, which means that the inherited class has all
the properties its parent has, but it may further contain some
extra attributes (e.g. elements in BPEL inherit from Extensi-
bleElements). Associations like contains define connections
between classes. Furthermore, we use traceability edges
(denoted by dashed lines in instance models) connecting
source and target model nodes.

Figure 5. BPEL metamodel fragment

In order to model process instances in execution we define
additional dynamic information for BPEL elements, e.g.
Dynamic Activity is associated with an activity and has a
dynamic state. This state can be startable, runs and executed
for all activities, but further refinement is possible with
additional states for complex structures (such as scopes).

2) Petri Nets: Petri nets (in our case, Place/Transition
nets with inhibitor arcs, see the metamodel in Fig. 6) are
widely used to formally capture the dynamic semantics of
concurrent systems. Petri nets are bipartite graphs, with
two disjoint sets of nodes: Places and Transitions. Places
may contain an arbitrary number of Tokens. The places and
transitions of the Petri Net are grouped into subnets to help
the identification of correlated elements.

Figure 6. Petri net metamodel

A token distribution defines the state of the modeled
system. The state of the net can be changed by firing enabled
transitions. A transition is enabled if each of its input places
contains at least one token and no place connected with
an inhibitor arc contains a token (if no arc weights are
considered). When firing a transition, we remove a token
from all input places (connected to the transition by Input
Arcs) and add a token to all output places (as defined by
Output Arcs).



C. Trace metamodels as change commands

We define trace metamodels in Fig. 7 as change com-
mands (in the sense of [8]) to represent the different
macro steps of Petri nets and BPEL. These commands are
specialized from the ChangeCommand type of the general
change metamodel. The specific commands are defined in
accordance with the simulation step types.

Figure 7. Change commands for Petri Nets and BPEL

As illustrated in Fig. 8 the trace model is a hierarchy of
macro and micro steps of the two DMLs. Steps on the same
hierarchy level are ordered to ensure that operations were
carried out in the given sequence during simulation run.

Figure 8. Step hierarchy for Petri nets and BPEL

Top level macro steps on the left side of Fig. 8 represent
steps which are visualized (either textually or graphically)
in the Petri Net simulator (PN step). These steps are a
pair of macro steps representing the selection of an enabled
transition and the firing of the selected transition. The
substeps of firing a transition consist in deleting and creating
appropriate number of Token elements in MPN

dyn).
On right side of Fig. 8, the top level steps of BPEL are

events of the business process which include macro steps
corresponding to the states (startable, runs, completed) of the
activities of the process. These in turn include micro steps
representing changes of the activity states in the dynamic
model. Note that the BPEL standard does not define a
formal operational semantics therefore these steps had to
be identified by us prior to the back-annotation.

D. Operational semantics for simulation

The simulation of dynamic models is enabled by specify-
ing their operational semantics using model transformation
rules. In this section we briefly revisit the approach of [14] to
formally define a simulator for Petri nets using the VIATRA2
transformation language [19]. However, the overall approach
can be used to define the behavior of other discrete event-
based languages.

The dynamic semantics of a DML is described by sim-
ulation rules R = (EC,AS) where EC is an enabledness
condition and an AS is a command sequence, which de-
scribes model manipulation.

Enabledness condition: The enabledness condition of
a simulation rule decides its applicability on a given model
and they are formally represented as graph patterns. These
patterns define conditions and constraints that have to be
fulfilled by a part of the model. To compose complex
conditions, graph patterns can call each other in a positive
and negative way. A negative application condition (NAC)
prescribes contextual conditions for the original pattern
which are forbidden in order to find a successful match.

pattern transitionFireable(T)=
{transition(T);
neg pattern notEnabled(T)={
place(P);outArc(OutArc,P,T);
neg pattern placeToken(P)={
token(Tok);
token.place(Rp, Tok, P);}}

or { // inhibited pattern
place(P);token(Token);
inhibitorArc(OutArc, P, T);
token.place(Rp, Tok, P);}}

Listing 1. Enabledness condition for
firing a transition

The enabledness con-
dition for a Petri net
transition can be ex-
pressed using a graph
pattern as shown in List-
ing 1. This pattern uses
nested negative applica-
tion conditions to ex-
press that a transition T
is enabled if every input

Place P connected to the Transition instance has at least one
Token associated and no input Places connected with an
inhibitor arc contains a token. In this example, embedded
NACs are used to express universal quantification with
double negation of existence.

Commands for firing a transition: Complex model
manipulation commands of simulation rules can be ex-
pressed by graph transformation [20] provides a high-level
rule and pattern-based manipulation language for graph
models. Complex action sequences can be assembled by
abstract state machines [21], which drive the core model
manipulation commands of graph transformation rules.

Listing 2 demonstrates a sequence actions to simulate the
firing of a selected Petri net transition T , which consists in
the removal of tokens from input places and the addition of
tokens to output places.
rule fireTransition(in T) = seq {
/* remove tokens from all input places */
forall Place with find inputPlace(T, P)
do apply removeToken(T,Place);//GT rule invocation
/* add tokens to all output places */
forall Place with find outputPlace(T, P)
do apply addToken(T, Place);}

Listing 2. Simulation rule transition firing



E. Static traceability between BPEL and Petri Nets

The forward (structural) model transformation from BPEL
to Petri nets can be defined using an arbitrary model trans-
formation tool, thus we omit its detailed discussion from
the paper. We only assume that the transformation provides
static traceability by storing the structural correspondence
between the two models (e.g. linking the generated Petri
net to the BPEL process). Fig. 9 shows a generic mapping
which depicts the typical structure of traceability links in the
running example. For each BPEL element, a corresponding
subnet is derived in the target Petri net model, which
contains at least five places for different execution phases
called initial, stop, stopped, failed and final.

Figure 9. Traceability mapping

IV. CHANGE-DRIVEN MAPPING OF SIMULATION TRACES

The trace mapping transformation derives the Msrc
trc rep-

resenting a BPEL process execution from the Petri net
simulation run persisted as M trg

trc . In this section we detail
the definition of this transformation on an example from
our motivating scenario. First, a brief introduction is given
on change driven model transformations, followed by a
list of challenges in the PN-to-BPEL back-annotation. The
challenges are addressed using a mapping transformation
rule. The application of this rule is illustrated on a step-
by-step example. Finally, we give a short insight on the
implementation details.

A. Change-driven model transformations

Change driven model transformations [8] are model trans-
formations which consume changes of the source model
MA and produce changes for the target model MB . In
order to perform change driven transformations, some form
of traceability information TR should also be available
between the two models (see Fig. 10).

Figure 10. Change-driven transformations

Essentially, a change driven transformation rule (CD rule)
is enabled by change in the source model. The actual change
representation can be of different nature, e.g. a sequence of
model manipulation operations or a change delta. When a
change is detected, the effects of a change driven rule are
executed to create or remove elements of the target model
(and possibly to create or remove some traceability links
between the two models).

The changes are detected using special graph patterns also
called change patterns. Such patterns can be (1) appear
patterns which detect changes in the model related to new
matches for a given pattern while (2) disappear patterns
detect that a preexisting match for a pattern is no longer
present in the model. These patterns can be specified in the
guard of a CD rule.

B. Challenges for the PN-to-BPEL back-annotation

The mapping between the Petri net and BPEL traces
is, essentially, that a sequence of transition firings will
correspond to one or more macro steps for BPEL activity
execution phase changes. However, several challenges arise
in the actual definition of this complex mapping which is in
line with challenges in Sec. II-E.

1) Identify corresponding BPEL activity: When mapping
successive Petri net steps, the activity (scope) of the corre-
sponding BPEL step has to be identified. This identification
is impossible based exclusively on the Petri net, thus the
trace mapping incorporates static traceability information.

2) Identify BPEL step type: The trace mapping process
needs to identify the type of the BPEL step which directly
refers to the state change of the corresponding activity
(startable, runs, executed).

3) Mismatch between trace granularity: Trace granular-
ity can be different in two DMLs when (1) several Petri
net steps correspond to one BPEL step in case of inner
transitions of a subnet and (2) one Petri net step represents
several BPEL steps when the transition of a structural
activity subnet fires (e.g. several activity becomes startable).

4) Handle interleaving steps: Interleaving of Petri net
simulation steps may occur in the example when dealing
with execution of parallel BPEL activities, as Petri net
transitions, which belong to the same BPEL branch are not
necessarily fired in direct succession.

C. Mapping traces with change-driven rules

The back-annotation of Petri Net steps to BPEL process
execution can be accomplished by providing a mapping be-
tween the traces. We use the motivating example to illustrate
the trace mapping using change-driven rules. Change-driven
rules recognise the appearance of Petri Net specific change
commands in the change model and create corresponding
BPEL change commands based on the structure of the
models and the static traceability information.



1) Identify corresponding BPEL activity: The subnets
which encapsulate transitions and places correspond to one
BPEL element. Therefore, the traceability links which asso-
ciate subnets to BPEL activities and were created during the
forward transformation are used for identifying the appropri-
ate activity. In the example, the corresponding BPEL activity
(BA) can be found by using the link (B2PN) that connects
it to the subnet (SN) in which the transition is defined
(BPELActivityForTransition graph pattern in Listing 3).
pattern BPELActivityForTransition(Tr,BA,SN) = {
Transition(Tr);
Subnet(SN);
Subnet.trans(Rt,SN,TR);
TRLink(B2PN);
TRLink.subnet(Rs,B2PN,SN);
BPELActivity(BA);
TRLink.activity(Ra,B2PN,BA);}

Listing 3. Identify corresponding BPEL activity

2) Identify BPEL step type: The BPEL2PN transforma-
tion defines interface places in the Petri net subnets which
represent execution states that are common for all BPEL
activities. In order to derive the appropriate BPEL step type,
we use these interface places. The existence of such places
allows a more generic implementation of the mapping,
instead of requiring the definition of multiple mapping rules
separately for each activity type. The mapping for the three
common BPEL step types are given using graph patterns
defined on the input and output places of the transitions.
• Activity startable An activity is startable when the

initial place in its subnet has a token. A transition
firing that puts a token on this place is mapped to a
BPELActivityStartable change command.

• Activity runs An activity starts its execution when the
firing of a transition inside the corresponding subnet
removes a token from the initial place and does not
place token in the final, stopped or failed places. Such
steps are mapped to BPELActivityRuns commands.

• Activity executed An activity finishes its execution
when one of the final, stopped or failed places in its
subnet have a token. A transition firing that puts a token
on one of these place is mapped to a BPELActivityEx-
ecuted change command.

An example back-annotation rule is defined for transition
firing corresponding to the Activity runs case. Listing 4
is the VIATRA2 representation of the CD rule for this
mapping. It starts with the guard pattern that specifies the
change command that triggers the application of the CD rule.
The macro step of the Petri Net representing the firing of
a transition Tr appears as a change command PNF. The
precondition deals with finding the corresponding BPEL
activity BA for the transition that was fired and checks that
the transition matches the Activity runs step type. Finally,
the BPELActivityRuns change command BAR for the BPEL
event is created in the action part of the back-annotation
rule.

cdrule bpelActivityStarts() = {
guard change pattern PNFiringCreated(PNF) = {
appear pattern() = { PNFiring(PNF);}}

precondition pattern BPELActivity(BA) = {
Transition(Tr);
trans(Rt,PNF,Tr);
// find BPEL activity using traceability link
find BPELActivityForTransition(Tr,BA,SN);
// check inbound place initial
find HasInputPlaceInitial(Tr,SN,Pi);
// outbound not final, stopped, failed
neg find HasOutputPlaceFinished(Tr,SN,Po);}

action {
// create macro step for BPEL
new(BPELActivityRuns(BAR));
new(activity(Ra,BAR,BA));}}

Listing 4. Trace mapping change driven rule

3) Mismatch between trace granularity: When we map
several Petri net steps to one BPEL step, we use “lookup”
graph patterns to check the input and output places of the
firing transition (TR) for a specific type of interface place.
Listing 5 shows a graph pattern (HasInputPlaceInitial) that
searches for initial places among the input places of TR. The
Petri net step is only mapped if the “lookup” patterns defined
in the precondition of the mapping rule match. Otherwise the
internal transitions of subnets are ignored.
pattern HasInputPlaceInitial

(Tr,SN,P) = {
Transition(Tr); Place(P);
OutArc(Ro,P,Tr);
Subnet(SN); Subnet(S2);
Subnet.trans(Rt,SN,Tr);
Subnet.initial(Ri,S2,P);}

Listing 5. Input initial place “lookup” graph pattern

When one Petri net step is mapped to several BPEL steps,
the number of affected BPEL activities are derived from the
number of different subnets in the interface places among the
input and output places of a transition. This case appears in
the BpelActivityStartable mapping, we included the essence
of the solution in Listing 6. The action part of the CD rule is
altered to find the activities for every corresponding subnet
(HasOutputPlaceInitial and BPELActivityForPlace).
cdrule bpelActivityStarts() = {
[...]
action {
// handle mapping to more BPEL steps
forall P with find

HasOutputPlaceInitial(Tr,SN,P) do
choose BA,S2 with find
BPELActivityForPlace(P,BA,S2) do

[...]}

Listing 6. Create severla BPEL steps for one Petri net step

4) Handle interleaving steps: The Petri net steps in the
simulation interleave when transitions in different subnets
are enabled and the ones in the same subnet are not fired
in succession. On the other hand, the transition firings
contained within the same subnet will not interleave, as they
model the execution of a single BPEL activity. Therefore,
the subnets can be used to partition Petri net steps. In
our approach, change patterns abstract the processing of
sequential execution by filtering the Petri net steps based
on subnets (as shown in Listing 7).



change pattern(PNF1,PNF2) = {
appear pattern() = {
PNFiring(PNF1);
PNFiring(PNF2);}

find TrSameSubnet(PNF1,PNF2);}

Listing 7. Filter steps by subnet Change pattern

“Spurious counter-examples” are possible due to the non-
interpreted data modeling (e.g. no concrete variable values)
and the control-flow abstraction of BPEL loops.

5) Change driven rule execution: a step-by-step example:
Fig. 11 illustrates the execution of the CD rule. The rule
is triggered when the command representing the firing
of a transition appears in the change-driven transforma-
tion framework (Step 1). Next the traceability information
(B2PN) is used to find the BPEL activity (BA) correspond-
ing to the subnet which contains the transition (Step 2).
Then the new command (BAR) is generated according to
the matching step type (Step 3).

Figure 11. Example execution

D. Implementation details

The metamodels for BPEL and Petri nets, along with
the trace generator and mapping transformations are im-
plemented in the VIATRA2 model transformation frame-
work [22]. Change driven model transformations can be both
developed and executed in the VIATRA2 framework over the
VPM model repository. Furthermore, the Petri net simulator
presented in [14] is used as it is implemented in VIATRA2.

The engineering tool used as a front-end of our
back-annotation framework is the Eclipse BPEL Designer
tool [23]. This tool provides graphical editing support for
developing BPEL business process, although it lacks any
representation options for a dynamic process state. Therefore
we extended the tool using the Eclipse plug-in architecture
with an interface for changing the dynamic state of the
process elements and a component that updates the graphical
representation of the BPEL elements.

We also implemented a similar back-annotation transfor-
mation for a different back-end tool. In that case counter-
examples of the SAL [24] model checking framework were
modeled as traces and mapped back to BPEL process
execution [25]. Similarly, the process execution is presented
using the BPEL Designer tool here as well (see Fig. 12).

V. RELATED WORK

Now an overview is given on related approach from the
domains of model-based simulation and back-annotation.

Model-based simulation and simulation traces: Sim-
ulation of domain-specific models using model transfor-
mations has been described among others in [13], [14].
[13] uses Triple Graph Grammar rules for defining the
semantics of the simulator, [14] uses the ASM rules and
graph patterns available in the VIATRA2 framework for
the simulator specification. Both approaches simulate the
execution of dynamic models, although neither record the
trace of simulation.

Execution traces are, on the other hand, used in many
cases, for understanding distributed systems [26], recovering
behaviour [27]. Dynamic traces were defined for individual
languages such as UML sequence diagrams [28], UML
Activity Diagrams [29].

Back-annotation: Many approaches exist [2], [30]–[34]
that define model transformations from a source language
to target language for V&V purposes with back-annotation
support dedicated to the transformation problem.

In [30] an approach is presented for the back-annotation
of feature models. Feature models be translated into propo-
sitional formulae for analysis and configuration purposes.
Czarnecki et al. show that the opposite translation problem is
also solvable and feature models can be extracted from these
formulae. Note that, contrary to their work, our approach is
defined on dynamic simulation traces and not static models.

[31] uses traceability links of the transformation which
generates Alloy models from UML. The back-annotation
transformation is automatically generated based on these
traceability links using a QVT-based implementation. Here
the back-annotation is supported for static model instances,
and not for execution traces of dynamic UML models, which
is a conceptually easier setup than in our current work.

In [32] a conversion tool is presented which is able to
generate Message Sequence Charts (MSCs) from the trails
(i.e. traces) of the SPIN model checker tool. Although
it works on execution traces, the approach is only back-
annotation in the sense that the trails may be the result
of model checking on SPIN models created from design
models. However the conversion is restricted to MSCs and
does not back-annotate the results to a specific design model.

In [2] Gilmore et al. present a software tool platform for
security and performance analysis of systems. UML models
created in the tool are transformed in the form of process
calculi descriptions and after analysis the results are reflected
back into a modified version of the input UML model. They
also stress the importance of reflection (i.e. back-annotation)
in their approach. Their approach primarily supports the
back-annotation of quantitative and qualitative parameters
to the source UML model, while execution traces are again
represented as UML sequence diagrams.



In [33] Foster et al. describe a model-based approach to
verify compositions of web services. They use the LTSA tool
suite [35] for model checking a BPEL process transformed
into FSP description. Similarly to [32] they use MSCs as
a target formalism for back-annotating the results (which
are process traces) which is, in this way, different from the
original design formalism (BPEL).

Our first results on back-annotation was presented in [25],
where BPEL processes are verified by transforming them to
SAL [24]. While the tool includes back-annotation support,
the paper itself does not present (1) the generic back-
annotation framework (of Sec. II), (2) it uses plain (non-
hierarchical) trace models, and (3) it uses regular model
transformations for trace mapping which resulted in more
complex back-annotation rules1.

None of these approaches allows to replay the execution
traces of analysis results directly in the original design
model. The most advanced back-annotation techniques is
reported in [34], where triple graph patterns to overcome the
1-to-1 restriction on back-annotation. However, this back-
annotation approach still mostly provides a structural (and
not trace) mapping, thus hierarchical trace models with
micro and macro steps are not supported. Moreover, the
use of change driven transformations allows a more succinct
formulation of trace mappings in our case.

VI. CONCLUSIONS AND FUTURE WORK

In our paper, we discussed how a simulation run of a
formal analysis model can be persisted in trace models
and mapped back to the design model using change driven
model transformations for back-annotation. We presented
the challenges and concepts of a generic back-annotation
framework for simulation traces of discrete event-based
languages, and detailed our approach on the motivating
scenario of BPEL verification using Petri nets.

The main practical novelty of our generic back-annotation
framework is that it allows to replay the execution traces
of analysis results directly in the original design model,
which offers a very intuitive solution from the viewpoint
of systems and services engineers. Furthermore, we can
back-annotate traces even if only the macro steps of the
source design language are precisely defined (but not its
full operational semantics). Finally, complex mismatches are
allowed between the traces of the source and target dynamic
models.

In the paper, we have illustrated our back-annotation
approach on BPEL and Petri nets. However, there are many
other design and analysis languages and tools which can
be target for our back-annotation framework. Natural can-
didates for design languages include the Unified Modeling
Language (UML), Systems Modeling Language (SysML),

1All related papers of the authors are available at http://home.mit.bme.
hu/∼hegedusa/sefm pubs.html.

Modeling and Analysis of Real-time and Embedded sys-
tems (MARTE), Architecture Analysis and Design Lan-
guage (AADL) and Business Process Model and Notation
(BPMN). The analysis formalisms in our scope are dis-
crete event-based dynamic modeling languages like labeled
transition systems, multiple phased systems, hierarchical
state machines, process calculi, data flow systems and high-
level Petri net formalisms. Several actual back-annotation
mappings are part of our ongoing work.

In the future we will focus on defining an algorithm
for creating the trace generator transformation from the
simulation rules and plan to deploy the approach on a
complex BPEL business process. We also plan to investigate
the possibility of automating steps of the approach if formal
semantics are given for a langauge and deriving the trace
mapping from the structural model transformation and the
traceability model.
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Figure 12. Screenshot from the implementation
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