
SoSyM manuscript No.
(will be inserted by the editor)

Formal Validation of Domain-Specific Languages
with Derived Features and Well-Formedness Constraints

Oszkár Semeráth · Ágnes Barta · Ákos Horváth · Zoltán Szatmári ·
Dániel Varró

Received: date / Accepted: date

Abstract Despite the wide range of existing tool sup-
port, constructing a design environment for a complex
domain-specific language (DSL) is still a tedious task as
the large number of derived features and well-formedness
constraints complementing the domain metamodel ne-
cessitate special handling. Such derived features and
constraints are frequently defined by declarative tech-
niques (such graph patterns or OCL invariants).

However, for complex domains, derived features and
constraints can easily be formalized incorrectly result-
ing in inconsistent, incomplete or ambiguous DSL spec-
ifications. To detect such issues, we propose an auto-
mated mapping of EMF metamodels enriched with de-
rived features and well-formedness constraints captured
as graph queries in EMF-IncQuery or (a subset of)
OCL invariants into an effectively propositional frag-
ment of first-order logic which can be efficiently ana-
lyzed by back-end reasoners.

On the conceptual level, the main added value of
our encoding is (1) to transform graph patterns of the
EMF-IncQuery framework into FOL and (2) to in-
troduce approximations for complex language features
(e.g. transitive closure or multiplicities) which are not
expressible in FOL. On the practical level, we iden-
tify and address relevant challenges and scenarios for
systematically validating DSL specifications. Our ap-
proach is supported by a tool and it will be illustrated
on analyzing a DSL in the avionics domain. We also
present initial performance experiments for the valida-
tion using Z3 and Alloy as back-end reasoners.

Oszkár Semeráth · Ágnes Barta · Ákos Horváth · Zoltán
Szatmári · Dániel Varró
Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
H-1117 Magyar tudósok krt. 2, Budapest, Hungary
E-mail: {semerath,varro}@mit.bme.hu

Keywords language validation · derived features ·
partial snapshots · model queries · SMT-solvers

Acknowledgements This work was motivated by the FP7
ARTEMIS CONCERTO (ART-2012-333053) project and par-
tially supported by the ARTEMIS JU and the Hungarian Na-
tional Research, Development and Innovation Fund in the frame
of the R5-COP (Reconfigurable ROS-based Resilient Reasoning
Robotic Cooperating Systems) project.

1 Introduction

1.1 Towards validation of domain-specific languages

The design of integrated development environments for
complex domain-specific languages (DSL) is still a chal-
lenging task nowadays. Advanced environments such
as Xtext, the Graphical Modeling Framework (GMF),
Graphiti or Sirius built on top of model management
frameworks such as Eclipse Modeling Framework (EMF)
significantly improve productivity by automating the
production of rich editor features (e.g. syntax highlight-
ing, auto-completion, etc.) to enhance modeling for do-
main experts. Furthermore, there is efficient tool sup-
port for validating well-formedness constraints and de-
sign rules over large model instances of the DSL using
tools like Eclipse OCL [58] or EMF-IncQuery [10]. As
a result, Eclipse-based IDEs are widely used in the in-
dustry in various domains including business modeling,
avionics or automotive.

However, in case of complex, standardized indus-
trial domains (like ARINC 653 [5] for avionics or AU-
TOSAR [6] in automotive), the sheer complexity of the
DSL is a major challenge itself. (1) First, there are hun-
dreds of well-formedness constraints and design rules
defined by those standards, and due to the lack of val-



2 Oszkár Semeráth et al.

idation, there is no guarantee for their consistency or
unambiguity. (2) Moreover, domain metamodels are fre-
quently extended by derived features, which serve as
automatically calculated shortcuts for accessing or nav-
igating models in a more straightforward way. In many
practical cases, these features are not defined by the
underlying standards but introduced during the con-
struction of the DSL environment for efficiency reasons.
Anyhow, the specification of derived features can also
be inconsistent, ambiguous or incomplete. In general,
the mathematical precise validation of DSL specifica-
tions themselves have been attempted by only few ap-
proaches so far [31], and even these approaches lack a
systematic validation process.

As model-driven tools are frequently used in critical
systems design to detect conceptual flaws of the system
model early in the development process to decrease ver-
ification and validation (V&V) costs, those tools should
be validated with the same level of scrutiny as the un-
derlying system as part of a software tool qualification
process in order to provide trust in their output. There-
fore software tool qualification raises several challenges
for building trusted DSL tools for a specific domain.

The main objective of this paper is to propose an
automated validation framework to formally check the
specification of DSLs. For that purpose, we formalize
DSL modeling artifacts (including metamodels and in-
stance models, constraints and derived feature defini-
tions) by first-order logic (FOL) formulae. Then we
carry out a wide range of validation tasks by automated
theorem proving based on this formalization to show
consistency, ambiguity and completeness, subsumption
or equivalence of a DSL. To decrease the development
time and cost of DSL tools, we aim to detect design
flaws in the early phase of DSL development by high-
lighting validation problems to the developer directly
in the DSL tool itself by back-annotating analysis re-
sults. As a side effect, our validation framework can also
be used for generating prototypical well-formed instance
models for a DSL, which can be used for synthesizing
test cases, for instance.

Language level validation is a very challenging task
because the analysis has to cover an infinite range of
possible design models, which necessitates symbolic ap-
proaches. The language elements are representable by
sets and relations which makes first order logic suit-
able to formalize them. Different constraint languages
attached to the modelling languages are semantically
close to first order logic, extending them with addi-
tional elements, like transitive closure. However, rea-
soning over a language level problem is undecidable in
general.

Fortunately logic solvers have become more and more
powerful.

– SAT-solvers specialized for graph problems are ca-
pable of checking large range of models in order to
generate counterexamples of bounded size if the val-
idated property is not satisfied by the target DSL,
but they cannot prove the correctness.

– On the other hand, SMT-solvers are able to effi-
ciently handle complex logic problems with unlim-
ited domain by solving them with a combination of
background theories. An advanced SMT-solver con-
tains decision procedures for the most common logic
fragments, like the effectively propositional [44].

Abstraction is a key element of automatically solv-
ing logic problems. First, constraint languages use higher
order language elements like transitive closure which
cannot be explicitly represented in first order logic. Ad-
ditionally, a more generic problem can be solved ef-
ficiently if it is represented in the target scope of the
backend solver. Thus, with suitable approximations, lan-
guage properties cannot be directly constructed in the
target logic formalism.

In the paper, we make the following contributions:

– We propose an approach for the validation of DSLs
which covers the handling of metamodels, well-formedness
constraints and derived features captured by graph
queries or (a subset of) OCL invariants.

– For this purpose, we define transformation of meta-
models, models and constraints into FOL formulae.
Our aim is to derive effectively propositional formu-
lae wherever possible, which is an efficiently analyz-
able fragment of FOL. We also propose powerful ap-
proximation techniques to handle complex language
constructs which cannot be represented in FOL.

– To refine the context of DSL validation, we intro-
duce and map partial snapshots which serve as pro-
totypical initial instance models required to be in-
cluded when constructing a consistency proof for
a DSL. Furthermore, analysis results are also re-
trieved in the form of partial snapshots.

– In order to systematically carry out the validation
process for a DSL, we propose a validation work-
flow, which consequently investigates each language
feature to check consistency, completeness and un-
ambiguity (for derived features) and subsumption
or equivalence (for well-formedness constraints).

– We provide prototype tool support which takes EMF
metamodels with derived features, instance models,
constraints captured by graph patterns of the EMF-
IncQuery framework or in OCL as input, and car-
ries out DSL validation using back-end reasoners.
Validation results are back-annotated to the source



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 3

Functional 
Architecture 

Model

Integrated 
Architecture 

Model

Platform 
Description 

Model

Component 
Library

Allocation

Fig. 1: High-level overview of the Trans-IMA project

DSL specification and to the initial partial model
therefore language engineers may inspect those re-
sults as regular instance models.

– We carry out an initial performance evaluation on
various DSL validation tasks using a motivating ex-
ample from the avionics domain using the powerful
Z3 SMT solver built on high-level decision proce-
dures and Alloy (based on a SAT-solver) as auto-
mated back-end reasoning tools.

This paper extends our earlier work in [51] by (i)
generalizing partial snapshots, (ii) identifying new val-
idation tasks, (iii) formalizing the DSL specification
(metamodels, derived features, well-formedness constraints
in graph patterns and OCL) and the validation tasks
(iv) providing detailed specification and examples for
the DSL-to-FOL transformations and the approxima-
tions, and (v) extending the performance evaluation of
the validation approach by using both Z3 and Alloy.

Our tool has been successfully applied in case stud-
ies of two ongoing projects: the Trans-IMA project [29]
serves as a motivating scenario for the current paper
taken from the avionics domains, while the R3COP
ARTEMIS project [2] used our tool for test case gen-
eration for autonomous and cooperative robot systems
(which will be documented in an upcoming paper).

1.2 Motivating Scenario

Trans-IMA aims at defining a model-driven approach
for the synthesis of complex, integrated Matlab Simulink
models capable of simulating the software and hardware
architecture of an airplane. The project aimed to (i)
define a model-driven development process for allocat-
ing software functions captured as Simulink models [39]
over different hardware architectures and (ii) develop
domain-specific languages and tools for supporting the
definition of the allocation process.

The high-level overview of the Trans-IMA challenge
is illustrated in Figure 1. In model-driven development
of avionics systems, the functional architecture and the
platform description of the system are often developed
separately to increase reusability. The former defines
the services performed by the system and links between
functions to indicate dependencies and communication,
while the latter describes platform-specific hardware
and software components and their interactions.

1. Functional Architecture Models can be imported from
industrial language and tools such as AADL [49]
or Matlab Simulink [39] to capture the functional
description of different systems.

2. Then the system architect specifies the Platform De-
scription Model from the elements of the Component
Library defining the available hardware elements.

3. In the next step the system architect allocates all the
functions from the Functional Architecture Model.
The allocation itself includes two major parts: (i)
the mapping of functions defined in the FAM to
their underlying execution elements within the PDM
and (ii) the automated discovery of available com-
munication paths for the various information links
defined between the allocated FAM elements.

4. Finally, when the allocation is complete and fulfills
all safety and design requirements the Integrated Ar-
chitecture Model is automatically synthesized to en-
able simulation in Matlab Simulink.

This development environment is built upon eight
large metamodels, where complex EMF-IncQuery pat-
terns are extensively used for capturing constraints and
derived features. The DSL contains 118 classes, 90 at-
tributes and 170 references, where 56 features were marked
as derived (about 20% of total) and each was specified
by a corresponding model query. The design rules are
defined by 31 well-formedness constraints. The devel-
opment of other popular standardised industrial DSLs
have similar challenges: the AADL standard [49] pro-
vides DSLs used mainly in development of avionics sys-
tems with 259 classes, 75 implemented well-formedness
constraints, and more than the 15% of attributes and
references are derived. The AUTOSAR standard [6]
specifying DSLs to automotive systems contains more
than 1000 classes and about 500 design rules. The defi-
nition of such large DSLs is a very challenging task not
only due to their size (and thus their sheer complexity)
but also to precisely understand the interactions be-
tween the additional design rules. Declaring large num-
ber of derived features are also challenging with respect
to the safety specific well-formedness constraints.



4 Oszkár Semeráth et al.

Function
type : FunctionType

minimumFrequencys:sEInt

FunctionalElement

InformationLink

FunctionalArchitectureModel FAMTerminator

FunctionalInterface

FunctionalInput FunctionalOutput

FunctionalData

<<enumeration>>
FunctionType
Root
Leaf
Intermediate

subElements0..*

from 0..1to 0..1

rootElements
0..*

parent0..1

incomingLinks
0..*

outgoingLinks

0..*

model 1 data
0..*

interface
0..1

element
0..1

interface
0..1

terminator
0..1

data
0..1

Fig. 2: Metamodel of the Functional Architecture

1.3 Structure of the Paper

The rest of the paper is structured as follows. First we
present an overview of defining DSLs and queries in Sec-
tion 2. Then we present the formalism of partial snap-
shots in Section 3, which are generalizations of instance
models. An overview of the DSL validation approach is
provided in Section 4, and the DSL validation workflow
is detailed on our avionics case study in Section 5. We
intentionally postpone the theoretical details of trans-
forming various DSL constructs to first-order logic to
enhance readability of the initial sections of the paper.
First the technicalities of transformation is shown in
Section 6, afterwards the mapping of the metamodel
and partial snapshots are presented in Section 7 and
followed by the mapping of constraints (both in graph
patterns and in OCL) in Section 8. Section 9 demon-
strates the practical feasibility of our approach by pre-
senting prototype tool support and initial experimental
evaluation. Related work is discussed in Section 10 and
Section 11 concludes our paper.

2 Domain Specific Languages

Complex domain-specific languages (DSL) necessitate
a combination of different specification techniques. The
abstract syntax of the DSL is usually captured by a
metamodel. To create an advanced modeling environ-
ment, the metamodel can be augmented with well-for-
medness constraints (or design rules), which capture
additional restrictions any well-formed instance model
needs to respect. Such constraints can be defined by
model queries or as OCL invariants. Furthermore, the
metamodel can also be enhanced with derived features,
i.e. attributes and relations calculated from core model
elements during model use. In order to illustrate our

DSL validation techniques, we use an avionics DSL de-
fined over EMF metamodels and using the language of
the EMF-IncQuery [11] framework or OCL to define
constraints and derived features over EMF metamodels.

2.1 Metamodeling

Metamodels define the main concepts, relations and at-
tributes of the target domain to specify the basic struc-
ture of the models. In this paper, the Eclipse Modeling
Framework (EMF) [55] is used for domain modeling.

A simplified metamodel for functional architecture
is shown in Figure 2. The FunctionalArchitectureModel
element represents the root of a model, which contains
each Function (subtype of the FunctionalElement). Func-
tions have a minimumFrequency attribute, a type at-
tribute and multiple FunctionalInterfaces, where each
functional data is either a FunctionalOutput (for invok-
ing other functions) or a FunctionalInput (for accepting
invocations). An output can be connected to an input
through an InformationLink. Finally, if an input or out-
put is not connected to an other Function then it must
be terminated in a FAMTerminator.
– Classes (CLS): In this formalism the concepts are

represented by EClasses (which are simply referred
to as classes) that can be instantiated to EObjects
(or objects). The metamodel can specify finite types
with predefined set of {l1, . . . , ln} literals by EEnums.
For both classes and enums, if an e is an instance of
a T type it is denoted as T(e).

– Generalization (GEN) can be specified between
two classes to express that a more specific (child)
class has every structural feature of the more gen-
eral (parent) class. From a typing perspective, for all
metamodel classes abst, spec with super(abst, spec),
we have ∀e : spec(e)⇒ abst(e).



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 5

– Abstract (ABS): If a class is defined as abstract, it
is disallowed to have direct instances, i.e. for all ab-
stract classes abs and an instance o with isAbstract(abs)∧
abs(o), there exists a non-abstract subclass cls of abs
with o with ¬isAbstract(cls) ∧ cls(o)

– References (REF) EReferences defined between
classes capture the relations of the domain. When
two o and t objects are in a relation r, an EReference
(or an EAttribute) is instantiated leading from o to
t denoted as r(o, t).

– Attributes (ATT) EAttributes enrich the expres-
siveness of classes with values of predefined prim-
itive types like integers, strings, etc. If an object
o stores a value v as attribute A it is denoted as
A(o, v).

– Type compliance (TC) Type compliance requires
that for any relation r(o, t), its source and target
objects o and t need to have compliant types.

– Multiplicity (MUL) The multiplicity of structural
features can be limited with upper and lower bound
in lower..upper form, i.e. for any relation r leading
from o, we have lower ≤ |{t : r(o, t)}| ≤ upper.

– Containment (CON) EMF instance models are
arranged into a strict containment hierarchy, which
is a directed tree along relations marked in the meta-
model as containment. Our approach supports mod-
els with a single root object. Even though the EMF
framework supports resources with multiple model
roots, it is not supported by many modelling tools
(including its’ own tree editor). Additionally, allow-
ing multiple roots lets the solvers generate meaning-
less models with single isolated objects.
In a containment hierarchy, any non-root model ele-
ment has exactly one parent as container. Formally,
∀t∃!o : nonRoot(t)⇒ parent(t, o).

– Inverse (INV) Two parallel but opposite direc-
tional inverse references can be defined as inverses of
each other to specify that they always occur in pairs.
This means that for all pairs of references forw and
back that inv(forw, back) we have ∀o, t : forw(o, t)⇔
back(t, o).

A model M is a valid instance of a metamodel META
(denoted with M |= META) if all the corresponding
constraints above are satisfied, i.e.

M |= CLS,GEN,ABS,REF,ATT,TC,MUL,CON,INV.

In this paper EClass, EEnum, ELiteral, EReference,
EAttribute is also used as the set of all classes, enums
. . . in the metamodel META. EObject notes the set of
all objects in an instance model M.

〈pattern〉 → 〈annotation〉pattern〈name〉(〈params〉)
〈bodies〉

〈params〉 → 〈param〉 | 〈param〉, 〈params〉
〈param〉 → 〈var〉 | 〈var〉:〈EClassifier〉
〈bodies〉 → {〈conlist〉} | {〈conlist〉} or 〈bodies〉
〈conlist〉 → 〈constraint〉; | 〈constraint〉; 〈constlist〉

〈constraint〉 → 〈classifier〉 | 〈path〉 | 〈equality〉 |
〈call〉 | 〈check〉

〈classifier〉 → 〈EClass〉(〈var〉)
〈path〉 → 〈EClass〉.〈featlist〉(〈var〉,〈var〉)

〈featlist〉 → 〈EAttribute〉|〈EReference〉|
〈EReference〉.〈featlist〉

〈equality〉 → 〈var〉==〈var〉|〈var〉!=〈var〉
〈call〉 → find 〈name〉(〈binding〉) |

neg find 〈name〉(〈binding〉) |
find 〈name〉+(〈binding〉)

〈binding〉 → 〈var〉 | 〈var〉,〈binding〉
〈check〉 → check (〈boolexp〉)
〈boolexp〉 → 〈boolexp〉&&〈boolexp〉|〈boolexp〉||〈boolexp〉|

!〈boolexp〉|〈numexp〉==〈numexp〉|〈var〉
〈numexp〉 → 〈numexp〉+〈numexp〉|〈numexp〉-〈numexp〉|

〈numexp〉*〈numexp〉|〈numexp〉/〈numexp〉|
〈var〉

〈annotation〉 → @Constraint |@QueryBasedFeature |ε

Fig. 3: A grammar of graph patterns

2.2 Model Queries

Model queries can be frequently captured by graph pat-
terns (GP) [57,11], which are an expressive formalism
used for various purposes in model-driven development
alternatively for standard OCL constraints [41]. A graph
pattern is a graph-like structure representing a condi-
tion (or constraint) matched against a typically large
instance model.

A model query q(p1, . . . , pn) = body is defined by a
name q and symbolic parameters p1, . . . , pn, and condi-
tions (or constraints) over the parameters (captured by
body). A match m of q(p1, . . . , pn) = body over model
M maps each symbolic parameter pi to a model ele-
ment (object, enum literal or primitive) from the tar-
get model M, which satisfies the conditions of body:
∀m : M |= body(m(params)). The task of the query
evaluation on a model is to produce each match that
satisfies this condition.

EMF-IncQuery offers a textual language describ-
ing graph patterns as a set of constraints. Figure 3 sum-
marizes the grammar of the language, the complete
query language is described in [11], while relevant lan-
guage features will be introduced on demand in several
examples below adapted from [51].

A graph pattern is identified with a unique name
and specified with a parameter list and some bodies.
The parameters refer to objects, enum literals or prim-
itive types where the type of a parameter can be ex-



6 Oszkár Semeráth et al.

plicitly defined. The bodies specify constraints over the
parameters. A pattern may have multiple bodies with
constraints, and may introduce additional local vari-
ables beside the parameters. If a variable is used only
once it is specified as an anonymous variable with ’ ’ as
the first character in its name. A pattern with multi-
ple bodies means a disjunction (or), thus a valid match
necessitates that all the constraints are satisfied by a
mapping of those variables for at least one body.

The following types of constraints are supported:

– Classifier constraint: checks if a variable is an
instance of an EClass.

– Path constraint: requires a specific reference, an
attribute, or a path of reference and attribute se-
quence between two variables.

– Equality constraint: specifies that two variables
have to be mapped to the same model element.

– Pattern call constraint: enables the composition
of multiple patterns. The positive pattern call refers
to another pattern and specifies that the called pat-
tern must be satisfied in the context of the actual
parameters. Additionally, a pattern may be com-
posed negatively (neg keyword), which means that
the target negative pattern is disallowed to have a
valid match along the actual parameters. Finally,
it is possible to compute the transitive closure of a
two-parameter pattern by the + symbol.

– Check constraint: evaluates a specific attribute
expression on the variables of the pattern and accept
matches only if the result of attribute condition is
true. In this paper, the basic arithmetic and logic
operators are covered.

It is possible to mark the patterns as an ill-formedness
pattern with @Constraint, or make them define the
values of derived features with the @QueryBasedFeature
annotation.

By default, the result of a model query expressed as
a graph pattern is the set of all matches with different
values for the pattern parameter variables. However, by
binding parameter variables to specific model elements
or attribute values it is possible to filter the returned
values. This allows the use of the same pattern for get-
ting all possible matches and for checking whether a
selected match is present in the result set.

2.3 Derived Features

Derived features (DF) are frequent extensions of meta-
models to improve navigation by path compression or
compute derived attributes. The value of a DF can be
computed from other parts of the model as defined by
a model query [46,41]. Such queries df(o, v) have two

parameters: (i) for derived references o represents the
source and v the target object of the reference while (ii)
for derived attributes o represents the container object
and v is the computed value the attribute.

A derived feature df defines the values of the se-
lected feature in the following way: ∀o, v ∈ EObject :
feature(o, v)⇔ df(o, v). This has to be satisfied for each
derived feature in the DSL which is defined by the DF
rule, therefore the definition of a valid model is speci-
fied as: M |= META∧DF. Model query frameworks like
EMF-IncQuery automatically recalculate the value of
the derived features in the instance model to satisfy DF
[46].

Our sample DSL contains two derived features high-
lighted in blue in Figure 2: a type which defines the
value of an enum attribute and a model which points to
the container FAM models.

Sample derived attribute The derived attribute type of
Function is defined to take a value from the enumeration
literals: Leaf, Root, Intermediate. The pattern defining
the type attribute is illustrated on the right side of Fig-
ure 4. We use both a custom graphical and the textual
EMF-IncQuery notation [11] to illustrate the queries
defined for these derived features. In the graphical no-
tation each rectangle is a variable with a declared type,
e.g. the variable Par is a Function, while arrows rep-
resent references of the given EReference between the
variables, e.g. the function This has the function Par
as its parent. Negative application conditions (NACs)
are illustrated as red rectangles. The OR pattern bodies
represent that the matches of the query is the union of
the matches of its or bodies.

Based on these definitions the type query has three
OR pattern bodies each defining the value for the cor-
responding enum literal of the type attribute:

– Root if the container object is directly under the
FunctionalArchitectureModel connected by rootEle-
ments.

– Leaf if the container object does not have a child
along the subElements EReference and it is not a root
element (as defined by the corresponding negative
application conditions NEG).

– Intermediate if the container object has both parent
and child functions.

Sample derived reference FunctionalElements are also
augmented with a derived reference model (highlighted
in blue in Figure 2) which represents a reference to
the container FunctionalArchitctureModel object from
any FunctionalElement within the containment hierar-
chy. The definition of the corresponding graph pattern



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 7

2

This:Function

type(This,Target)

_F:NFuncArchModel

:rootElements This:Function

_Par:NFunction

:parent

_Chl:Function

:parent

Target == ‘Root’

This:Function

_F:NFuncArchModel
:rootElements

_Chl:NFuncElement

NEG:parent

Target ==N
‘Intermediate’

NEG

Target == ‘Leaf’
oror

@QueryBasedFeature pattern type(
This:Function , Target : FunctionType )=

{ // -- Root body --
find rootElement (_Model ,This );
Target == FunctionType :: Root;

} or {// -- Leaf body --
neg find parent (_Child ,This );
neg find rootElement (_Model ,This );
Target == FunctionType :: Leaf;

} or {// -- Intermediate body --
find parent (This , _Par );
find parent (_Child , This );
Target == FunctionType :: Intermediate ; }

Fig. 4: Definition of derived attribute type

This:FuncElement

model(This,Target)

Target: 
FuncArchModel

:rootElements

_Par:Function

Target: FuncArchModel
:rootElements

This: FuncElement

:parent

or

+

@QueryBasedFeature pattern model (
This : FunctionalElement ,
Target : FunctionalArchitectureModel ) =

{
find parent +( This , Parent );
find rootElements (Target , Parent );

} or {
find rootElements (Target , This );

}

Fig. 5: Definition of derived reference model

is visible in Figure 5 which calculates the transitive clo-
sure of the parent reference between elements This and
Par as denoted by an arrow with a + symbol.

2.4 Well-formedness Constraints

Structural well-formedness (WF) constraints (aka de-
sign rules or consistency rules) complement metamodels
with additional restrictions that have to be satisfied by
a valid instance model (in our case, functional archi-
tecture model). Such constraints can also be defined
by query languages such as graph patterns or OCL
invariants, in fact, our validation approach supports
both of these formalisms. In many practical cases, well-
formedness constraints are defined by queries which
capture ill-formed model structures that are disallowed
to have a match in a valid model. In the presence of
a set WF of well-formedness constraints, a model M is
called valid if M |= META ∧ DF ∧WF.

In our running example, a WF constraint captures
that a FunctionalData object with a FAMterminator can-
not be connected to an InformationLink. It is specified by
the terminatorAndInformationLink query (see Figure 6)
that has two OR pattern bodies, one for the Function-
alInputs and one for the FunctionalOutputs with their
corresponding incomingLinks and outgoingLinks, respec-
tively.

The same constraint is also captured in OCL, see
bottom part of Figure 6 for a comparison. Note that
graph patterns are normally ill-formedness constraints

to capture erroneous situations while OCL invariants
capture the valid case, and violations are identified by
their context. Another WF constraint specifies that the
frequency of a subfunction has to be equal to (or exactly
twice or four times as much as) the frequency of its
parent function in order to enable communication. This
WF constraint is specified in Figure 7.

3 Partial Snapshots

For a DSL validation scenario, we argue in this pa-
per that traditional instance models are not sufficiently
flexible to serve as direct inputs and outputs of the val-
idation process. For instance, an abstract class is dis-
allowed to have instances in a regular domain model,
thus the model editor would prohibit the construction
of such an instance. However, allowing the use of an in-
stance of an abstract superclass can succinctly abbrevi-
ate many counterexamples retrieved by a solver. For ex-
ample, retrieving a single instance of the abstract class
FunctionalData represents every possible concrete sub-
classes (e.g. FunctionalInput or FunctionalOutput). Simi-
larly, a small model fragment which highlights a valida-
tion problem may still violate other constraints thus it
is not a valid instance model. Therefore, in the paper,
we use a more permissive instance level formalism called
partial snapshots (PS) as an additional input or output
of DSL validation where certain language constraints
are relaxed. During a typical validation run, such a PS



8 Oszkár Semeráth et al.

eIQ
_FD:FunctionalInput

terminatorAndInformationLink(Ter,InfLnk)

Ter: FAMTerminator

: data

or
InfLink:InformationLink

: incomingLinks

_FD:FunctionalOutput

Ter: FAMTerminator

: data

InfLink:InformationLink

:outgoingLinks

@Constraint pattern
terminatorAndInformation (

Ter : FAMTerminator ,
InfLink : InformationLink ) =

{
FAMTerminator .data. incomingLinks (Ter , InfLink );
} or {
FAMTerminator .data. outgoingLinks (Ter , InfLink );
}

OCL context InformationLink inv terminatorNoLink : ( self .to <> null implies self .to. terminator = null ) and
( self .from <> null implies self .from. terminator = null )

Fig. 6: Definition of the WF constraints terminatorAndInformationLink and terminatorNoLink

eIQ

wrongFrequency(Func:Function,Sub:Function)

Func: Function
minimumFreq = freq

:subelements

Sub: Function
minimumFreq = subfreq

!(freq == subfreq ||
2*freq == subfreq ||
4*freq == subfreq)

@Constraint
pattern wrongFrequency (Func:Function ,Sub: Function ){

Function . subElements (Func ,Sub );
Function . minimumFrequency (Func ,freq );
Function . minimumFrequency (Sub , subfreq );
check (!( freq == subfreq ||

2* freq == subfreq ||
4* freq == subfreq ));

}

OCL
context Function inv RightFrequency : Function . allInstances ()-> forAll (par , child |( child . parent =par)

implies (( child . minimumFrequency = par. minimumFrequency ) or
( child . minimumFrequency = par. minimumFrequency * 2) or
( child . minimumFrequency = par. minimumFrequency * 4)))

Fig. 7: Constraint for the frequency of the subfunctions

will be extended with further information to obtain a
compliant instance model (called completed model).

While the underlying formalism of PSs is similar
to existing approaches [31,35,50,52], we use them in a
novel way to assist the DSL validation process, espe-
cially, for constructing validation proofs under specific
assumptions. In our workflow, a PS can be generalised
from a regular (fully specified) instance model by relax-
ing specific properties identified by the DSL developer,
which can guide efficient validation in practically rele-
vant cases. This allows the DSL developer to derive a
PS from existing models developed in a native editor,
or iteratively reuse the result of a previous validation
run.

Definition 1 (Partial snapshot) A partial snapshot
PS is an instance of a metamodel META when only
the following (typing-specific) constraints are satisfied:
CLS, GEN, REF, TC.

We briefly describe below which constraints are re-
laxed wrt. the definition of regular instance models.
1. Undefined attributes: In a normal EMF instance ob-

ject each attribute has a value (or a preset default
value), while a PS may contain attributes with un-
defined values.

2. Abstract objects: Partial snapshots allow to instan-
tiate abstract EClasses. Such instances are handled
similarly to regular objects thus they can have at-
tributes and references. When completing a PS into

a valid instance model, the type of an non-concrete
object has to be refined in to a concrete subtype
(including the additional attributes and references
of the concrete type).

3. Unconnected partitions: While EMF requires that an
instance model is arranged in a strict containment
hierarchy, PSs allow to define instance models that
consist of unconnected and consist of multiple model
fragments. Such model fragment will be completed
during a validation run by linking the partitions to
a well-formed hierarchical containment tree.

4. Missing / extra edges: PSs may contain references
without their inverse relation counterparts. Simi-
larly, PSs may also violate multiplicity constraints.

5. Removed objects: Objects might be removed from a
PS in order to exclude unimportant elements from
a partial snapshot. In other words a PS defines only
an initial model which can be extended with ad-
ditional objects, therefore defining a minimally re-
quired structure. For example, if only the architec-
ture of the functions is relevant in an instance model
the communication channels can be removed. The
analysis generates models which architecture con-
tains the initial architecture of the PS.

Example 1 Figure 8 shows four PSs generalized from
instance models by removing certain model elements.

– architecture: This PS defines a core structure of an
IMA architecture prescribed to contain two of each



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 9

architecture shareable communication unmodifiable module

negative terminated link

Fig. 8: Partial snapshots with semantic modifiers

root, intermediate and leaf elements, but it does not
define their exact structure. As type attribute is a
derived feature, the instance models that contain
this PS must be arranged in an architecture which
evaluates to the correct literals.

– communication: This PS contains a communication
link from an input FunctionalElement to an output
FunctionalElement via FunctionalInterfaces.

– module: This PS defines a module with three func-
tions (FMS: Flight Management System, FCS: Flight
Control System, ACU: Avionics Control Unit) ar-
ranged into a tree hierarchy via subelement and par-
ent edges.

– terminated link: This example shows a FunctionalIn-
put extracted from an invalid model as it contains
both a FAMTerminator and an InformationLink.

Multiple PSs will be passed as an input parameter
to the validation process (see later in Section 4), and
the solver will try to construct a valid instance model
which satisfies each of them. However, there are multi-
ple semantic modifiers for combining these PSs into a
single valid completed model, which are discussed below
(default modifier values are underlined).

1. Positive / Negative: A positive PS is an incomplete
model that every output model has to contain as a
submodel. Formally, a model M satisfies a positive
snapshot POS if there is a match m along which
POS can be matched as a query: M |= POS(m) for
some m.
A negative PS has the opposite effect: if a model
contains it as a submodel then it is invalid. Thus a
model M satisfies a negative snapshot NEG if there
is no match m along which NEG can be matched as
a query: M 6|= NEG(m) for all m.

2. Injective / Shareable: In case of an injective PS, the
objects of the snapshot have to be mapped to dif-
ferent instance objects in the output model. For-
mally, M |= INJ(m) when m is a query match with
∀o1, o2 ∈ INJ : INJ(m/o1) = INJ(m/o2) =⇒ o1 =
o2 (where INJ(m/oi) denote the match of query el-
ement oi in M).
In a shareable PS, multiple PS elements can be mapped
into the same model object if it satisfies the local
conditions prescribed by each mapped PS element.
Note, however, that each PS is evaluated indepen-
dently from each other, thus different injective PSs
may share objects in the output model.

3. Modifiable / Unmodifiable: A modifiable PS means
that the reasoning process can add extra objects
and links or fill empty (undefined) attributes in the
output model to satisfy the PS.
An unmodifiable PS means that the reasoning pro-
cess can only change the context of the match of the
PS (by adding/removing objects, links and setting
attributes) but not in the match itself. For instance,
if two objects in the PS are not linked by a certain
relation, they need to remain unlinked in the result
model. However, embedding the PS into a context
with newly created incoming or outgoing relations
(where their source or target model element is not
in the match) is still allowed.

It is worth emphasizing that these semantic modi-
fiers of PSs are independent from each other, i.e. they
can be used in any combination for defining PSs for a
DSL context. The grammar of Figure 9 summarizes the
context specification by PSs (psspec).

Example 2 Figure 8 contains several semantic modifiers
for the partial snapshots:



10 Oszkár Semeráth et al.

〈psspec〉 → 〈pslist〉
〈pslist〉 → 〈psitem〉;|〈pslist〉|〈psitem〉
〈psitem〉 → ps〈modifier〉〈psname〉{〈pscontent〉}

〈pscontent〉 → 〈pscon〉〈pscontent〉|〈pscon〉
〈modifier〉 → 〈posneg〉〈inject〉〈unmod〉
〈posneg〉 → positive|negative|ε
〈inject〉 → injective|shareable|ε
〈unmod〉 → modifiable|unmodifiable|ε
〈pscon〉 → cls(o)|rel(s,t)|att(o,v)

Fig. 9: A grammar of partial snapshots

– architecture: This PS can be embedded into an out-
put model in accordance with modifiers positive, in-
jective and modifiable, which is the default seman-
tics: arbitrary extensions are allowed, but a Trans-
IMA model needs to contain at least six Function
objects (two of each type).

– communication: This PS is matched as positive, share-
able and modifiable. This means that functional ele-
ments f1 and f2 can be matched to the same object
if there is an information link with the same source
and target functional element in the model.

– module: This PS has the semantics positive, injec-
tive and unmodifiable, thus no new relations can
be added between FMS, FCS and ACU. Further-
more, the values of corresponding attributes (type
and minimumFrequency) are not allowed to be al-
tered. On the other hand, a new Function can still
be added to the output model and linked to the
matches of the PS elements by new edges.

– terminated link: This PS should be treated as nega-
tive, injective and modifiable. A successful match of
this PS invalidates the output model.

Metamodel elements, derived features, well-formed-
ness constraints and partial snapshots of a DSL speci-
fication will be called language properties in the paper.

4 Overview of the Approach

This section provides a high-level, functional overview
of our DSL validation approach using an SMT-solver. It
gives the precise definition of the validation challenges
for DSLs and describes how these challenges can be
addressed by appropriate configuration of the solver.

4.1 Functional Overview of the Approach

Our approach aims to analyze the DSL specification of
modeling tools by mapping them into first order logic
(FOL) formulae that can be processed by advanced rea-
soning applications such as SMT solvers or SAT solvers
(see Figure 10). The outcome of a reasoning problem is

Reasoning

Snapshots

Metamodels

Constraints

Derived Features
Mapping

Modelling Tool

Search
Parameters

Solver

SAT
M

UNSAT
↯

False Positives<- half ->

Unknown
?

SAT
ℳ

Result

Fig. 10: Functional overview of the approach

either Satisfiable or Unsatisfiable. If the problem is sat-
isfiable, the solver constructs an output (or completed)
model (which is interpreted as Witness or Counterex-
ample depending on the validation task), while an un-
satisfiable result means a Contradiction. Because cer-
tain validation tasks are undecidable in FOL it is also
possible that validation terminates with an Unknown
answer or a timeout. Each possible outcome will be il-
lustrated on our case study.

The results of the reasoning need to be traced back
and interpreted in modeling terms as attributes of the
DSLs. Linking the independent reasoning tool to the
modeling tool allows the DSL developer to make math-
ematically precise deductions over the developed lan-
guages and models including different validation tech-
niques and example generations.

The validations are initiated and executed in well-
defined context, which is treated as a set of axioms for
the validation run. This context can be customized dur-
ing DSL validation by selecting (or de-selecting) certain
DSL artifacts from the following list. As a result, the
output model M retrieved during DSL validation needs
to respect the context.

– Metamodels: The set of domain classes allowed to
be instantiated for constructing models can be re-
stricted by explicitly selecting classes and structural
features. By default, each class from each meta-
model is used in the analysis. Then M has to satisfy
the constraints of these this (possibly partial) meta-
model: M |= META.

– Derived Features: The values of the derived fea-
tures have to be correctly evaluated with respect to
their definition yielding unique and complete results
(denoted as M |= DF).

– Constraints: The output model has to satisfy the
selected well-formedness constraints: M |= WF, thus
certain constraints can be relaxed or strengthened
for a reasoning process.

– Partial Snapshots: The output model M has to
combine partial snapshots according to their seman-
tic parameters discussed in Section 3, denoted as
M |= PS. Partial snapshots act as explicit assump-



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 11

ResultReasoning

Approximation
parameters

Solver

Model Generation<- half ->

Mapping


Valid?

Postprocessing

SAT
M

UNSAT
↯

Unknown
?

over 

under

Fig. 11: Reasoning with approximated constraints

tions (or proof obligations) in a validation scenario,
so by default, no PS is passed to the solver.

– Search Parameters: Additionally, the user may
define some reasoning-specific input parameters:
– Size: The number of objects used in the con-

struction of an output model can be restricted
by a positive integer (defined by |M| ≤ size). By
default, size = *, which means that the analysis
covers all each possible model regardless of its
size.

– Approximation level: Some DSL property (such
as the acyclicity of the containment hierarchy)
cannot be represented in FOL. The method is
customizable with the level of approximation (see
Section 6.2), which allows to set the limit of
approximation level. Higher approximation level
will reduce the possibility of false positives.

The constraints serving as the context of DSL vali-
dation are summarized as DSL = META∧DF∧WF∧PS,
and it defines a possibly infinite set of Models = {M :
M |= DSL, |M| ≤ size}. If each parameter is set to the
default value, the analysis covers the full range of valid
instance models (thus the full language is analyzed).

The constraints in DSL may contain expressions which
cannot be processed or effectively handled by the under-
lying solver thus approximation techniques have to be
applied. The use of approximations is an integral part of
the proposed approach, which is handled in validation
process as Figure 11 illustrates it. Based on the Approxi-
mation Parameters, under- and overapproximations are
applied on the logic problems during the transformation
to create stronger or weaker conditions by adding, re-
moving or modifying formulae. The modified problem
is expected to be solved more efficiently by the target
logic reasoner, and the result can be Satisfiable with a
model (which is only a Candidate Model of the original
problem), Unsatisfiable or Unknown. Because of the ap-
proximations, an output of this modified problem needs
some additional analysis:

– If an underapproximated problem is satisfiable,
then the original problem is satisfiable too, and the

candidate model (output of the modified problem)
is acceptable for the original problem.

– If an overapproximated problem is unsatisfiable,
then the original problem is unsatisfiable too.

– But if an underapproximated problem is unsat-
isfiable, then it is uncertain if the original problem
has contradictions so the result is unknown.

– If an overapproximated problem is satisfiable,
then the candidate model might be a false positive
which does not satisfy the original problem, so ad-
ditional validation with the original constraints is
necessary. Structural correctness, OCL and EMF-
IncQuery constraints can be easily checked on a
candidate instance model by dedicated language level
validation tools (like EMF-IncQueryor OCL inter-
preters). If the validation is successful, then the can-
didate model is valid in the context of the original
problem, otherwise the process fails with unknown.

– If the theorem prover provides a model, which is for-
mally correct, but does not occur in real scenarios,
then it is a spurious counterexample. To handle
those irrelevant cases, the counterexample is turned
into a partial snapshot supplied to the solver in con-
secutive validation runs.

By using abstraction in the validation process com-
plex language elements can handled in the validation
even if they cannot directly handled by the solver.

4.2 Validation tasks

Figure 12 shows a more detailed overview of the differ-
ent DSL validation tasks, their respective input param-
eters (upper part) and the possible validation outputs
(lower part) of our framework.

The input parameters allow to define the DSL val-
idation context (as discussed above), and the selected
elements of the DSL context are mapped to FOL in
accordance with further reasoning-specific search pa-
rameters. We distinguish between five DSL validation
tasks (consistency, subsumption, equivalence, complete-
ness and ambiguity checks), which are detailed below.
In each case, the validation run terminates with con-
structing an output model, or revealing a contradic-
tion. The result of the model generation is interpreted
for each validation task, the valid and invalid outcomes
are highlighted in Figure 12. If an output model is re-
trieved it is presented as a witness model (for consis-
tency and subsumption check), or as a counterexample
(e.g. a proof of ambiguity or incompleteness).



12 Oszkár Semeráth et al.
O

u
tp

u
t

Invariants Ill-formedness

Snapshots

Structure Constraints Derived Features

In
p

u
t

Completeness Check Ambiguity CheckSubsumption Check Equivalence Check

Complete

Derived FeaturesG
PMetamodelE
M
F

O
C
L

G
P

E
M
F

Incomplete CaseE
M
F

M


↯
 Unambiguous

Ambiguous CaseE
M
F

M


↯


Subsumption

Equivalence

DifferenceE
M
F

M


↯


Consistency Check

Inconsistency ↯


Witness Model M
 Counter ExampleM



E
M
F

E
M
F

↯


: OCL constraint: EMF Artifact M : Model : Valid case  : Invalid case ↯ : Contradiction : Graph PatternGPEMF OCL

Search Parameters

FunctionalOverview

Mapping

Fig. 12: Overview of validation tasks

4.2.1 Consistency check

Consistency is a property of the whole DSL which means
that there is no any contradiction in its specification,
i.e. there is at least one valid instance model. A consis-
tency check either reveals the conflicting elements (con-
straints, derived features) of a DSL or proves that the
DSL is consistent. Because any statement can be proven
from a contradicting set of axioms, an inconsistency
invalidates the result of any further DSL checks (like
completeness, ambiguity and subsumption and equiva-
lence checks). A consistency check aims to prevent such
a situation.

Definition 2 (Consistency) A DSL context is con-
sistent if it has a valid instance model, i.e. Models 6= ∅.
A DSL context is inconsistent if it is not consistent
i.e. Models = ∅ (where Models = {M : M |= DSL}.

Note that there are no further restrictions on the
size of M to serve as a proof of consistency, i.e. M might
be as simple as a single object. In fact, many SAT-
solvers would retrieve such a model by default. There-
fore, for practical DSL validation, stricter consistency
requirements are necessitated, such as every class and
reference in the metamodel have to be instantiated at
least once in an output model.

Such consistency criteria can be encoded and checked
in our framework using partial snapshots. The use of
partial snapshots and flexible model size limit (and fur-
ther search parameters) make the generation of out-
put model highly customizable. The underlying solver
is called with the metamodels, the derived features, the
constraints and partial snapshots as input. The out-
put model is interpreted as a witness model of consis-
tency, while a contradiction is a proof of inconsistency.
In practice, consistency checks are typically used to (1)
identify contradictions in a DSL specification, (2) check
if each language element can be instantiated or (3) gen-

erate instance models for a given context (e.g. relevant
contexts for test cases).

4.2.2 Subsumption check

A complex DSL may contain a large number of indepen-
dent language properties (well-formedness constraints,
derived features, partial snapshots). With a growing
number of language properties (i.e. DSL context), a
redundant property is difficult to be identified merely
by human inspection. While consistency checks reveal
a contradicting language specification, it would be ad-
vantageous to reveal if a new constraint really imposes
further restrictions on valid instances, or it is already
covered by the existing DSL specification. Subsumption
checks of a language property aims to detect this lat-
ter case. A subsumed constraint does not express any
additional restriction over the DSL therefore it can be
removed without any further consequences.

Definition 3 (Subsumption) A property P is sub-
sumed by a DSL context if DSL |= P. A P prop-
erty is not subsumed by a DSL context if DSL 6|= P.
A P property is independent from a DSL context if
DSL 6|= P ∧ DSL 6|= ¬P.

Informally, property P is subsumed by a DSL speci-
fication when every model that satisfies the DSL specifi-
cation will also satisfy this property P (formally, ∀M ∈
Models : M |= DSL ⇒ M |= P). If property P is not
subsumed then there is a valid instance model that sat-
isfies the DSL specification but not the property itself
(formally, ∃M ∈ Models : M |= DSL ∧M 6|= P). Finally,
the property is independent from a DSL context if it is
consistent with it but not subsumed by it.

Given the DSL context as a set of axioms, we carry
out traditional theorem proving to decide if property
P is derivable from the set of axioms. For this pur-
pose, we aim to prove that adding ¬P as an axiom to



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 13

DSL makes the new specification {DSL,¬P} inconsis-
tent. Therefore, an output model retrieved by the solver
is interpreted as a counterexample to testify that prop-
erty P is not subsumed. In order to show the indepen-
dence of a property P, the axiom set {DSL, P} is aimed
to be refuted as well, and we require both validation
runs to retrieve an output model.

4.2.3 Equivalence check

Language properties can be defined in multiple ways,
potentially using different languages and formalisms. A
well-formedness constraint or a derived feature can be
captured as a graph pattern, as an OCL invariant or as
positive or negative partial snapshots. In practical sce-
narios, a DSL specification in fact uses a mixture of such
techniques. Moreover, automated transformations are
defined to convert OCL constraints into graph patterns
and vice versa. Equivalence checks aim to prove the cor-
rectness of conversions between the language properties
in a DSL.

Definition 4 (Equivalence) Properties A and B are
equivalent in a context DSL if DSL |= A⇔ DSL |= B.

According to the definition, two validation runs are
initiated for checking the consistency of sets {DSL,¬A}
and {DSL,¬B}, respectively. The result of the valida-
tion is the proof of the equivalence, or an example to
highlight the semantic difference between the two prop-
erty, which presents an example where one property is
satisfied, but the other is not.

4.2.4 Completeness and Ambiguity Check of DFs

Derived features specified by model queries (defined by
graph patterns or OCL constraints) are integral parts
of a DSL specification. However, the definition of such
DFs is error prone as the corresponding query has to
yield well-defined result in all situations. In the paper,
we aim to check the completeness and unambiguity of
derived features.

Completeness of a derived feature means that the
DF satisfies the lower multiplicity constraint of the tar-
get structural feature. For example, in case of a refer-
ence with 1..? multiplicity, completeness is achieved if
the DF evaluates to at least one value for every occur-
rence of the derived feature. If there is a model where no
values can be assigned to an occurrence of the derived
feature it is incomplete.

Let MULTmin
SF denote the lower multiplicity and

MULTmax
SF denote the upper multiplicity of the struc-

tural feature SF by appropriate constraints. Further-
more, let DSL \C denote a DSL context where the lan-

guage constraint C is removed. Completeness is then
defined as follows:

Definition 5 (Completeness of Derived Features)
A derived feature DF is complete in a DSL context if
DSL \MULTmin

DF |= MULTmin
DF . Otherwise, DF is in-

complete.

Ambiguity allows the upper limit of the multiplicity
to be exceeded. For example, a DF complies with the
?..1 multiplicity if it evaluates to at most one value for
every occurrence of the DF. An output model where
multiple values can be assigned to some occurrence of
the DF means that the DF is ambiguous.

Definition 6 (Unambiguity of Derived Features)
A derived feature DF is unambiguous in a DSL con-
text if DSL \MULTmax

DF |= MULTmax
DF . Otherwise DF

is ambiguous.

In accordance with the definitions above, the cor-
responding multiplicity constraints are extracted from
the DSL context and their negation is added back and
checked for contradiction. The result of the validation
task could be either the proof of completeness / unam-
biguity of the checked DF with respect to the validation
context, or a counterexample that, although satisfies
the specification of the DF, violates its multiplicity.

5 A Case Study on DSL Validation

5.1 Overview of DSL Validation Workflow

Complex DSL specifications may contain multiple in-
consistencies, and the erroneous language properties are
difficult to identify and localize. To assist the develop-
ers finding such inconsistencies, we propose an iterative
workflow that defines the practical order of address-
ing and completing the different validation steps. By
following this workflow, our framework will reveal the
design flaws one by one so with the help of the coun-
terexamples the root cause of the error can be better
detected. This iterative approach can be applied in any
stage of DSL development (including also on incom-
plete language specifications) thus specification errors
can be detected in an early phase of DSL design. Addi-
tionally, the workflow can guide the developer through
a complete language validation process. The validation
workflow is illustrated in Figure 13.

1 First, a metamodel is added to the validation con-
text process and checked for consistency.

2 Derived features are iteratively added (extending it
with one new DF at a time)



14 Oszkár Semeráth et al.





DSL Specification Validation Context

+ 2. Derived
Features

DSL
Development


+ 1. Extend

Metamodel

Ambiguous?
Incomplete?
Inconsistent?

Valid error?

Refine
Context

Correct
DF







+ Well-
formednes



Inconsistent?
Subsumption?

Valid error?

Refine
Context

Correct
WF

Valid DSL

Rewrite
Properties

Equivalent?

1

2
3

4 5

6 7

Fig. 13: DSL validation workflow

3 The unambiguity and completeness of the DF as
well as the consistency of the entire validation con-
text are automatically checked.

4 After checking all DFs, validation continues with the
WF constraints, which are added to the validation
context iteratively (one-by-one).

5 Our framework inspects whether the current WF
constraint causes inconsistency or it is already sub-
sumed by the current validation context.

6 If the validation of the DSL succeeds with all DF
and WF constraints included in the context, then
the DSL is valid under the assumptions imposed
by the search parameters and the partial snapshots.
The DSL validation process succeeds.

7 Partial snapshots retrieved in the validation context
can be turned into WF constraints of the DSL. In
such a case, our framework formally proves that the
WF constraint and the PS in the context are for-
mally equivalent, therefore, the corresponding WF
is not required to be re-validated.

ER If the validation fails at any step, the language en-
gineer has to correct the DSL artifact based on the
counterexample, and continue the validation from
the modified element. In case of false positives (which
are detected by checking the result model whether it
truly satisfies the constraints), the parametrization
of the search needs to be fine-tuned. If the result
is an error but the framework provide a spurious
counterexample, then the validation context should
be extended by the missing constraints.

Starting the validation of derived features prior to
WF constraints is based on the observation that each
DF eliminates a large set of trivial, non-conforming in-
stance models (which are not valid instances of the
DSL). Moreover, adding a single constraint at a time
to the validation problem helps identify the location
of the problem, because the solver provides only very
restricted traceability information. This eases the re-
finement in case of an erroneous DF or WF is added
in the actual step based on the proof provided by the
solver.

The rest of this section demonstrates how this DSL
validation workflow can be applied on the running ex-
ample from the avionics domain.

5.2 Derived Type Validation

For illustration purposes, we artificially inject two con-
ceptual flaws into the query defining the derived feature
type in the IMA example (depicted in Figure 14, and
see Figure 4 for its correct original definition):

1 The pattern body representing the intermediate case
has been removed, which makes the DF incomplete.

2 The constraint defines that the leaf elements can-
not be connected by rootElements reference is also
removed. This will lead to an ambiguity as the body
representing the leaf case becomes more permissive.

The validation process is presented in Figure 15.

– First (Step 1) we add the type DF to the DSL con-
text and its consistency is successfully validated.



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 15

Intermediate
body removed

Costraint from
Leaf body removed2

This:Function

type(This,Target)

_F:GFuncArchModel

:rootElements

Target == ‘Root’

This:Function

_Chl:GFuncElement

NEG:parent

Target == ‘Leaf’oror

1 2

Modifications

1

Fig. 14: Modifications on the type pattern

type pattern as derived attribute

Validation step Outcome Action

7. Consistency: model 

8. Completeness: model   CE3 Set partial snapshot to PS1

9. Completeness: model Timeout Checked in boundend size

10. Unambiguity: model 

Validation step Outcome Action

11. Consistency: T&IL 

12. Consistency: IL2T 

13. Subsumability: IL2T  Remove WF: IL2T

Validation step Outcome Action

1. Consistency: type 

2. Completeness: type  CE1 Set acyclicity approximation to 2

3. Completeness: type  CE2 Add missing body to type query

4. Completeness: type 

5. Unambiguity: type  CE3 Add missing constraint to type query

6. Unambiguity: type 

model pattern as derived reference
Validation step Outcome Action

7. Consistency: model 

8. Completeness: model   CE4 Set partial snapshot to PS1

9. Completeness: model Timeout Checked in boundend size

10. Unambiguity: model 

Validation step Outcome Action

11. Consistency: T&IL 

12. Consistency: IL2T 

13. Subsumability: IL2T  Remove WF: IL2T

Validation step Outcome Action

1. Consistency: type 

2. Completeness: type  CE1 Set acyclicity approximation to 2

3. Completeness: type  CE2 Add missing body to type query

4. Completeness: type 

5. Unambiguity: type  CE3 Add missing constraint to type query

6. Unambiguity: type 

well-formedness constraints

Validation step Outcome Action

7. Consistency: model 

8. Completeness: model   CE4 Set partial snapshot to PS1

9. Completeness: model Timeout Checked in boundend size

10. Unambiguity: model 

Validation step Outcome Action

11. Consistency: T&IL 

12. Consistency: IL2T 

13. Subsumability: IL2T  Remove WF: IL2T

Validation step Outcome Action

1. Consistency: type 

2. Completeness: type  CE1 Set acyclicity approximation to 2

3. Completeness: type  CE2 Add missing body to type query

4. Completeness: type 

5. Unambiguity: type  CE3 Add missing constraint to type query

6. Unambiguity: type 

Equivalence check of OCL, GP and PS
Validation step Outcome Action

14. Equivalence: T&IL – OCL ⟺ GP 

15. Equivalence: T&IL – OCL ⟺ Neg PS   CE5

Fig. 15: Example DSL validation run

– Then (Step 2), the completeness of the derived
feature type is checked resulting in a failure illus-
trated by the Counterexample 1 showing three func-
tions without type to form a cycle in the contain-
ment hierarchy. This counter example is visualized
in Figure 16 where the invalid elements are high-
lighted in red, and the containment references are
represented with black diamonds. Note that almost
all properties of the instance model are correct, only
the containment hierarchy is violated (along the n1-
n3-n4 cycle). This is a false positive case since the
acyclicity of the containment hierarchy can only be
approximated in first order logic. In our framework,
this problem can be easily solved by simply raising
the level of approximation for transitive acyclicity .

– In Step 3, our tool shows a real counterexample
(middle part of Figure 16) where the intermediate
function n4 does not have type attribute. This is
fixed by adding (back) the second pattern body with
the Intermediate definition to the type pattern.

– After correcting it, the validation is successfully ex-
ecuted in Step 4.

– Then the ambiguity of attribute type is checked (Step
5), which fails again with a single function that is
both a Leaf and a Root. This counterexample is also
visible in the right part of Figure 16.

– This issue is fixed by adding the missing NAC con-
dition on the rootElements to the third pattern body
of type in Step 6.

5.3 Derived Reference Validation

Now the validation process (see Figure 15) of DF model
is presented that defines a reference to the container
FunctionalArchitctureModel from a FunctionalElement.

– Step 7 adds the model DF to the specification, and
the consistency check is executed successfully.

– Then in Step 8, completeness validation fails as
pointed out in Counterexample 4 in Figure 17 since
a model with a single Function element does not have
anything to refer to with the model link. This re-
sult represents a spurious counterexample, because
Functions are only used in the context of a Func-
tionalArchitectureModel. For this purpose, a partial
snapshot is defined with a FunctionalArchitecture-
Model object to prune the search space and avoid
such counterexamples (Figure 17).

– However, its revalidation (Step 9) ends in a Time-
out (more than 2 minutes) and thus this feature can
only be validated on a concrete bounded domain of
a maximum of 5 model objects.

– Finally in Step 10, the unambiguity of the model
DF is validated without a problem.

5.4 Validation of Well-Formedness Contraints

To demonstrate the subsumption check, another WF
constraint is added to the DSL specification expressed
by the InformationAndTermintator query (Figure 18, bot-
tom part), which prohibits that an InformationLink is
connected to a FAMTerminator. This constraint only dif-
fers from the first body of the original WF constraint
(see Figure 6) in that it uses the inverse edges, thus it
is redundant.

The validation process of WF constraints is illus-
trated in Figure 15.



16 Oszkár Semeráth et al.

Counterexample 1 Counterexample 2 Counterexample 3

Fig. 16: Counterexamples of the type validation

Counterexample 4 Partial Snapshot 1 Counterexample 5

Fig. 17: Counterexample and partial snapshot for validating model DF, and counterexample 5 for failed equivalence
check

:FunctionalInput

IL2T(Ter,InfLnk)

:FAMTerminator

: terminator

:InformationLink
:to

3

Modifi-
cations

Redundant
constraint

@Constraint pattern InformationAndTermintator (
T : FAMTerminator , I : InformationLink ) =

{ InformationLink .to. terminator (I, T); }

Fig. 18: Definition of the redundant InformationAndTer-
mintator pattern

– At first, the consistency validation of the WF con-
straint terminatorAndInformationLink (Step 11) is
executed with a success.

– Then the redundant InformationAndTermintator is
added which remains consistent (Step 12).

– Finally, the last constraint is checked for subsump-
tion (Step 13) and found positive. Thus it is al-
ready covered by the DSL specification, therefore it
can be deleted from the set of WF constraints.

5.5 Equivalence Check

We selected two use cases to demonstrate the equiva-
lence check in DSL validation in Figure 15.

– First (Step 14), we used our framework to show the
equivalence of the WF constraint defined by the ter-
minatorAndInformation graph pattern and termina-
torNoLink OCL invariant (see Figure 6). There was
no valid instance model found, that violates only one
of these two constraints, so the equivalence of the
two different representations is successfully proved,
thus they can replace each other in the DSL.

– Then in Step 15, we tried to check the equivalence
of the terminatorNoLink (see Figure 6) OCL invari-
ant and terminated link negative PS (see Figure 8).
Our framework returned with the Counterexample
5 (see in Figure 17), which highlights the semantic
difference between the two constraints. The PS can-
not be matched on this counterexample and since
it is a negative PS, the constraint is not violated.
On the other hand, the second part of the OCL
constraint is violated, because there is a FAMTer-
minator connected to an InformationLink through a
FunctionalOutput. This counterexample proves the
inequality of this DSL property.

5.6 Model Generation for Partial Snapshots

Our framework can also be used for generating instance
models satisfying a DSL specification under certain as-



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 17

sumptions (partial snapshots). This is, in fact, very use-
ful in test generation [40] or quick fix generation pur-
poses. Below we only briefly demonstrate how to derive
a valid model of minimal size (see Figure 19) which
contains all PSs from Figure 8.

– Partial snapshot architecture is satisfied in the out-
put model by objects o2, o3, o5, o6, o7, o8.

– Partial snapshot shareable communication is satisfied
along objects o1, o4, o8, o9, o10, (and their corre-
sponding links). Note that Function o8 and Func-
tionalInterface o4 is shared for the source and target
end of the InformationLink.

– Partial snapshot unmodifiable module can be trans-
formed to objects o5, o7, o8.

Our example demonstrates that a single object in
the output model can satisfy multiple roles in different
PSs. Furthermore, the same object can be shared when
matching shareable PSs.

6 Transforming DSLs to FOL Formulae

We now discuss the details of transforming DSL arti-
facts to first order logic formulae to be processed by
SMT solvers. Due to its excessive length, the details of
the transformation is split into three sections, and we
first present some theoretical foundations and the de-
tailed mapping of metamodels and partial snapshots in
Section 7 followed by transformation of the constraint
languages into FOL in Section 8.

6.1 Foundations of the Transformation

The transformation takes a DSL context as input to
create a set of axioms called DSLF as output (where F

denotes that this is a formalised description), which is
satisfiable if and only if the original DSL context was
consistent. If the DSLF is satisfiable then by definition
there is an interpretation MF that satisfies DSLF . Ad-
ditionally, we back-annotate the logic structures MF

derived as a result of the validation process to an ac-
tual instance model (or partial snapshot) of the DSL,
formally:

if forward(DSL) = DSLF and back(MF ) = M then

1. MF |= DSLF ⇔ M |= DSL
2. DSLF unsatisfiable ⇔ DSL inconsistent (1)

Function forward consists of different transforma-
tion steps each of which takes certain DSL artifacts
and yields a set of corresponding logic axioms:

– The metamodel transformation creates the formulae
METAF from the metamodel that maps the struc-
tural features of the DSL (detailed in Section 7.1).

– The instance model transformation derives the for-
mulae PSF from the partial snapshots (discussed in
Section 7.2).

– The pattern transformation creates a set of formulae
GPF from the definitions of the graph patterns and
links them to their corresponding well-formedness
constraints WFF or derived feature formulae DFF

(explained in Section 8.1).
– Finally, OCL transformation creates formulae OCLF

for OCL constraints (Section 8.2).

So the transformation of DSL into FOL is parti-
tioned in the following way:

DSLF = METAF ∧WFF ∧GPF ∧DFF ∧PSF ∧OCLF

(2)

The Search Parameters can further customize the
transformation process, their effect will be detailed in
each transformation step. Our tool can execute different
reasoning tasks on DSLF . The Validation task transfor-
mation prepares DSLF to create the actual input for
the validation run of the reasoning tool based on the
method described in Section 4.2. The reasoning tool
then carries out the satisfiability check on the input
formulae to decide DSLF |= P and interprets the result
with respect to the actual validation task.

DSLF ∪ {¬P}is unsatisfiable ⇒ DSLF |= P

∃M [DSLF ∪ {¬P} |= M ] ⇒ DSLF 6|= P ,
and M is a counterexample

(3)

If the reasoning tool finds the axiom system satis-
fiable an example interpretation will be created that
explicitly defines a (symbolic) value for every uninter-
preted features of the axiom system (e.g. how many ob-
jects are there in the model, which ones are linked with
a reference or what are the matches of the graph pat-
terns). By querying the metamodel specific attributes
of this logic model an EMF instance model will be cre-
ated for back-annotation purposes.

6.2 Approximation techniques

SMT solvers can use a combination of multiple back-
ground theories, therefore they can effectively reason
over a certain set of logic problems [26]. Our choice
of background theory is effectively propositional logic
(EPR)[44] as its provides logical formulae that can cover



18 Oszkár Semeráth et al.

Fig. 19: Screenshot of a valid model satisfying all partial snapshots of Figure 8

the large set of DSL language features yet provide effi-
cient reasoning capabilities.

Definition 7 (Effectively propositional logic) Ef-
fectively propositional logic is a fragment of first order
logic with formulas of the form

∃e1, . . . , en∀a1, . . . , am : ϕ(e1, . . . , en, a1, . . . , am)

where ϕ is a quantifier free, and atomic subformulas
range over uninterpreted relations.

However, graph patterns in EMF-IncQuery or the
OCL language are more expressive than FOL. There-
fore, certain constraints such as recursive patterns, tran-
sitive closures, set cardinalities and check expressions
cannot be compiled into FOL. The expressiveness of the
different constraint languages and logic fragments can
be summarized as follows: EPR < FOL < GP, OCL.

To represent problems in the designated logic frag-
ment, we define approximation techniques for predi-
cates:

Definition 8 (Approximations of Predicates) Pred-
icate P U underapproximates (similarly P O overap-
proximates) constraint P if it satisfies the following
implications for every evaluation: P U ⇒ P, P ⇒ P O

As a trivial example, constant true predicate is al-
ways a good overapproximation, and false underap-
proximates every predicate. A formula also approxi-
mates itself. So the strategy of our mapping is to ex-
press most of formulae in the target designated logic

fragment language, and approximate the inexpressible
features.

An axiom system (set of axioms) can be also ap-
proximated if every axiom is approximated in it. If a
property P is implied by an underapproximation of a
DSL context, then P is derivable from original DSL
context as well. Similarly, if P is not derivable from
an overapproximation of a DSL context, then it is not
derivable from the original DSL context.

DSLU
F |= P ⇒ DSLF |= P

DSLO
F 6|= P ⇒ DSLF 6|= P

(4)

This allows the validation properties of the DSLF

by proving the same properties on its under- or overap-
proximations.

DSLU
F satisfiable ⇒ DSLF satisfiable

DSLO
F unsatisfiable ⇒ DSLF unsatisfiable (5)

Example 3 Using approximations allows to carry out
DSL validation by using a more restrictive logic frag-
ment which allows more efficient reasoning. For exam-
ple, let us provide an approximation of the containment
tree hierarchy, which needs to satisfy the following prop-
erties (as described in details in Section 7.1):

– Every object (other than the root element) is con-
tained by another. (This is expressible in FOL but
not in EPR.)



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 19

– The containment hierarchy is acyclic. (This is not
expressible in FOL.)

To express containment hierarchy in FOL, the sec-
ond rule can be overapproximated, e.g. as follows:

– The containment graph is free from cycles with length
of at most 5. (This is FOL and also EPR.)

To express the containment hierarchy in EPR the
first rule has to be omitted. By doing this, the reason-
ing tasks can be efficiently executed on a problem in
EPR, and if the reasoning tool finds the DSL with more
general containment rules unsatisfiable then the origi-
nal problem has to be unsatisfiable too. The negative
side effect is that the tool may provide false positives
as well.

Further approximations can be introduced for nu-
meric types to restrict their range to a specific interval.
For instance, if we can derive (e.g. from domain-specific
knowledge) that a value of an integer attribute is be-
tween 0 and 100 then this may help the reasoner to
carry out analysis more efficiently. Similar approxima-
tions can be used for handling multiplicities.

7 Transforming Metamodels and Partial
Snapshots

7.1 Metamodel Transformation

We first discuss the transformation of metamodels into
FOL. Table 1 summarises the transformed features of
the metamodel. It also presents which property is ex-
pressible in FOL or EPR.

Features of the metamodel SMT SAT
Unlimited # of EObjects E + X

EClasses E + E
Class hierarchy E + E

EEnums E + E
EReferences E + E
EAttributes E + E
Numbers E – A

Multiplicity upper bound E + E
Multiplicity lower bound E – E

Inverse edges E + E
Containment hierarchy A – E

E: Expressible A: Approximable X: Inexpressible
+: in EPR –: not in EPR

Table 1: Expressing metamodel features in FOL

7.1.1 Objects

The graph representation of EMF models is transformed
to unary predicates (for nodes), binary predicates (for
relations) and functions (for regular attributes). EOb-
jects are uniformly mapped to a dedicated type Object.
If the number of objects (of a specific type) is bounded
then the type is defined with a fix range of values, such
as Object = {o1, o2, o3} for instance, where literals o1,
o2 and o3 are representing the objects.

7.1.2 Classes

Every class in a metamodel is transformed to unary
characteristic predicate: if an object is an instance of a
class then the predicate evaluates to true, otherwise it
is false.

EMF C ∈ EClass
FOL typeC : Object → {true, false}

For example, class Function is transformed to typeFunction :
Object → {true, false}.

7.1.3 Type hierarchy

In many cases, an object is an instance of multiple
classes due to the generalization relation between the
classes, and the existence of abstract classes which do
not have direct instances. A simple way to represent the
type hierarchy is using a table where the columns repre-
sent the possible classes and the rows the concrete (non-
abstract) classes. A cell represents a literal whether the
type in the row is compatible with the type in the col-
umn.

∀o ∈ Object :
∨

A∈EClass
¬isAbstract(A)

∧
B∈EClass

typecls(o)⇔ super(A, B)

An extract of the transformation of class hierarchy
is shown in Figure 20:

7.1.4 References

The references of the metamodels define the directed
edges between the instance objects. For EMF models,
we allow directed loops but disallow edges of the same
type between the same objects. In such a case, edges can
be treated as relations (in the mathematical sense).

EMF R ∈ EReference
FOL linkR : Object ×Object → {true, false}



20 Oszkár Semeráth et al.

EMF

Function
type : FunctionType

FunctionalElement FunctionalArchitectureModel

FOL

∀o ∈ Object :
FunctionalElement Function FAM

Function ( typeFunctionalElement(o) ∧ typeFunction(o) ∧ ¬typeFunction(o) )∨
FAM ( ¬typeFunctionalElement(o) ∧ ¬typeFunction(o) ∧ typeFAM(o) )

Fig. 20: Mapping type hierarchy

The definition of the subelements reference on is
translated to the following relation in Figure 21. In or-
der to ensure the type compliance, type information
needs to be attached to the two relation ends (see line
TC).

EMF R ∈ EReference between SRC and TRG EClasses
FOL ∀src, trg ∈ Object : linkR(src, trg)⇒

(typeSRC(src) ∧ typeTRG(trg))

7.1.5 Multiplicity

By default, references with 0..* multiplicity are modeled
with relations. However, with explicit multiplicity re-
strictions, further assertions are required. With an n..m
multiplicity, the lower bound n means that every ob-
ject is in relation with n different one, which is checked
using an existential quantifier (if n > 0).

EMF R ∈ EReference with n..? multiplicity, n > 0
between SRC and TRG

FOL ∀s ∈ Object : typeSRC(s)⇒ (∃t1, . . . , tn ∈ Object :
distinct(t1, . . . , tn) ∧ linkR(s, t1) ∧ . . . ∧ linkR(s, tn))

The upper bound m means that there are no more
than m different target elements being in relation with
the object, which is prescribed using a universal quan-
tifier.

EMF R ∈ EReference with ?..m multiplicity, m 6= *
between SRC and TRG

FOL ∀s ∈ Object¬∃t1, . . . tm, tm+1 ∈ Object :
distinct(t1, . . . , tm, tm+1)∧

linkR(s, t1) ∧ . . . ∧ linkR(s, tm) ∧ linkR(s, tm+1)

For example, the transformation of model reference
of the FunctionalElement class visible in Figure 21, cre-
ates the following constraint to restrict the upper bound
multiplicity to 1 (see line MULTmax).

7.1.6 Inverse edges

Inverse edges in metamodels express in that if there is
a relation R from the object s to the target t then there
has to be an inverse relation I from t to o. The inverse
relationship between parent and subElements references
is illustrated in Figure 21 at line INV.

EMF R, I ∈ EReference and inv(R, I)
FOL ∀src, trg ∈ Object : linkR(src, trg)⇔ link I(trg, src)

7.1.7 Containment

The objects of an EMF model are arranged in a directed
tree hierarchy along the containment edges. This rela-
tionship is formalized by multiple formulae.

1. First the containment relation is defined as the union
of the containment-edge relations:

contains : Object ×Object → {true, false}

∀p, c ∈ Object : contains(p, c)⇔
∨

R∈EReference
R containment

linkR(p, c)

2. The top of the containment hierarchy is called root
of the model, which is declared as an uninterpreted
constant. The root object does not have a parent.
root : ∅ → Object
∀parent ∈ Object : ¬contains(parent, root)

3. Every other object has at least one parent:
∀o ∈ Object : (o = root) ∨ ∃p ∈ Object :
(p 6= o) ∧ (contains(p, o))

4. Every object has at most one parent:
∀c, p1, p2 ∈ Object : (contains(p1, c)∧contains(p2, c))
⇒ (p1 = p2)

The tree hierarchy also requires acyclicity which
means that any object is unreachable from itself along
a path of containment edges. Acyclicity of the contain-
ment hierarchy is inexpressible in FOL language thus
approximation is needed. For example, a statement like
“the containment graph is free from cycles of length 3”



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 21

EMF

Function FunctionalElement

subElements0..*parent0..1

FOL

linksubelements : Object ×Object → {true, false}
TC: ∀src, trg ∈ Object : (linksubelements(src, trg)⇒ (typeFunction(src) ∧ typeFunctionalElement(trg))

MULTmax: ∀s ∈ Object¬∃t1, t2 ∈ Object : t1 6= t2 ∧ linkparent(s, t1) ∧ linkparent(s, t2)
INV: ∀src, trg ∈ Object : (linksubElements(o, t)⇔ linkparent(t, o))

Fig. 21: Mapping references

overapproximates the acyclicity requirement. Increas-
ing the size of the forbidden cycle converges to the
acyclicity, and we can deal with any kind of contain-
ment inconsistency using an appropriate approximation
level up to a given depth. The following assertion for-
bids cycles of length 3.

∀c1, c2, c3 ∈ Object : ¬( contains(c1, c2)∧
contains(c2, c3)∧
contains(c3, c1))

7.1.8 Enums

Enum types of the metamodel are transformed to ded-
icated sets with the elements of the mapped literals.
Figure 22 shows the example of FunctionType.

EMF E ∈ EEnum and E = {L1, . . . , Ln}
FOL enumE = {litL1, . . . , litLn}

7.1.9 Attributes

The attributes of a metamodel are the properties of the
classes with built-in type. Our transformation approach
currently handles predefined primitive types such as
Boolean, integer and real attributes (which usually have
an appropriate type in back-end solvers), and an enum
type constructed of user-defined literals. The function
range translates an EMF classifier to the corresponding
mathematical set.

EMF EObject E ∈ EEnum EBoolean EInt EDouble
FOL Object enumE {true, false} Z R

Attributes are transformed in the same way as the
relations, but the second parameter (i.e. the range) of
the parameter defines the value of the attribute. For
example, two attributes are defined in Figure 22.

EMF A ∈ EAttribute and T is the type
FOL linkA : Object × range(T)→ {true, false}

EMF

Function
type : FunctionType

minimumFrequency : EInt

<<enumeration>>
FunctionType
Root
Leaf
Intermediate

FOL
enumFunctionType = {litRoot, lit Intermediate, litLeaf}
type : Object × enumFunctionType → {true, false}
minFreq : Object × Z→ {true, false}

Fig. 22: Transformation of enum types and attributes

7.2 Transformation of Partial Snapshots

Mapping of partial snapshots to FOL is mainly driven
by how to transform instance models to correspond-
ing formulae which are included in the set of axioms
for a DSL context. In general, the metamodel and the
constraints of the language define universally quantified
formulae over all model elements. Partial snapshots en-
able to efficiently configure the validation process using
large existentially quantified properties. Furthermore,
the transformation can be customized in accordance
with semantic modifiers. Table 2 summarizes the trans-
formation steps.

Features of the PS SMT SAT
Instance Objects E + E

Abstract or Concrete Types E + E
Filled References E + E
Filled Attributes E + E

Configuration of the PS SMT SAT
Positive / Negative E + E

Injective / Shareable E + E
Modifiable / Unmodifiable E + E

E: Expressible A: Approximable X: Inexpressible
+: in EPR –: not in EPR

Table 2: Mapping partial snaptshots to FOL

7.2.1 Instance Models

The basic approach of transforming partial snapshots
into FOL is to create a statement to express that the



22 Oszkár Semeráth et al.

output model needs to contain the partial snapshot.
Therefore PS objects are transformed into existentially
quantified Object variables, and the structure of the PS
is defined defined over those variables. When every fea-
ture of the PS is transformed, the generated statement
is added to the set of axioms derived for a DSL con-
text to express the occurrence or the absence of the
PS structure. The partial snapshots are transformed
independently to FOL, each of them has to be satis-
fied separately, and traceability information needs to
be produced for each of them.

PS M |= Meta, |M| = n,M = {pscon1, . . . , psconm}
FOL ∃o1, . . . , on ∈ Object : distinct(o1, . . . , on)∧∧

1≤i≤m
psconi(o1, . . . , on)

The result of the transformation of a PS with two
objects and a link between them in accordance with the
Positive, Injective, Unmodifiable semantics is illustrated
in Figure 23, and discussed in details in the sequel.

The type of the object must also be specified in the
statement of the partial snapshot. Note that abstract
classes can be instantiated in a PS, and thus they are
transformed to a structural constraint. For example, if
the type of o1 is FunctionalElement it is transformed
to the constraint labeled as Types in Figure 23. We
explicitly enumerate all classes which are types of o1
and the negations of all non-types of o1 in the derived
predicate.

PS C(o),C ∈ EClass
FOL typeC(o)

The references between the objects can be defined
by stating that the pair of the source and the target
object is in a given relation. The mapping of reference
subElements is depicted in Figure 23 (see label Refe-
rences), which states that o1 is a sub-element of o2
while o2 is not a sub-element of o1. Note that the lat-
ter restriction is due to the unmodified semantic mo-
difier of the partial snapshot (and not the composition
semantics of subElements reference). Attributes in PSs
are defined similarly, see the corresponding Attributes
line in Figure 23 .

PS R(s,t),R ∈ EReference A(o,v),A ∈ EAttribute
FOL linkR(s, t) linkA(o, v)

7.2.2 Semantic modifiers

In the previous section, we defined the mapping of par-
tial snapshots according to the Positive, Injective, Un-
modifiable semantics, which defines the most concrete
(restrictive) specification of a PS. Other semantic mod-
ifiers can be handled by simply relaxing (removing) cer-
tain constraints from this complete set derived for the
Positive, Injective, Unmodifiable case.

This section shows different configurations of par-
tial snapshots with respect to a Positive, Injective, Un-
modifiable one. Figure 24 shows how omitting specific
constraint from the statement changes the semantics of
the PS.

– Shareable: If the PS is configured to be shareable,
the Distinct constraint have to be omitted from
the formula, so multiple variables can be bound to
the same object variable of the PS.

– Modifiable: If the PS is unmodifiable then the ab-
sence of a reference or attribute is captured as a
negated predicate. By omitting the negative pred-
icates from References and Attributes, it is al-
lowed to add new references to the model. By omit-
ting the negative type predicates from the Types
constraint, the type of an object can be refined, i.e.
an instance object with a T type can be mapped
to an object with a subtype of T. As a result, even
abstract objects can be used in a PS, and they will
be matched to a concrete one.

– Negative Depending on that the PS is configured as
positive or negative, the assertion of the generated
statement or its negation is inserted to the axioms.

8 Transforming Constraints to First Order
Logic

8.1 Transforming Graph Patterns to FOL

This subsection describes how EMF-IncQuery pat-
terns can be transformed to first order logic formulae.
Table 3 shows an overview on which feature can be
translated to FOL and EPR when using them as well-
formedness constraints or as derived features.

8.1.1 Structure of the Patterns

A graph pattern consists of a list of symbolic parame-
ters as header and a content that specifies logical con-
ditions over the parameters. The parameter list of the
pattern pattern is a fix sized vector of variables denoted
as params = (p1, . . . pn). A match is a complete function



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 23

PS

FOL

Containment: ∃o1 , o2 ∈ Object : [. . .]
Distinct: o1 6= o2
Types: typeFunctionalElement(o1 ) ∧ ¬typeFunction(o1 ) ∧ typeFunctionalElement(o2 ) ∧ typeFunction(o2 )

References: linksubElements(o1, o2) ∧ ¬linksubElements(o2, o1)
Attributes: linktype(o2, Root) ∧ ¬linktype(o2, Intermediate) ∧ ¬linktype(o2, Leaf)

Fig. 23: Example: transformation an unmodifiable partial snapshot

Removed Constraint → Partial Snapshot
Distinct: o1 6= o2 → shareable containment

Types: ¬typeFunction(o1 ) → refinable types
References: ¬linksubElements(o2, o1) → additional edges
Attributes: ¬linktype(o2, litRoot) → additional attributes

Fig. 24: Effects of removing constraints from Partial Snapshots

SMT SAT
Features of model query DF WF

Classifier constraint E + E + E
EReference constraint E – E + E
Acyclic pattern call E – E + E

Negative pattern call E – E – E
Transitive closure A – A + E

Arbitrary call graph A – A – X
Aggregate (eg. Count, Sum) X X E

Check (for algebra) X X A
E: Expressible A: Approximable X: Inexpressible +: in EPR –:

not in EPR

Table 3: Expressing Ecore and EMF-IncQuery lan-
guage features in Z3

of the parameters to the elements of the model.

m : params→ EObject ∪
⋃

E∈EEnum
E ∪

⋃
P primitive

P (6)

In order to represent queries in the axiom system,
their match set of each pattern is transformed to an
uninterpreted predicate over the corresponding types
of model elements defined by the range function. This
predicate to true for a specific assignment of parame-
ters params/m exactly when m constitutes a match i.e.
satisfies the pattern constraints.

eIQ pattern q (p1: T1 ,...,pn: Tn) 〈constraint〉

FOL
patternq : range(T1 )× . . .× range(Tn)→ {true, false}
∀p1 ∈ range(T1 ), . . . , pn ∈ range(Tn) :

patternq(p1, . . . , pn)⇔ constraint(p1, . . . , pn)

For example, let us take a two parameter pattern
called type with the parameter list This: Function and
Target: FunctionType. The matches of this pattern are
defined by the predicate in Declaration column of Fig-
ure 25.

In EMF-IncQuery the constraint of a pattern is
specified by pattern bodies. An individual object vector
is a member of the match set if and only if the vector
satisfies the condition defined by one of the pattern bod-
ies, which are defined the disjunction conditions in the
pattern body. The type pattern specifies three bodies
which is illustrated at the in Bodies column of Fig-
ure 25.

eIQ pattern q (p1 ,...,pn) {b1}or...or{bm}
FOL patternq(p1, . . . , pn)⇔

∨
1≤i≤m

bi(p1, . . . , pn)

8.1.2 Transformation of the pattern condition

The pattern body condition is defined by the constraints
of the body, where the condition is the conjunction of
the constraints. A pattern body may introduce addi-
tional existentially quantified local variables. A vari-
able might be introduced for a single use in a con-
straint, in this case the variable is specified as anony-
mous with ’_’ as the first character in its name. For
example, Function.parent(_C,T) specifies that there
have to be an incoming parent reference to the object T
from an irrelevant object. By default, anonymous vari-
ables are also transformed to a existentially quantified
local variables.

eIQ {c1(pars, vars); ... cn(pars, vars);}
FOL body(p1, . . . , pn)⇔ ∃vars

∧
1≤i≤n

ci(pars, vars)

For example, the intermediate body of the type pat-
tern contains two path and three classifier constraints
which introduce two local variables to the five con-
strains in the Constraints column of Figure 25. In



24 Oszkár Semeráth et al.

Declaration Bodies Constraints

eIQ

pattern type(
This:Function ,
Target : FunctionType )

{
...

}

type(This,Target)

b2b1 b3

{ b1 }or{ b2 }or{ b3 }

_P:F T:F:par

_C:F
:par

c1:Function . parent (T,_P)
c2:Function . parent (_C ,T)
c3:Function (T)
c4:Function (_C)
c5:Function (_P)

FOL patterntype : Object × enumFunctionType

→ {true, false}
patterntype(v1, v2)⇔ b1 ∨ b2 ∨ b3 b2(v1, v2)⇔ ∃C,P ∈ Object : c1 ∧ c2 ∧ . . . ∧ c5

Fig. 25: Example pattern structure transformation

summary the pattern condition is structured as follows:
pattern(pars) =

∨
body ∃vars

∧
const const(pars, vars).

The following subsection defines the transformation
for each supported type of constraints.

8.1.3 Constraint Mapping

Classifier constraints define the type of the objects that
are bound to a variable. A graph constraint can be eas-
ily compiled to a type predicate as follows:

eIQ 〈class〉(v);
FOL typeclass(v)

Path constraints define that there is a path consisting
of a sequence of references of corresponding types that
leads from a source object to a target object (identified
by pattern variables). In the most simple case, a path
constraint consists of navigating along a single refer-
ence, which is transformed in the following way:

eIQ 〈class〉.〈feature〉(src, trg);
FOL linkfeature(src, trg)

For complex paths, we introduce implicit object vari-
ables as the inner nodes of the path, thus the expression
can be compiled into a conjunction of simple reference
predicates form the first variable through the inner ones
to the last.

eIQ 〈class〉.〈feature1〉. . .〈featuren〉(src, trg);

FOL ∃o1, . . . on−1 ∈ Object : linkfeature1 (src, o1)∧∧
2≤i≤n−2 linkfeaturei (oi−1, oi) ∧ linkfeaturen (on−1, trg)

For example, the simple path expression constraint
FunctionalElement.parent( Chl,This) defines that there is
a path that starts from Chl, ends in the This object in
Figure 26;

Equality and non-equality of two individuals can be
simply defined as FOL equality:

eIQ a == b; a != b;
FOL a = b a 6= b

Pattern call constraints enable the creation by calling
elementary ones. The following list provides the trans-
formation rules for each kind of transformation, and an
example result of a negative pattern call is presented in
the Pattern call column of Figure 26.

– A positive call defines that the substituted parame-
ters have to create a match of the referred pattern.

eIQ find 〈called〉 (v1 ,...,vn );
FOL patterncalled(v1, . . . , vn)

– Negative calls may introduce new (in this case uni-
versally quantified) variables. A negative pattern
call defines that the target pattern should not have
a match for the substituted old variables with for
any possible substitution of the new parameters.

eIQ neg find 〈called〉 (v1 ∈ T1 ,...,vn ∈ Tn );
FOL ∀ . . . , vi ∈ Ti, . . .︸ ︷︷ ︸

1 ≤ i ≤ n,
new variable vi

: ¬patterncalled(v1, . . . , vn)

– Transitive closure is an advanced language element
of the EMF-IncQuery pattern language. The tran-
sitive closure of a two-parameter GP matches on
the pair (e1, en) if there is a sequence e1, e2, . . . en

of model elements where the pattern matches every
pair (ei, ei+1).



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 25

Classifier Path Equivalence Pattern call

eIQ This:Function

_Chl:Function

This: Function
: parent Target==‘Intermediate’

This:Function

_Chl: FuncElement

NEG: parent

Function (This) Function . parent (_Chl ,This) Target ==:: Intermediate neg find parent (_Child ,This)

FOL typeFunction(This) linkparent( Chl,This) Target = lit Intermediate ∀This : ¬patternparent(Child,This)

Fig. 26: Example constraints

Transitive pattern:
pattern parentOf (This ,P) {

Function . parent (This ,P);
}

Transitive approximations:
2:Path from This to P

patternparentOf+
O=2 (This, P )⇒ linkparent(This, P )∨

∃m1 : linkparent(This,m1) ∧ patternparentOf+
O=1 (m1, P,This)

1:Path from This to P without d1
patternparentOf+

O=1 (This, P, d1)⇒ linkparent(This, P )∨
∃m2 : m2 6= d1∧
linkparent(This,m2) ∧ patternparentOf+

O=0 (m2, P, d1,This)
0:Path from This to P without d1 and d2

patternparentOf+
O=0 (This, P, d1, d2)⇒ linkparent(This, P )∨

∃m3 : m3 6= d1 ∧m3 6= d2∧
linkparent(This,m3) ∧ true

Overapproximated pattern specification:
patternparentOf+(This, P )⇒ patternparentOf+

O=2 (This, P )

Table 4: Overapproximation of the transitive closure.

eIQ find 〈called〉+(vs , vt );

FOL
∃o1, . . . on−1 ∈ Object : patterncalled(vs, o1)∧∧

2≤i≤n−2 patterncalled(oi−1, oi)∧
patterncalled(on−1, vt)

Transitive closure approximation The transitive closure
of a pattern can only be approximated in FOL. The
essence of this approximation is to generate a sequence
of predicates pi by unrolling its definition so that each
predicate pi checks for matches of length i. At depth i,
a predicate checks if there is a match exactly at length
i or recursively checks for a match at depth i + 1 by us-
ing predicate pi+1. At maximal depth n, the predicate
is overapproximated by true or underapproximated by
false. A more detailed handling of transitive closure
approximation and other recursive pattern calls is avail-
able in [43].

For example, let us define an overapproximation for
length 2 of the transitie call of the parentOf pattern by
unrolling the transitive closure of the parent EReference
in Table 4.

Check expression By the use of check constraint it is
available to call imperative (Java-like) xBase expres-

sions to be evaluated on the variables of the pattern. A
check constraints specifies that the result of the eval-
uation have to be true for each valid match. This pa-
per discusses the translation of basic arithmetic and
logic operators, which are simply translated to the cor-
responding logic expression.

eIQ a+b a-b a*b a/b a=b a&&b a||b !a
FOL a+ b a− b a · b a/b a = b a ∧ b a ∨ b ¬a

8.1.4 Patterns for advanced DSL constructs

Graph patterns are used in different ways to specify re-
strictions on the structure of the DSL by well-formedness
(or ill- formedness) constraints or defining derived fea-
tures.

– Regular well-formedness constraints are treated as
they are, while ill-formedness constraints are de-
fined as a statement that the model is free from
matches of this pattern. For example, in case of the
pattern terminatorAndInformation the corresponding
predicate looks like this:

eIQ @Constraint
pattern q(v1 ∈ T1, . . . , vn ∈ Tn)

FOL ∀v1 ∈ T1, . . . , vn ∈ Tn : ¬patternq(v1, . . . , vn)

– Predicates for derived features state that features
evaluate to the value exactly when the specifying
pattern has a match on the given object and the
value. The predicate for DF type looks like this:

eIQ @QueryBasedFeature
pattern 〈feature〉(src, trg ∈ T )

FOL ∀src ∈ Object, trg ∈ range(T) :
patternfeature(src, trg)⇔ linkfeature(src, trg)



26 Oszkár Semeráth et al.

8.2 Transforming OCL Invariants to FOL

OCL constraints (invariants) are widely used means to
express well-formedness rules of DSLs which has to be
satisfied by all valid instance models. Here we present
a transformation from a subset of OCL invariants to
FOL. As a result, DSL validation tasks (e.g. consistency
check, subsumption check) can be executed even when
certain WF constraints are defined by graph patterns
while others are captured by OCL invariants. This is
a very practical setup to allow DSL engineers to mix
specification languages.

While there are existing OCL-to-FOL transforma-
tions (e.g. [21,23]) which cover a larger portion of the
OCL language (and its semantic cornercases), our tech-
nique allows to detect inconsistencies between WF con-
straints with different representations (OCL vs GP)
and allows to reason about subsumption or equivalence
of such constraints. Furthermore, the combined use of
our rich partial snapshot language and OCL invariants
also allows to gain additional insight into DSL specifi-
cations. Finally, we also introduce approximations for
certain OCL language elements.

8.2.1 An overview of OCL transformation

The syntax of an OCL invariant expression is presented
in the template below, where context specifies the en-
vironment (e.g. class) on which the constraint is inter-
preted, the name of the constraint can be given after
the inv keyword and finally the expression is specified.

context 〈classifier〉 inv [〈name〉]:〈expression〉

Our transformation takes an OCL invariant as input
and synthesizes FOL formulae as output. Certain OCL
language elements are too expressive to be represented
in FOL, but they can be approximated by appropri-
ate FOL formulae. Each supported language element is
presented in this subsection.

The OCL standard defines a four valued logic (with
true, false, null and undefined values), while we mostly
restrict our mapping to a two-valued logic and the null
is also supported as input of the comparison operators.

The structure of an OCL invariant is similar to its
FOL counterpart, so the mapping algorithm transforms
the elements explicitly, one-by-one to FOL formulae.

The mapping algorithm traverses the abstract syn-
tax tree (AST) of the OCL invariant recursively and
applies the corresponding rules to each subexpression
element. However, there are some special cases which
require pre- or post-processing the result, e.g. for com-
parison functions, null references and collection oper-
ators. The mapping also handles a restricted set of

higher-order structures (like sets) which structures are
unfolded and represented by FOL predicates.

8.2.2 Basic expressions

The mapping rules of the basic expressions (primitive-
type, simple arithmetic and bool expression and vari-
able) of OCL are depicted in Table 5. In OCL, we cover
the primitive types Integer, Boolean and Real, while
the String types is not yet supported. The logic and
arithmetic operators are directly transformed to FOL,
since they have their equivalent counterpart in the FOL
if they are interpreted on Integers, Reals and Booleans.

OCL var a+b a-b a*b a/b a=b
FOL var a+ b a− b a · b a/b a = b

OCL a and b a or b a implies b not a
FOL a ∧ b a ∨ b a⇒ b ¬a

Table 5: Mapping of basic OCL expressions

The OCL function oclIsKindOf(Class) is trans-
lated to a type predicate of Class, which is satisfied if
and only if the object has the same type as the argu-
ment of the function.

OCL var . oclIsKindOf (class)
FOL typeclass(var)

Objects, as complex structures require special trans-
formation rules. Single-valued attributes of objects are
translated to functions.

OCL var1.〈attribute〉 = var2

FOL linkattribute(var1, var2)

Navigation along references with at most one multi-
plicity is compiled into a two-parameter predicate and
an existentially quantified formula to avoid dealing with
undefined values.

OCL var1.〈referred〉 = var2

FOL ∃var2 linkreferred(var1, var2)

The equal operator of OCL (=) is transformed sim-
ilarly to other mathematical operators unless objects
need to be compared. The transformation of such equal-
ity expressions are divided into two cases: (1) if a vari-
able is placed on the right hand side, then an existential



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 27

quantifier is used to avoid undefined values, (2) if the
comparison is to value null, then the expression is trans-
formed using a negated existential qualifier in FOL.

OCL var1.〈referred〉=var2

FOL ∃var2 linkreferred(var1, var2)
OCL var1.〈referred〉=null
FOL ¬∃var2 linkreferred(var1, var2)

The transformation of the not equal operator of OCL
(<>) uses the dual counterparts of equal operation by
adding a negation to the corresponding FOL expres-
sions.

8.2.3 Collections

OCL collections are special sets in the mathematical
aspect obtained mostly by specific language constructs
(e.g. allInstances or navigations along references). In
our approach, every collection c is represented by a
characteristic predicate P c(x) captured in FOL, where
the predicate evaluates to true on a model element only
if it is the member of the collection: P c(x) ⇔ x ∈ c. If
the collection can be implied by the context, the index
of the collection is omitted: P (x).

The OCL operation allInstances refers to all in-
stances of a certain type, that way, the corresponding
FOL formula collects the objects with the referred type.
We also can refer to the set of elements with a cer-
tain type as defined by the context of the invariant
using self keyword, which is handled exactly as the
allInstances construct.

OCL context 〈class〉 inv: ... self ...
OCL 〈class〉. allInstances ()
FOL P (x) ≡ typeclass(x)

A set of instances can be also referred by a reference
with more than one multiplicity. The predicate of the
reference and the predicate of the variable is included
in the FOL expression during the mapping.

OCL var.〈referred〉
FOL P (x) ≡ linkreferred(var, x)

Navigation along references (see next example) with
more than one multiplicity is also alloved in OCL (first
line), but it is a shorthand of the collect operator and
is transformed to this operator directly by the OCL

parser (second line). The equivalent FOL expression
contains the predicates of the references included in the
path and a temporary variables with universal quanti-
fier for the intermediate points. The predicates of the
intermediate- and endpoints are not needed, since the
predicates of the references include them.

OCL var.〈referred1〉 . . . 〈referredn〉

FOL
P (x) ≡ ∃v1, . . . , vn−1 : linkreferred1 (var, v1)∧∧

2≤i≤n−2 linkreferredi (oi−1, oi)∧
linkreferredn (vn−1, x)

The collect operator derives a collection from an-
other by applying an exp(v) OCL expression on the
elements of the collection v, which is defined by other
mapping rules.

OCL c -> collect (v|exp(v))
FOL P (x) ≡ ∃v : P c(v) ∧ exp(v) = x

The closure operator derives a collection using an
exp(v) expression by iteratively applying on the ele-
ments of the collection until it reaches fix point. The
transitive closure in ocl approximated similarly as in
the case of graph patterns. The following transforma-
tion presents the overapproximation of the closure op-
erator by 3 steps:

OCL c -> closure (v|exp(v))
FOL PO=3(x) ≡ P c(x) ∨ ∃v : P c(v)∧

((x = exp(v) ∧ distinct(v, x))∨
(x = exp2(v) ∧ distinct(v, exp(v), x))∨
(x = exp3(v) ∧ distinct(v, exp(v), exp2(v), x))∨
(true ∧ distinct(v, exp(v), exp2(v), exp3(v), x)))

The select and reject operators are used to de-
fine a special subset of the collection by an expression
exp(v). The select constructs a condition, which el-
ements should be included, while the reject defines
the elements that should be excluded from the collec-
tion. The transformation of these operators appends the
transformation of the expression to end of the predicate
of the collection.

OCL c->select (v|exp(v)) c->reject (v|exp(v))
FOL P (x) ≡ P c(x) ∧ exp(x) P (x) ≡ P c(x) ∧ ¬exp(x)



28 Oszkár Semeráth et al.

8.2.4 Collection operators

We now overview the transformation of different OCL
operators which are applicable to collections.

The OCL operation includes is evaluated to true
if the collection contains at least one element satisfying
the argument expression of the function. This function
is translated to a predicate which checks containment.
The excludes OCL function is the dual of includes,
so it is transformed to the negated FOL expression of
includes. This expression is satisfied if the elements of
the collection do not satisfy the condition.

OCL c -> includes (v) c -> excludes (v)
FOL P c(v) ¬P c(v)

OCL operation forAll is an iterator over a collec-
tion to state that certain conditions hold for each mem-
ber of the collection. We restrict our transformation
to set semantics, and then the FOL equivalent is the
universal quantifier. The OCL operation exists imple-
ments an iterator and the FOL equivalent is the exis-
tential quantifier.

OCL c->forAll (v|exp(v)) c->exists (v|exp(v))
FOL ∀v : P c(v)⇒ exp(v) ∃v : P c(v) ∧ exp(v)

The OCL function notEmpty is applied on collec-
tions and is satisfied if the collection is not empty. This
operation is transformed to an existentially quantified
predicate which means that there is at least one ob-
ject in the given set or collection. The OCL function
isEmpty handled with an additional negation.

OCL c -> notEmpty () c -> isEmpty ()
FOL ∃v : P c(v) ¬∃v : P c(v)

The OCL function size returns the size of the col-
lection. In FOL the size of a collection cannot be for-
mulated in general, but if the complarison of the size
of the collection to an integer is translated similarly as
in case of handling multiplicities in metamodels (see
Section 7.1.5).

We implemented transformations using approxima-
tion for every comparison operators. The transforma-
tion of the less than (=<) and greater than (=>) oper-
ators provides the basis for the mapping of the equality
and inequality operators.

The translation of the greater than (=>) operator
is carried out by introducing temporary variables (as
much as needed), adding the predicates of the reference
for each variable and finally declare pair-wise inequality.

OCL c -> size ()>=n , n ∈ Z+

FOL ∃v1, . . . , vn : distinct(v1, . . . , vn) ∧
∧

1≤i≤n
P c(vi)

The translation of the less than (=<) operator is
similar, but the equality is declared at least for one
pair of the temporary variables.

OCL c -> size ()<=n , n ∈ Z+

FOL ¬∃v1, . . . , vn : distinct(v1, . . . , vn) ∧
∧

1≤i≤n
P c(vi)

Finally, the equality operator is divided into two
parts before the mapping:

OCL c -> size ()=n , n ∈ Z+

OCL c -> size ()<=n and c -> size ()>=n

The handling of equality and inequality operators
has specific rules if two collections are passed as input.
Two collections are equal if and only if neither of them
contains an element which is not in the other set.

OCL c = d

FOL ¬∃v : (P c(v) ∧ ¬P d(v)) ∨ (¬P c(v) ∧ P d(v))

Passing two collections as input, the inequality o-
perator evaluates to true if there exists at least one
element which is not contained by both of them.

OCL c <> d

FOL ∃v : (P c(v) ∧ ¬P d(v)) ∨ (¬P c(v) ∧ P d(v))

8.2.5 Restrictions and Expressiveness

The expressiveness of OCL is higher than first-order
logic, so some language constructs are obviously not
covered by our transformation. Due to the undecid-
able nature of the full OCL language, it cannot be ex-
pected to come up with an automated unsatisfiability
checker for all the OCL expressions. Still, we believe
that covering a subclass of OCL expressions and sup-
port language-level validation on them is a practical
solution.



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 29

Features of the OCL SMT SAT
Logic operators E + E

Arithmetic operators E – A
oclIsTypeOf E + E
Attributes E + E
References E + E

Collections (Sets) E + E
Collections (Bag, Sequence) X X

allInstances, self E + E
Iterator expressions (e.g. exists, forAll) E – E

notEmpty E – E
isEmpty E + E

Transitive closure A + E
min, max X E
pre, post X X

E: Expressible A: Approximable X: Inexpressible
+: in EPR –: not in EPR

Table 6: Expressing OCL features in FOL

In our approach, the OCL constructs like OrderSet,
Bag and Sequence and operations like max() and min()
are not handled. We only focus on OCL invariants and
do not support general OCL queries or operation con-
straints captured by pre- and postconditions. The list
of the supported language elements is overviewed in Ta-
ble 6

9 Tool Support and Experimental Evaluation

9.1 Prototype Tool

Our DSL validation tool is fully integrated to the Eclipse
(Modeling) framework, and can be used immediately on
the developed DSL at design time. An important ad-
vantage of our validation tool is that it can be operated
by a DSL developer. Since it can be configured from
the DSL front-end and all validation results are back-
annotated to the DSL itself, it does not require any
theorem proving knowledge from DSL experts.

An architectural overview of the tool is presented
in Figure 27, which divides the core reasoning process
into four consecutive components:

1. Input Parametrization: The tool collects the input
DSL artifacts (see Figure 12) and the reasoner cus-
tomizations according to a configuration file to se-
lect the validation task and refine the DSL context.

2. Modular Transformation: The different DSL artifacts
are forwarded to the appropriate transformation mod-
ule, which transforms the validation task to an ab-
stract consistency checking problem. The output of
the validation, i.e. the generated set of formulae is
passed to the next component.

3. Theorem Prover Integration: The axiom system in
FOL is transformed to the concrete syntax of the

target reasoner, (i.e. the SMT2 input language of
the Z3 SMT solver [24], or the Alloy language of
the Alloy Analyzer [30] in our case). The framework
calls the reasoners with the specified configuration
and compiles a logic model from the result of the
reasoning and passes it to the final component.

4. Post-processing: In this phase, a completed PS is
built up from the results of different queries over
the logic model and interpreted in the context of
the validation task. At the end of the validation pro-
cess, the result PS can be presented to the user in
multiple ways, e.g. as an object diagram-like graph,
or as a standard instance model with the original
concrete syntax of the language.

We support translation of FOL axioms to both Z3
and Alloy (with sat4j) tools; a brief overview of these
transformation is provided Figure 28 in the Appendix.

– An SMT-solver like Z3 can address the full range of
DSL validation problems. It constructs both models
and proofs, and an infinite number of cases can be
symbolically checked. It handles numbers and math-
ematical theories efficiently, but it is not particularly
good at handling objects.

– Alloy can only construct (finite) models as output.
It can generate models with many objects, but the
handling of integers (and other core datatypes) is
questionable. However, since bounded, finite domains
are considered by the underlying SAT-solver, Alloy
is unable to prove if a set of axioms is unsatisfiable
(i.e. the absence of an output model is not a proof).

The output partial snapshot represents a witness
model or a counterexample depending on the validation
problem. An extensible set of presentation techniques
have been implemented to ease the interpretation of the
result of the validation on the DSL level.

– Different visualization techniques are applied to show
an object diagram-like representation of partial snap-
shots. At first, a graph format is created for every
instance model, which is editable with the yFiles
yEd [60] tool. Additionally, a graph is presented in
the editor using the Zest [56] plugin of Eclipse.

– If the result model is a valid instance model then
the partial snapshot is transformed to a standard
instance model of the domain specific language. As
a result, the DSL expert can observe the instance
model in its native editor. Moreover, it is also useful
when the validation tool is used in a tool chain.

– Finally, a report is generated to summarize the re-
sults of multiple validation tasks executed in a batch
including the statistics of the reasoning process.



30 Oszkár Semeráth et al.

Post-processingParametrization Modular Transformation Reasoner Integration

Metamodel

Partial snapshot

Constraints
OCL

FOL

Representer

Standard 
Instances

Graph 
Visualization

<- Full page ->

Partial Snapshot
FOL

GP
FOL

Metamodel
FOL

Z3

SMT handler

Sat4j

Sat handler
(=Alloy Analyzer)

Axiom 
System

SMT compiler
SAT compiler

(=Alloy compiler)

Model/
Unsat

Ta
sk

 
FO

L

Reasoner handler

Validation 
Report

Search Parameters

Fig. 27: Architecture of the prototype tool

9.2 Runtime Measurements

9.2.1 Measurement Environment

In order to assess the performance of our approach, we
carried out initial experimental evaluation. The execu-
tion of our validation framework consists of four phases:

1. the transformation of the validation task (DSL2FOL),
which is proportional to the size of models and the
number of constraints;

2. the execution of the reasoner tool (FOL2FOL), which
can be complex and time consuming

3. the resolution of the output model (FOL2PS), which
is proportional to the size of the output FOL model

4. the visualization of the output model (PS2DSL), which
is proportional to the size of output partial snapshot

We concluded that the runtime of Steps 1, 3 and
4 is predictable and negligible compared to the execu-
tion of the reasoning step, which is, in fact, difficult to
predict. Therefore, below we restrict our runtime mea-
surements to assess the performance of the reasoning
step for various validation tasks on the avionics DSL
presented in the paper (see Table 7 for an overview of
properties used for our experiments).

Abbr. Property Defined in
Freq-GP wrongFrequency Figure 7
Freq-OCL RightFrequency Figure 7
T&I-GP terminatorAndInformation Figure 6
T&I-OCL terminatorNoLink Figure 6
Half-GP InformationandTermintator Figure 18
Half-PS negative terminated link Figure 8

Table 7: Properties in experimental validation

The tasks serving as test cases are marked with the
expected output, which can be positive or negative. The
analysis can prove the selected property, check the ab-
sence of violations within a bounded context, or result

in a timeout. The marking used in this section are il-
lustrated in Table 8.

[X] Positive result is expected
[×] Negative result is expected
[?] Checked in a bounded context, but not proven
- Timeout

Table 8: Measurement outcomes

Each validation task was executed on the DSL pre-
sented in this paper three times for both the Z3 SMT
solver and the Alloy Analyzer (with SAT4j-solver), then
the median of the execution times was calculated. The
measures are executed with a 5 minute timeout on an
average personal computer1. Execution times are pre-
sented in seconds.

9.2.2 Evaluation of Language-level Validation

Consistency Analysis First, consistency analysis of the
full DSL (without the use of partial snapshots) is ex-
ecuted for arbitrary model size (|M | = *), then it is
repeated for exactly 10 and 100 number of objects. The
results are presented in Table 9. As the results show,
consistency analysis is easily solved with each reason-
ing approach for small models. The Alloy Analyzer is
unable to solve large models (with ≈ 100 elements),
while the SMT-solver easily solves consistency check
for larger size by generating highly symmetric models.

These measurements indicate that consistency anal-
ysis on the language level (i.e. without PSs) is an easy
DSL validation task as the output models retrieved as
consistency proofs are trivial in most practical cases
(e.g. consisting of a single model element).

1 CPU: Intel Core-i5-m310M, MEM: 16GB, OS: Windows 8.1
Pro, Reasoners: Alloy Analyzer 4.2 and Z3 4.3.0.



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 31

|M | =
* [X] 10 [X] 100 [X]

Z3, int=Z 0.02 1.85 0.1
Alloy, int=undef 0.06 0.26 -

Table 9: Consistency check measurements

Derived Features Next, we checked completeness and
unambiguity for derived features type and model, and
the measurement results are summarized in Table 10.
The complete validation problem was given to the SMT
solver, while we restricted the analysis to at most 10
model elements and a [-64; 63] interval for integers in
case of Alloy. This is an underapproximation due to the
limited expressive power of SAT problems, therefore the
UNSAT result from the Alloy SAT-solver can not be
used as a proof.

Since completeness and unambiguity still leads to
a real theorem proving problem, the SMT solver ex-
cels in these cases (both for proving correctness with-
out assumptions and retrieving counterexamples). Fur-
thermore, the lack of counter-examples in case of SAT
solvers is still not a general proof due to the bounded
context.

Subsumption and equivalence checks We also carried
out subsumption checks to decide if a certain constraint
(captured in GP, OCL or PS formalism in the different
cases) is already covered by the DSL specification. Mea-
surement results are summarized in Table 11. The SMT
solver is particularly good for proving subsumption (3rd
case) but it also has predictable runtime for the nega-
tive cases (1st and 2nd). It is interesting to note that
FOL formulae derived from OCL constraints required
more time, which might indicate some inefficiencies in
our OCL transformation.

We also aimed to prove equivalence for certain con-
straints captured in different formalisms (graph pat-
terns vs. OCL invariants; partial snapshots vs. graph
patterns or OCL invariants). Measurement results are
listed in Table 13. In this validation setup, Alloy also
performed well - but the SMT solver still had a pre-
dictable runtime.

Our experiments to carry out various language-level
validation tasks clearly indicates that the Z3 SMT solver
outperforms the SAT-based Alloy reasoner tools, which
coincides with our a priori expectations.

9.3 Model Generation Evaluation

In DSL validation properties are decided by detecting
contradicting requirements or providing small exam-

ples. Valid instance models of increasing size are gener-
ated to measure its efficiency.

By customizing the validation context, our approach
generates various instance models with designated prop-
erties. To avoid empty and symmetric models, the gen-
eration processes are executed with three PSs as input:
architecture, shareable communication and unmodifiable
module which are defined in Figure 8, so the results are
similar to the model in Figure 19. Models are generated
with 10 to 20 objects, where the smallest model (with
10 objects) is too small to contain each PS, but with 11
or more objects the problem is satisfiable. The results
are presented in Table 13.

In the first series of measurements (with arbitrary
integers), the Z3 solver generated models up to 16 ele-
ments, with increasing execution times, while the Alloy
Analyzer was unable to initialize. The reason of the Al-
loy failure is that the unmodifiable module contains large
integers (around 500), which is difficult for SAT-solvers.

In the second series of measurements, the minimal-
Frequency values are reduced to 2 and 4 (from 250 and
500), and the range of the integers is reduced to the
[−64; 63] interval for both solvers. With this integer
range, the two solvers produced models after about the
same runtime, but the Alloy Analyzer ran out of mem-
ory for models with over 14 elements. Note that using
a integer limit decreased the efficiency of model gener-
ation for the Z3 solver.

When the interval of the integers is further reduced,
the Alloy Analyzer clearly outperforms the Z3 solver. A
third series of measurement were executed, where the
integers are removed from the DSL, only objects and
enums are present. In this case the Alloy Analyzer has
close to zero runtime, and even models with 80 objects
can be generated within 145 seconds. The Z3 solver
also generates models without integers with higher ef-
ficiency.

Our measurements indicate that SMT-solvers are
strong in proving language-level properties and han-
dling integer attributes, while SAT-solvers can generate
larger instance models as witness or counter-example.
Part of our future work will be directed to combine the
strengths of the two approaches.

10 Related Work

In Model-Driven Engineering language analysis and val-
idation has become a very hot topic, especially in the
safety critical design and development domain (e.g.,
DO-178C [48] for the civil avionics domain) that accepts
formal verification as certification artifacts. In the cur-
rent section we provide an insight to similar approaches
in a broader research scope.



32 Oszkár Semeráth et al.

type type w. error model
Comp [X] Unamb [X] Comp [×] Unamb [×] Comp [×] Unamb [X]

Z3, Complete 0.27 0.03 0.70 0.08 0.02 0.01
Alloy, |M |≤10, int=[−64; 63] 20.65 [?] 15.23 [?] 24.75 23.54 29.06 30.13 [?]

Table 10: Derived feature validation measurements

DSL |= Freq DSL |= T&I DSL |= Half
GP [×] OCL [×] GP [×] OCL [×] GP [X] PS [X]

Z3, Complete 0.46 1.50 0.85 1.50 0.01 0.02
Alloy, |M |≤10, int=[−64; 63] 0.27 0.18 33.26 32.85 22.58 [?] 24.16 [?]

Table 11: Subsumption check measurements of DSL constraints

Freq [X] T&I [X] Half [X] T&I - OCL ⇔
GP ⇔ OCL GP ⇔ OCL GP ⇔ PS Half - PS [×]

Z3, Complete 0.04 0.03 0.02 1.14
Alloy, |M |≤10, int=[−64; 63] - 1.40 [?] 1.11 [?] 0.40

Table 12: Equivalence check measurements of DSL constraints

Metamodeling framework validation Formula[31] is a tool
for validating DSLs, which takes a metamodel, a partial
instance model and a set of constraints and rewriting
rules as input, and it aims to extend the partial in-
stance model so that the dedicated state can be reached
from it by applying the rewriting rules. As a techno-
logical difference, our tool is compliant with standard
Eclipse based technologies, while Formula uses its own
modeling language. Most validation tasks identified in
the paper are not yet supported in Formula, which is
specialized in reachability and consistency checks. The
Formula tool also uses the Z3 SMT-solver as underlying
engine.

Clafer [7] is a lightweight structural modeling lan-
guage used for feature modeling with minimalistic syn-
tax and rich semantics equivalent to first-order rela-
tional logic. The specification language supports struc-
tural modeling, constraints (well-formedness constraints
are written in their own language, which is said to
be equivalent to FOL) and also partial configurations.
Partial configurations are like partial snapshots in our
approach: instance models with undefined attributes
and features that can be the basis of model comple-
tion. DSL specification given in Clafer are validated
using the Clafer Tools [4] that supports various tasks
for domain engineering, like consistency checking and
instance model generation based on backend reason-
ers like Alloy or Choco [1,37]. The provided solution
for model completion (ClaferIG - Instance Generator)
for structural requirements and another solution for
model optimization (ClaferMOO - Multi-Objective Op-
timizer) [42] for attributed models to find a set of Pareto-

optimal model instances based on given a set of opti-
mization objectives.

The main difference between the Clafer and our ap-
proach is that we support EMF as our metamodeling
language compared to the Clafer specification language,
which is only supported by their own framework. How-
ever, one interesting feature of the Clafer tooling is that
it uses two different tools for the structural and at-
tribute rule validation therefore it might scale better in
case of complex DSLs and thus is one of our future goal
to adapt such approach.

Validation of OCL enriched metamodels There are sev-
eral approaches and tools aiming to validate models
enriched with OCL constraints [27] relying upon differ-
ent logic formalisms such as constraint logic program-
ming [17,18,13], SAT-based model finders (like Alloy)
[53,3,15,36,54], first-order logic [8], constructive query
containment [45], higher-order logic [12,28], or rewrit-
ing logics [20]. Some of these approaches (like e.g. [18,
15,36,53]) offer bounded validation (where the search
space needs to be restricted explicitly) in order to exe-
cute the validation and thus results can only be consid-
ered within the given scope, others (like [12,8]) allow
unbounded verification (which normally results in in-
creased level of interaction and decidability issues).

One of the most relevant mapping from a subset of
OCL into first order logic (OCL2FOL) is presented in
[21], that proposes an approach using theorem provers
and SMT solvers to automatically check the unsatisfi-
ability of non-trivial sets of OCL constraints without
generating the SMT code. In [23] the authors present



Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 33

|M | =
10 [×] 11 [X] 12 [X] 13 [X] 14 [X] 15 [X] 16 [X] 17 [X] 18 [X] 19 [X] 20 [X]

Z3, int=Z 8.29 11.16 22.13 26.31 194.93 236.15 363.39 - - - -
Alloy, int≈500 - - - - - - - - - - -
Z3, int=[−64; 63] 24.31 41.81 31.03 83.24 125.32 235.29 416.71 357.33 - - -
Alloy, int=[−64; 63] 29.85 33.46 38.00 68.54 - - - - - - -
Z3, int=∅ 20.80 8.81 11.87 18.2 23.43 38.24 41.71 51.02 57.01 77.29 94.91
Alloy, int=∅ 0.33 0.22 0.24 0.21 0.20 0.20 0.21 0.46 0.32 0.31 0.32

Table 13: Model generation with increasing size

the extension of their previous mapping, called OCL2FOL+,
which deals with a four-valued logic defined in the OCL
standard that is not yet supported by our approach.
These works support consistency checking between a
set of OCL invariants, while our approach aims to deal
with the whole specification and is able to detect incon-
sistencies between the different DSL artefacts.

In [22] the transformation is done in a reverse di-
rection, but includes similar approach for mapping the
Alloy language elements to UML and OCL. The main
difference between our work and this solution is that the
engineer should use Alloy to formalize the model and do
the V&V tasks, while we allow the usage of pure EMF
and OCL. As a key difference is that our work covers (1)
multiple inheritance in metamodels and (2) handling of
float arithmetics while the rest of OCL coverage is sim-
ilar. Their work can better exploit some higher order
features in Alloy to capture OCL constructs like size(),
min() - where our approach can only provide an ap-
proximation.

In [34] a mapping from UML and OCL to Relational
Logic Formulas is presented. As a difference our paper
covers (1) multiple inheritance in metamodels and (2)
the new transitive closure construct in OCL by approx-
imation (3) handling of float/double arithmetics. On
the other hand, their approach covers equality between
strings and other collections like Bags. Some technical
details of their mapping relies upon advanced language
features available in Alloy, which we do not use as being
independent of target back-end solvers.

The [19] presents a mapping from UML models en-
riched with OCL formulas to CSP, but the main goal
is the consistency check and provides formal verifica-
tion for the models. Additionally their solution pro-
vides similar consistency checks and formal verifica-
tions (like subsumption, equivalence and advanced con-
sistency checks). As a difference, our approach handles
multiple inheritance, and approximate transitive clo-
sure, but they support higher order OCL constructs
like size(), min() or max().

Additionally, we proposed a translation [9] of a sub-
set of OCL to graph patterns to provide a effective

model validation on the instance level as opposed to the
current work, which aims DSL specification validation.
There are also mappings from programming languages
extended with OCL constraints to reasoners such as
Testera [33] (from Java to Alloy) and Pex [47] (from
C# to Z3).

Analysis of model and graph transformations SMT solvers
have also been used to verify declarative ATL trans-
formations [14] allowing the use of an efficiently ana-
lyzable fragment of OCL [21]. The main advantage of
using SMT solvers is that it is refutationally complete
for quantified formulas of uninterpreted and almost un-
interpreted functions and efficiently solvable for a rich
subset of logic. Our approach uses SMT-solvers both
in a constructive way to find counterexamples (model
finding) as well as for proving theorems. In case of using
approximations for rich query features, our approach
converges to bounded verification techniques.

Graph constraints captured as a subset of graph
transformation rules are used in [59] as means to for-
malize a restricted class of OCL constraints in order to
find valid model instances by graph grammars. An in-
verse approach is taken in [16] to formalize graph trans-
formation rules by OCL constraints as an intermediate
language and carry out verification of transformations
in UML-to-CSP tool. These approaches mainly focus
on mapping core graph transformation semantics, but
does not cover many rich query features of the EMF-
IncQuery language (such as transitive closure and re-
cursive pattern calls). Many ideas are shared with ap-
proaches aiming to verify model transformations [16,38,
14], as they built upon the semantics of source and tar-
get languages to prove or refute properties of the model
transformation. However, the validation tasks identified
in the paper are different from the verification chal-
lenges of model transformations.

Model extensions using partial models The idea of using
partial models, which are extended to valid models dur-
ing verification also appears in [52,31,35]. These initial
hints are provided manually to the verification process,



34 Oszkár Semeráth et al.

while in our approach, these models are assembled from
a previous (failed) verification run by adding partial
snapshots of the spurious counterexamples or increase
the level of approximation. [36] presents an approach
for the completion of partial snapshots where OCL con-
straints have to be satisfied. Instead of creating new PS
notation the structure is defined by a concrete model
and the relaxed properties are specified by dedicated
invariants and queries.

Partial models also share certain similarity with un-
certain models, which offer a rich specification language
[25] amenable to analysis by the Alloy Analyzer [50].
Uncertain models provide a richer language for partial
snapshots for a different purpose: to document semantic
variation points generically for instance models. Differ-
ent potential system models are then synthesized by Al-
loy accordingly as design decisions. However, their for-
malism does not support the instantiation of abstract
classes, while semantic modifiers are defined individu-
ally for model elements (and not for entire snapshots).

However, any approximations are only used in [32]
to propose a type system and type inference algorithm
for assigning semantic types to constraint variables to
detect specification errors in declarative languages with
constraints. The PSs are constructed from fully spec-
ified instance models in a similar way. However, we
additionally propose semantic modifiers which simpli-
fies the specification of complex partial snapshots. On
the technological level, our approach handles standard
EMF models.

11 Conclusions and Future Work

In this paper, we presented a validation technique for
domain-specific language specifications by a transform-
ing to a first-order logic formulae. The main added value
of our approach is to cover rich DSL constructs such as
derived features and well-formedness constraints cap-
tured in declarative languages such as graph patterns
and OCL invariants. We identified several validation
tasks (such as consistency, completeness, unambiguity,
subsumption and equivalence checks) which are rele-
vant in a DSL validation context. We also proposed
a workflow to systematically address these validation
tasks for a DSL. We also enhanced this context with
partial snapshots to capture further (instance-level) as-
sumptions on valid models. Our mapping tries to trans-
form language features into a decidable fragment of
first-order logic (called effectively propositional logic),
and to handle language features which cannot be repre-
sented in FOL, we proposed powerful approximations.

Our approach is supported by a prototype tool in-
tegrated into Eclipse, which takes EMF metamodels,

instance models, EMF-IncQuery graph patterns and
OCL constraints as input to carry out DSL validation.
When an output model is derived as a witness or coun-
terexample, this model is back-annotated to the DSL
tool itself so that language engineers could observe the
source of the problem in their own language. We pro-
vided initial experimental evaluation by using two back-
end reasoners, namely, Alloy and the Z3 SMT solver for
DSL validation purposes. Our prototype tool was suc-
cessfully used in two major projects, for validating a
DSL from the avionics domain, and for test generation
purposes for autonomous robots.

As future work, we primarily aim at investigating
if back-end reasoners can be combined for the model
generation purposes. Our experiments also highlighted
that Alloy is strong at generating the structure of a
model while SMT solvers excel at completing attributes
for different primitive types. Their combined use could
significantly enhance the validation process. For test
generation purposes, one frequently needs to synthe-
size test cases where the values lie on some boundaries.
Adapting our approach for such a case is part of our
future plans. Finally, we plan to investigate the ap-
plicability of the approach in the context of the new
DO-178C certification standard [48] for civil avionics
software development that accepts formal validation as
certification artifacts to obtain certification credits for
graph patterns or OCL invariants, for instance.

References

1. Choco. http://www.emn.fr/z-info/choco-solverp
2. R3-cop (resilient reasoning robotic co-operative sys-

tems). ARTEMIS project n◦ 100233, http://http://www.
r3-cop.eu/

3. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On chal-
lenges of model transformation from UML to Alloy. Softw.
Syst. Model. 9(1), 69–86 (2010)

4. Antkiewicz, M., Bak, K., Murashkin, A., Olaechea, R.,
Liang, J., Czarnecki, K.: Clafer tools for product line engi-
neering. In: SPLC. Tokyo, Japan (2013)

5. ARINC - Aeronautical Radio, Incorporated: A653 - Avion-
ics Application Software Standard Interface. http://www.
aviation-ia.com/standards

6. AUTOSAR Consortium: The AUTOSAR Standard.
(2013). http://www.autosar.org/

7. Bak, K., Czarnecki, K., Wasowski, A.: Feature and meta-
models in clafer: Mixed, specialized, and coupled. In:
3rd International Conference on Software Language En-
gineering. Eindhoven, The Netherlands (2010). DOI
10.1007/978-3-642-19440-5 7

8. Beckert, B., Keller, U., Schmitt, P.H.: Translating the Ob-
ject Constraint Language into first-order predicate logic.
In: Proc of the VERIFY, Workshop at Federated Logic
Conferences (FLoC), Copenhagen, Denmark (2002)

9. Bergmann, G.: Translating OCL to Graph Patterns.
In: ACM/IEEE 17th International Conference on Model
Driven Engineering Languages & Systems, MODELS 2014.
Springer, Springer, Valencia, Spain (2014). Accepted.

http://www.emn.fr/z-info/choco-solverp
http://http://www.r3-cop.eu/
http://http://www.r3-cop.eu/
http://www.aviation-ia.com/standards
http://www.aviation-ia.com/standards
http://www.autosar.org/


Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 35

10. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh,
A., Balogh, Z., Ökrös, A.: Incremental Evaluation of Model
Queries over EMF Models. In: MODELS’10, LNCS, vol.
6395. Springer (2010)

11. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A graph
query language for emf models. In: J. Cabot, E. Visser
(eds.) Fourth International Conference on Theory and
Practice of Model Transformations, LNCS, vol. 6707, pp.
167–182. Springer (2011)

12. Brucker, A.D., Wolff, B.: The HOL-OCL tool (2007). http:
//www.brucker.ch/

13. Büttner, F., Cabot, J.: Lightweight string reasoning for
OCL. In: A. Vallecillo, J.P. Tolvanen, E. Kindler,
H. Störrle, D.S. Kolovos (eds.) Modelling Foundations and
Applications - 8th European Conference, ECMFA 2012,
Lyngby, Denmark, July 2-5, 2012. Proceedings, LNCS, vol.
7349, pp. 244–258. Springer (2012)

14. Büttner, F., Egea, M., Cabot, J.: On verifying ATL trans-
formations using ’off-the-shelf’ SMT solvers. In: Proc. of
the 15th Int. Conf. on MODELS, LNCS, vol. 7590 (2012)

15. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification
of ATL transformations using transformation models and
model finders. In: 14th International Conference on Formal
Engineering Methods,ICFEM’12, pp. 198–213. LNCS 7635,
Springer (2012)

16. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: A UM-
L/OCL framework for the analysis of graph transformation
rules. Softw. Syst. Model. 9(3), 335–357 (2010)

17. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for
the formal verification of UML/OCL models using con-
straint programming. In: Proc. of the 22nd IEEE/ACM
International Conference on Automated Software Engineer-
ing (ASE’07), pp. 547–548. ACM, New York, NY, USA
(2007). DOI 10.1145/1321631.1321737. URL http://doi.
acm.org/10.1145/1321631.1321737

18. Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL
class diagrams using constraint programming. In: Soft-
ware Testing Verification and Validation Workshop, 2008.
ICSTW ’08. IEEE International Conference on, pp. 73–80
(2008). DOI 10.1109/ICSTW.2008.54

19. Cabot, J., Clarisó, R., Riera, D.: On the verification of
UML/OCL class diagrams using constraint programming.
Journal of Systems and Software 93, 1–23 (2014)

20. Clavel, M., Egea, M.: The ITP/OCL tool (2008). http:
//maude.sip.ucm.es/itp/ocl/

21. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfi-
ability for OCL constraints. ECEASST 24 (2009)

22. Cunha, A., Garis, A., Riesco, D.: Translating between alloy
specifications and uml class diagrams annotated with ocl.
Software & Systems Modeling pp. 1–21 (2013)

23. Dania, C., Clavel, M.: OCL2FOL+: Coping with undefined-
ness. In: J. Cabot, M. Gogolla, I. Ráth, E.D. Willink (eds.)
OCL@MoDELS, CEUR Workshop Proceedings, vol. 1092,
pp. 53–62. CEUR-WS.org (2013). URL http://dblp.
uni-trier.de/db/conf/models/ocl2013.html#DaniaC13

24. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In:
Proceedings of the Theory and practice of software, 14th in-
ternational conference on Tools and algorithms for the con-
struction and analysis of systems, TACAS’08/ETAPS’08,
pp. 337–340. Springer-Verlag (2008)

25. Famelis, M., Salay, R., Chechik, M.: Partial models: To-
wards modeling and reasoning with uncertainty. In: Pro-
ceedings of the 34th International Conference on Soft-
ware Engineering, ICSE ’12, pp. 573–583. IEEE Press,
Piscataway, NJ, USA (2012). URL http://dl.acm.org/
citation.cfm?id=2337223.2337290

26. Ge, Y., Moura, L.: Complete instantiation for quantified
formulas in satisfiabiliby modulo theories. In: A. Bouajjani,
O. Maler (eds.) Computer Aided Verification, LNCS, vol.
5643, pp. 306–320. Springer Berlin Heidelberg (2009). DOI
10.1007/978-3-642-02658-4 25. URL http://dx.doi.org/
10.1007/978-3-642-02658-4_25

27. Gogolla, M., Bohling, J., Richters, M.: Validating UML and
OCL models in USE by automatic snapshot generation.
Softw. Syst. Model. 4(4), 386–398 (2005)

28. Grönniger, H., Ringert, J.O., Rumpe, B.: System model-
based definition of modeling language semantics. In: For-
mal Techniques for Distributed Systems, LNCS, vol. 5522,
pp. 152–166. Springer (2009)

29. Horváth, Á., Hegedüs, Á., Búr, M., Varró, D., Starr, R.R.,
Mirachi, S.: Hardware-software allocation specification of
ima systems for early simulation. In: Digital Avionics Sys-
tems Conference (DASC). IEEE, IEEE, Colorado Springs,
Colorado, US (2014)

30. Jackson, D.: Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol. 11(2), 256–290 (2002).
DOI http://doi.acm.org/10.1145/505145.505149

31. Jackson, E.K., Levendovszky, T., Balasubramanian, D.:
Reasoning about metamodeling with formal specifications
and automatic proofs. In: Proc. of the 14th Int. Conf. on
MODELS, LNCS, vol. 6981, pp. 653–667 (2011)

32. Jackson, E.K., Schulte, W., Bjørner, N.: Detecting specifi-
cation errors in declarative languages with constraints. In:
Proc. of the 15th Int. Conf. on MODELS, LNCS, vol. 7590,
pp. 399–414 (2012)

33. Khurshid, S., Marinov, D.: Testera: Specification-based
testing of java programs using sat. Automated Software
Engineering 11(4), 403–434 (2004). DOI 10.1023/B:AUSE.
0000038938.10589.b9. URL http://dx.doi.org/10.1023/
B%3AAUSE.0000038938.10589.b9

34. Kuhlmann, M., Gogolla, M.: From UML and OCL to Re-
lational Logic and Back, Lecture Notes in Computer Sci-
ence, vol. 7590. Springer Berlin Heidelberg (2012). DOI
10.1007/978-3-642-33666-9 27. URL http://dx.doi.org/
10.1007/978-3-642-33666-9_27

35. Kuhlmann, M., Gogolla, M.: Strengthening SAT-based vali-
dation of UML/OCL models by representing collections as
relations. In: European Conf. on Modelling Foundations
and Applications, LNCS, vol. 7349, pp. 32–48 (2012)

36. Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive valida-
tion of OCL models by integrating SAT solving into use. In:
TOOLS’11 - Objects, Models, Components and Patterns,
LNCS, vol. 6705, pp. 290–306 (2011)

37. Liang, J.: Solving clafer models with choco (GSDLab-TR
2012-12-30) (2012)

38. Lucio, L., Barroca, B., Amaral, V.: A technique for auto-
matic validation of model transformations. In: Proc. of the
13th Int. Conf. on MODELS, LNCS, vol. 6394, pp. 136–150
(2010)

39. Mathworks: Matlab Simulink - Simulation and Model-
Based Design. http://www.mathworks.com/products/
simulink/

40. Micskei, Z., Szatmári, Z., Oláh, J., Majzik, I.: A concept
for testing robustness and safety of the context-aware be-
haviour of autonomous systems. In: G. Jezic, M. Kusek,
N.T. Nguyen, R. Howlett, L. Jain (eds.) Agent and Multi-
Agent Systems. Technologies and Applications, LNCS, vol.
7327, pp. 504–513. Springer Berlin / Heidelberg (2012).
DOI 10.1007/978-3-642-30947-2 55

41. The Object Management Group: Object Constraint Lan-
guage, v2.0 (2006). http://www.omg.org/spec/OCL/2.0/

42. Olaechea, R., Stewart, S., Czarnecki, K., Rayside, D.: Mod-
eling and multi-objective optimization of quality attributes

http://www.brucker.ch/
http://www.brucker.ch/
http://doi.acm.org/10.1145/1321631.1321737
http://doi.acm.org/10.1145/1321631.1321737
http://maude.sip.ucm.es/itp/ocl/
http://maude.sip.ucm.es/itp/ocl/
http://dblp.uni-trier.de/db/conf/models/ocl2013.html#DaniaC13
http://dblp.uni-trier.de/db/conf/models/ocl2013.html#DaniaC13
http://dl.acm.org/citation.cfm?id=2337223.2337290
http://dl.acm.org/citation.cfm?id=2337223.2337290
http://dx.doi.org/10.1007/978-3-642-02658-4_25
http://dx.doi.org/10.1007/978-3-642-02658-4_25
http://dx.doi.org/10.1023/B%3AAUSE.0000038938.10589.b9
http://dx.doi.org/10.1023/B%3AAUSE.0000038938.10589.b9
http://dx.doi.org/10.1007/978-3-642-33666-9_27
http://dx.doi.org/10.1007/978-3-642-33666-9_27
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.omg.org/spec/OCL/2.0/


36 Oszkár Semeráth et al.

in variability-rich software. In: International Workshop
on Non- functional System Properties in Domain Specific
Modeling Languages. Innsbruck, Austria (2012)

43. Oszkár Semeráth: Validation of Domain Specific Lan-
guages (2013). Technical Report, https://incquery.net/
publications/dslvalid

44. Piskac, R., de Moura, L., Bjorner, N.: Deciding effectively
propositional logic with equality (2008). Microsoft Re-
search, MSR-TR-2008-181 Technical Report

45. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-
Lite: Finite reasoning on UML/OCL conceptual schemas.
Data Knowl. Eng. 73, 1–22 (2012)

46. Ráth, I., Hegedüs, A., Varró, D.: Derived features for EMF
by integrating advanced model queries. In: A. Vallecillo,
J.P. Tolvanen, E. Kindler, H. Störrle, D. Kolovos (eds.)
Modelling Foundations and Applications, LNCS, vol. 7349,
pp. 102–117. Springer Berlin / Heidelberg (2012). DOI
10.1007/978-3-642-31491-9 10

47. Microsoft Research: Pex. http://research.microsoft.
com/projects/pex/

48. of RTCA, S.C.: DO-178C, software considerations in air-
borne systems and equipment certification (2011)

49. SAE - Radio Technical Commission for Aeronautic: Ar-
chitecture Analysis & Design Language (AADL) v2, AS-
5506A, SAE International, 2009

50. Salay, R., Famelis, M., Chechik, M.: Language indepen-
dent refinement using partial modeling. In: J. de Lara,
A. Zisman (eds.) Fundamental Approaches to Software En-
gineering, Lecture Notes in Computer Science, vol. 7212,
pp. 224–239. Springer Berlin Heidelberg (2012). DOI
10.1007/978-3-642-28872-2 16. URL http://dx.doi.org/
10.1007/978-3-642-28872-2_16

51. Semeráth, O., Horváth, Á., Varró, D.: Validation of derived
features and well-formedness constraints in dsls - by map-
ping graph queries to an smt-solver. In: MODELS - 16th In-
ternational Conference, MODELS 2013, Miami, FL, USA,
September 29 - October 4, 2013. Proceedings, pp. 538–554
(2013)

52. Sen, S., Mottu, J.M., Tisi, M., Cabot, J.: Using models of
partial knowledge to test model transformations. In: 5th
Int. Conf. on Theory and Practice of Model Transforma-
tions, LNCS, vol. 7307, pp. 24–39 (2012)

53. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to
Alloy and back again. In: MoDeVVa ’09: Proceedings of the
6th International Workshop on Model-Driven Engineering,
Verification and Validation, pp. 1–10. ACM (2009)

54. Soeken, M., Wille, R., Kuhlmann, M., Gogolla, M., Drech-
sler, R.: Verifying UML/OCL models using boolean sat-
isfiability. In: Design, Automation and Test in Europe,
(DATE’10), pp. 1341–1344. IEEE (2010)

55. The Eclipse Project: Eclipse Modeling Framework. http:
//www.eclipse.org/emf

56. The Eclipse Project: Zest. http://www.eclipse.org/gef/
zest/

57. Varró, D., Balogh, A.: The model transformation language
of the VIATRA2 framework. Science of Computer Pro-
gramming 68(3), 214–234 (2007)

58. Willink, E.D.: An extensible OCL virtual machine and code
generator. In: Proc. of the 12th Workshop on OCL and
Textual Modelling, pp. 13–18. ACM (2012)

59. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.:
Translation of restricted OCL constraints into graph con-
straints for generating meta model instances by graph
grammars. ENTCS 211(0), 159 – 170 (2008). DOI
10.1016/j.entcs.2008.04.038. Proc. of the 5th Int. Workshop
on Graph Transformation and Visual Modeling Techniques

60. yEd Graph Editor: yED. http://www.yworks.com/en/
products_yed_about.html

https://incquery.net/publications/dslvalid
https://incquery.net/publications/dslvalid
http://research.microsoft.com/projects/pex/
http://research.microsoft.com/projects/pex/
http://dx.doi.org/10.1007/978-3-642-28872-2_16
http://dx.doi.org/10.1007/978-3-642-28872-2_16
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.eclipse.org/gef/zest/
http://www.eclipse.org/gef/zest/
http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html


Formal Validation of Domain-Specific Languages with Derived Features and Well-Formedness Constraints 37

A Appendix: Syntax of the Concrete Solvers

Types
Expression

M
athem

atical
SM

T
2

standard
Alloy

B
oolean

→
{true

,false}
Bool

one
sig

True,
False

extends
Bool

{}
Integer

→
Z

Int
Int

R
eal→

R
Real

–
Set
→

S
(declare-sort

S)
sig

S
{}

interpreted
|

S
=
{
e1 ,...,e

n }
(declare-datatypes

()
((S

e!1
...

e!n)))
enum

S
{e1,

...
,

en}

Sym
bolic

V
alue

D
eclaration

and
D

efinition
Expression

M
athem

atical
SM

T
2

standard
Function

→
f

:type
1
×
...×

type
n
→

type
(declare-fun

f
(type!1

...
type!n)

type)
as

a
relation

interpreted
|

f(x
1 ,...,x

n )=
y

(define-fun
f

(type!1
...

type!n)
type

y)
fun

f[x1:
Type1,

...
,

xn:
Typen]

:
one

type
{y}

C
onstant

→
c

:∅
→
ty
p
e

(declare-fun
c

()
type)

one
sig

Constants{c:one
type}

R
elation

→
R

:type
1
×
...×

type
n

→
{true

,false}
(declare-fun

R
(type!1

...
type!n)

Bool)
binary:

R:
set

type2,defined
in

sig
type1

{...}
non

binary:
sig

R
{v1:

one
type1,

...,
vn

one
typen

}

Term
s

and
Form

ulae
Expression

M
athem

atical
SM

T
2

standard

Form
ula
→

relation(term
1
,...,term

n )
(relation

term!1
...

term!n)
binary:

term2
in

type2.R
non

binary:
some

r:R{term1=r.v1
and...and

termn=r.vn}
|

¬form
ula

(not
formula)

not
formula

|
form

ula
1
∧

form
ula

2
(and

formula!1
formula!2)

formula1
and

formula2
|

form
ula

1
∨

form
ula

2
(or

formula!1
formula!2)

formula1
or

formula2
|

form
ula

1
⇒

form
ula

2
(=>

formula!1
formula!2)

formula1
implies

formula2
|

term
1

=
term

2
(=

term!1
term!2)

term1
=

term2
|

term
1
6=

term
2

(distinct
term!1

term!2)
not(term1

=
term2)

|
∃

var
1
∈

type
1 ,...,

var
n
∈

type
n

:form
ula

(exists
((var!1

type!1)
...

(var!n
type!n))

formula)
some

var1:
type1,...,

varn:
typen

{formula}

|
∀

var
1
∈

type
1 ,...,

var
n
∈

type
n

:form
ula

(forall
((var!1

type!1)
...

(var!n
type!n))

formula)
all

var1:
type1,...,

varn:
typen

{formula}
Term

→
function(term

1
,...,term

n )
(function

term!1
...

term!n)
function[term1,

...,
termn]

|
(Variable)

var
1

var!1
var1

|
(Individual)

e1
e!1

e1

Fig.28:M
athem

atical,SM
T

2
Standard

and
A

lloy
syntax

offirst
order

logic


	Introduction
	Domain Specific Languages
	Partial Snapshots
	Overview of the Approach
	A Case Study on DSL Validation
	Transforming DSLs to FOL Formulae
	Transforming Metamodels and Partial Snapshots
	Transforming Constraints to First Order Logic
	Tool Support and Experimental Evaluation
	Related Work
	Conclusions and Future Work
	Appendix: Syntax of the Concrete Solvers

