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Abstract In early phases of designing complex systems, mod-
els are not sufficiently detailed to serve as an input for auto-
mated synthesis tools. Instead a design space is constituted
by multiple models representing different valid design can-
didates. Design space exploration aims at searching through
these candidates defined in the design space to find solu-
tions that satisfy the structural and numeric design constraints
and provide a balanced choice with respect to various qual-
ity metrics. Design space exploration in an MDE context is
frequently tackled as specific sort of constraint satisfaction
problem (CSP).

In CSP, declarative constraints capture restrictions over
variables with finite domains where both the number of vari-
ables and their domains are required to be a priori finite.
However, the existing formulation of constraint satisfaction
problems can be too restrictive to capture design space ex-
ploration in many MDE applications with complex structural
constraints expressed over the underlying models.

In this paper, we interpret flexible, and dynamic constraint
satisfaction problems directly in the context of models. These
extensions allow the relaxation of constraints during a solving
process and address problems that are subject to change and
require incremental re-evaluation. Furthermore, we present
our prototype constraint solver for the domain of graph mod-
els built upon the VIATRA2 model transformation framework,
and provide an evaluation of its performance with compari-
son to related tools.
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formation, dynamic constraint satisfaction programming, flex-
ible constraint satisfaction problem
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1 Introduction

Evolutionary design space exploration Design space explo-
ration is a process to analyze several “functionally equiv-
alent” implementation alternatives, which meets all design
constraints in order to identify the most suitable design cho-
sen based on various quality metrics such as performance,
cost, power, and dependability. Typically, the best solution
is flexible in the sense that it provides a trade-off between
the optimal solutions with respect to a single quality met-
rics. Design space exploration is thus a challenging prob-
lem in many application areas including critical embedded
systems and IT systems management or cloud computing,
where model-driven engineering (MDE) techniques have al-
ready been quite popular. Design space exploration in an MDE
context is frequently tackled as specific sort of constraint sat-
isfaction problem [1].

Traditionally, most of these constraints and quality at-
tributes were numeric in nature to express time, throughput,
budget, memory limits, etc. However, the birth of modular
software architectures in critical systems (like AUTOSAR [2]
in the automotive or IMA in the avionics domain) introduced
a novel type of complex structural constraints, which express
connectivity restrictions for the graph-based model of the sys-
tem under design. Complex structural constraints may include
restrictions on allocation (e.g. separate critical components
from non-critical ones), communication (e.g. use a secure
communication channel between two channels), etc.

In addition, in many practical scenarios (like IT systems
management or cloud computing), design space exploration
is further complicated by the continuous evoluation of the
system, which imposes further constraints and quality met-
rics. For instance, in IT systems management and service-
oriented architecture, both the actual system, the quality of
service requirements and measured parameters, and recon-
figuration policies may change quite frequently. Moreover,
design space exploration also needs to incorporate the “dis-
tance” between the current and the designated configuration,
as a reconfiguration to the mathematically “optimal” system
configuration may be too complex or costly to implement.
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In the paper, we aim to tackle evolutionary design space
exploration to flexibly identify the most suitable design meet-
ing complex structural constraints and numeric constraints
where the underlying constraints may evolve in time, and the
evolution of the best design is also restricted by allowed op-
erations and/or quality metrics.

Solving the constraint satisfaction problem over models The
aim of the constraint satisfaction problem (CSP) is to find a
solution to a set of constraints that impose conditions which
have to be satisfied by a set of variables. Each variable takes
its value from a predefined domain. A solution is one (or all)
assignment of variables which satisfy each constraint.

Constraint satisfaction techniques have been successfully
applied for various problems of model-driven engineering such
as to apply design patterns [3], to support domain-specific
modeling [4] or model transformations [5]. As a common-
ality, all these approaches translate high-level models to an
existing, off-the-shelf constraint solver (like e.g. [6,7]) to pro-
vide embedded design intelligence for modeling.

However, advanced constraint solvers typically apply cer-
tain restrictions for the CSP problem. For instance, the do-
mains of variables are frequently required to be (a priori) fi-
nite; moreover, most approaches disallow the dynamical ad-
dition or retraction of constraints [8]. Furthermore, mapping
graph models obtained in model-driven engineering to vari-
ables with finite domain can be a non-trivial task, especially
when considering the evolution of models. As a summary, ex-
isting constraint solvers fail to adaquately handle flexible and
dynamic structural constraints over graph-like models, which
is necessitated for evolutionary design space exploration.

Model driven techniques for solving the CSP over models
Since model driven engineering techniques are widely used
in our designated application areas, it is worth evaluating how
existing model or graph-based techniques could be used to
solve dynamic and flexible constraint satisfaction problems
with complex structural constraints.

Unfortunately, traditional model transformation tools (like
ATL [9]) do not support backtracking when executing a model
transformation for performance reasons, and thus they cannot
traverse alternate transformation paths. Rare exceptions (like
PROGRES [10] which support backtracking) need complex
control structures to drive the transformation, lack support
for the efficient exploration of an alternate path after back-
tracking, and fail to handle dynamic changes of constraints
or rules.

Sophisticated model or graph based verification tools (like
GROOVE [11] or Alloy [12]) need to store the entire state
space during traversal, which is very resource consuming.
Furthermore, they usually use generic bounded state space
traversal strategies, which makes it difficult to fine tune and
effectively control how the most promising next candidate
should be selected with respect to the CSP problem itself.

In [13], we first introduced constraint satisfaction prob-
lem over graph-based models (abbreviated as CSP(M)) to

capture traditional design space exploration using graph pat-
terns to define structural (first-order logic) constraints, and
graph transformation rules [14] as labeling operations. Fur-
thermore, we provided a prototype solver capable of solving
complex structural constraints built upon advanced incremen-
tal model transformation technology to efficiently continue
search upon backtracking.

Contributions of the paper In the current paper, we extend
[13] in the following way. First, we define two extensions to
the CSP(M) formalism to address evolutionary design space
exploration by introducing flexible CSP, and dynamic CSP
[8] directly in the context of models. (1) Flexible CSP sup-
ports the relaxation of constraints (referred to as soft con-
straints) to accept solutions that do not satisfy all given con-
straints. Our flexible CSP(M) approach uses a numeric weight
function to capture the satisfiability criteria of the solution
state, thus allowing the relaxation of constraints on a fine-
grained state-by-state basis. (2) Dynamic CSP addresses the
case when the original problem definition itself is changed
(e.g. a constraint, or operation is added or removed), and our
intention is to find a new solution in an incremental way, i.e.
without restarting the solving process from scratch.

As a summary, our approach now allows to solve dy-
namic constraint satisfaction problems over models where
dynamic changes include to (i) add/remove constraints to the
CSP problem while partially reusing solution from the orig-
inal problem, (ii) modify the domain of the variables during
search and (iii) define constraint problems with relaxable soft
constraints.

Additionally, we enhanced our prototype constraint solver
based on the VIATRA2 [15] model transformation framework
to support flexible and dynamic constraints. A first experi-
mental evaluation of the prototype solver is also carried both
on classical and flexible/dynamic CSP(M) using two dynamic
allocation problems taken from the avionics and the cloud
computing domains. We also compare the performance of our
CSP solver with existing (industrial and academic) tools.1

The relevance of the paper to model-driven engineering
is three-fold. (1) First, it defines dynamic and flexible con-
straint satisfaction problem with complex structural and nu-
meric constraints over graph-based models as means to for-
malize evolutionary design space exploration problems. (2)
It provides an intuitive way to capture evolutionary design
space exploration problems using techniques (e.g. graph pat-
terns and graph transformation rules) which are closely re-
lated to MDE best practices. (3) It proposes actual solving
strategies using incremental model transformation techniques,
which are especially suitable for automating dynamic and
flexible constraint solving for complex structural constraints.

The rest of the paper is structured as follows. In Sec. 3 we
briefly introduce the concept of metamodeling, graph trans-

1 Compared to [13], the current paper thus defines dynamic and
flexible CSP(M) problems, it provides a new case study, a compari-
tive performance evaluation, a more extensive evaluation of related
work, and more implementation details.
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formation and constraint satisfaction problems. Section 4 pro-
poses our graph pattern and transformation based constraint
solver, while Sec. 5 extends the formalism with support for
flexible and dynamic constraint problem definition. Section 6
introduces optimization and implementation details of our
solver and performance measurements are evaluated in Sec. 7.
Finally, related work is assessed in Sec. 8 and Sec. 9 con-
cludes the paper.

2 Motivation

System modeling and design space exploration are key is-
sues in the design and synthesis of complex embedded and IT
systems. Model Driven Engineering has already contributed
languages and tools for capturing high-level system models
and design constraints using graph-based models. However,
in early phases of design, models are not sufficiently detailed
to serve as an input for automated synthesis tools. In fact,
in practice, the design space is constituted by multiple mod-
els representing different valid design candidates. The design
space exploration process aims at searching through these
candidates defined in the design space to find solutions that
satisfy the requirements (constraints) and provide a balanced
choice with respect to (a combination of) quality metrics.
These complex exploration processes involve both critical de-
sign decisions made by the system architect and semi-auto-
mated techniques.

To introduce our CSP(M) formalism and demonstrate how
it can help in solving various design space exploration prob-
lems, we selected two motivating allocation case studies from
the mission critical embedded system in Sec. 2.1 and the
cloud infrastructure Sec. 2.2 domains, derived from our on-
going research projects. The embedded system case study
describes a typical design space exploration problem with
static, non-flexible constraints, while the cloud case study
represents evolutionary design space exploration, where the
requirements of system evolves and the solver needs to mod-
ify its constraint set according to the changes. Throughout
the paper, we will use these motivating case studies as our
running examples and benchmarks.

2.1 Case Study: Allocation of an IMA system

Let us assume an integrated modular avionics (IMA) sys-
tem composed of Jobs (also referred as applications), Par-
titions, Modules and Cabinets. Jobs are the atomic software
blocks of the system defined by their memory requirement.
Based on their criticality level jobs are separated into two
sets: critical and simple (non-critical). For critical jobs double
or triple modular redundancy is applied while for simple ones
only one instance is allowed. Partitions are complex software
components composed of jobs with a predefined free mem-
ory space. Jobs can be allocated to the partition as long as
they fit into its memory space. Modules are SW components
capable of hosting partitions. Finally, Cabinets are storages

Figure 1 Metamodel of an IMA architecture

for a maximum (in our example) two modules used to physi-
cally distribute elements of the system. Additionally a certain
number of safety related requirements will also have to be
satisfied: (i) a partition can only host jobs of one criticality
level and (ii) different instances of a certain critical job can-
not be allocated to the same partition and module. The task
is to allocate an IMA system defined by its jobs and parti-
tions over a predefined cabinet structure and to minimize the
number of modules used.

A sample system composed of a critical job with two
instances and two partitions with a single cabinet is shown
in Fig. 2(a) with a possible allocation depicted in Fig. 2(b)
defined over the metamodel captured in the VPM formal-
ism [16] in Fig. 1. Newly created elements are highlighted
in grey.

2.2 Case Study: Cloud Allocation

Let us assume a synthetic cloud platform providing a database
service. The system is composed of virtual and physical serve-
rs running a heterogeneous database infrastructure. Virtual
servers are hosted by physical ones, where each physical serv-
er can host a predefined number of virtual ones. In the current
configuration the cloud uses three different types of fictitious
databases to provide its service, namely: DB P, DB C and
DB V. A server can host at most one database at once and a
physical server can either hold virtual servers or a database.
Each database has different performance characteristic with
regard to its underlying server captured by the following rules:
(i) in general, DBs on virtual servers are performing almost
half as fast as on physical, (ii) DB V is slightly faster than
the other two on virtual servers and also DB C performs bet-
ter than DB P, (iii) however, DB P is almost twice as fast on a
physical server than the others and finally (iv) DB C supports
rapid clustering, where two instances can form a cluster-pair
that counts as an additional virtual instance in their overall
performance. The VPM metamodel of the cloud case study is
depicted in Fig. 3.

The task is to allocate databases to produce the required
overall performance over a static physical server infrastruc-
ture, where both the number of licences for each database
types and the required overall performance are predefined.
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(a) Starting model
(b) Allocated model

Figure 2 Example IMA system

Figure 3 Metamodel of the Cloud example

Figure 4 Starting Model of a Cloud System

The main difference between this and the IMA allocation
is that in the current case not necessarily all databases are
needed to be allocated to achieve a solution state. However,
as business needs require, changes may occur in the problem
definition over time that would require the reallocation of the
databases.

A simple cloud configuration composed of two physi-
cal servers with one and two hosted virtual servers along
with one DB P and two DB C databases is depicted in Fig. 4.
Two possible solutions with a required overall performance
of 15 are also depicted in Fig. 5(a) and Fig. 5(b). The solu-
tion in Fig. 5(a) uses the DB P and a single DB C database
running over a physical and virtual server, respectively, pro-
ducing an overall performance of 19. The other solution uses
the two DB C databases in a cluster-pair producing exactly
the required performance of 15. For easier readability non-

(a) One Possible Allocation

(b) An Other Possible Allocation

Figure 5 Allocated example Clouds

allocated databases are not shown in the solution figures and
newly created elements are highlighted in grey.

3 Background

In order to introduce our approach this section briefly outlines
the basics of graph transformation.

3.1 Graph Patterns and Graph Transformation

Graph patterns (GP) are frequently considered as the atomic
units of model transformations [15]. They represent condi-
tions that have to be fulfilled by a part of the underlying in-
stance model. The VIATRA2 notation in particular, describes
them as a disjunction of pattern bodies GP = ∨i∈IPBi, where
a pattern is fulfilled if at least one of its pattern body is ful-
filled. Pattern bodies PB = (SC,AC,∨ j∈JNAC j) consist of

– structural conditions SC prescribing the existence of type
conformant nodes and edges. These conditions describe
a graph that needs to be matched to a subgraph of the
underlying model in order to be fulfilled.
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– attribute conditions (AC) prescribe boolean conditions over
the attributes of the matched elements (marked by the
check keyword). Check conditions are similar to terms in
traditional programming languages and usually describe
conditions over integer and string values.

– A negative application condition NAC = ¬GP, defined
by a negative subpattern, prescribes contextual conditions
for the original pattern which are forbidden in order to
find a successful match. For the satisfaction of a nega-
tive application condition there should not be a match ex-
tending the match of the parent pattern. A graph pattern
can have arbitrary number of negative application con-
ditions. Additionally, negative conditions can be embed-
ded into each other to an arbitrary depth (e.g. negations
of negations), where the expressiveness of such patterns
converges to first order logic [17].

A match m for a graph pattern GP = ∨i∈IPBi in an in-
stance model M denoted by m : GP −→ M means that there
exists a pattern body PBi = (SCi,ACi,NACi, j) where: (i) ∃m :
SCi 7→M there exists an injective, type conformant total mor-
phism m from the graph defined by its structural conditions
to the instance model, (ii) 6 ∃ j ∈ J;m′ : NACi, j 7→ M there is
no morphism for any of its embedded NACs that extends the
match of the pattern body PBi and (iii) all attribute conditions
ACi are fulfilled by m.

Graph transformation [14] provides a high-level rule and
pattern-based manipulation language for graph models. Graph
transformation GT = (LHS,RHS,AMA) rules can be speci-
fied by using a left-hand side – LHS (or precondition) pat-
tern determining the applicability of the rule, a right-hand
side – RHS (postcondition) pattern which declaratively spec-
ifies the result model after rule application, and additional
attribute manipulation actions AMA. The RHS is a simple
graph, ie., a restricted pattern that can have only one pattern
body that prescribes only structural conditions and has no
embedded NACs. Similarly, to the concept of attribute con-
ditions in graph patterns, graph transformation rules can ma-
nipulate attributes, where manipulation actions are described
by the AMA. These actions are usually, simple attribute value
manipulation operations like assignments, integer addition,
etc.

The application of a GT rule to a host model G alters
the model by replacing the pattern defined by LHS with the
pattern defined by RHS. This is performed by (i) finding a
matching m : LHS −→ G of the LHS pattern in model graph
G; (ii) removing a part of the model graph M that can be
mapped to LHS but not to RHS; (iii) adding new elements
which exist in RHS but not in LHS and finally (iv) performing
the attribute manipulation operations described in AMA. A
graph transformation step is denoted formally as G

r,m
=⇒ H,

where H is the resulting model; r and m denote the applied
rule and the matching, respectively.

The complete formal description of the VIATRA2 graph
transformation notation is described in [15].

Example. Sample graph patterns and transformation rules
are depicted in Fig. 7. The jobInstancewithoutPartition pattern

matches an input parameter JobInstance JIns which is not
already allocated to a Partition P by the j1 jobs relation (ele-
ments of the NAC are encapsulated by the NEG rectangle).

The allocateJobInstance GT rule allocates the JobInstance
JI to the Partition P1 (by the jobs j1 relation) if it is not already
allocated to the P2 Partition and decreases the MP free mem-
ory attribute of the P1 partition by the memory requirement of
Job J captured in MJ. We use a combined representation that
jointly defines the left hand side (LHS) of the graph transfor-
mation rule and the model manipulation operations to be car-
ried out, where newly created elements and attribute manip-
ulation operations are tagged with an add and set keywords,
respectively.

4 Constraint Satisfaction Programming

In this section, we provide a detailed description of our con-
straint satisfaction framework and its conceptual foundations
and demonstrate how to apply it on the IMA system alloca-
tion problem introduced in Sec. 2.1.

4.1 Constraint Satisfaction Problem specification

To introduce the basis of our approach Sec. 4.1.1 introduces
finite domain constraint satisfaction problems

4.1.1 Constraint Satisfaction Problem for Variables of Finite
Domain A CSP(FD) is a problem composed of a finite set
of variables, each of which is associated with a finite domain,
and a set of constraints that restricts the values the variables
can simultaneously take. In a more precise way a constraint
satisfaction problem is a triple: (Z,D,C) where Z is a finite
set of variables x1,x2, ...,xn; D is a function which maps every
variable in Z to a set of objects of arbitrary type; and C is a fi-
nite (possibly empty) set of constraints on an arbitrary subset
of variables in Z. The task is to assign a value to each variable
satisfying all the constraints. Solutions to CSPs are usually
found by (i) constraint propagation: a reasoning technique to
explicitly forbid values or domains for variables by predicting
future subsequent constraint violations and (ii) variable la-
beling: searching through the possible assignments of values
to variables already restricted by the (propagated) constraints.

4.2 CSP(M): Constraint Satisfaction Problem over Models

An overview of the input and output artifacts of our CSP(M)
formalism is depicted in Fig. 6. A CSP(M) problem consists
of:

– An initial model representing the starting point of the
problem. With the initial model the user can put addi-
tional knowledge into the system to give hint (e.g., in the
form of a partial solution) to the solving process. This is a
typical use case in design space exploration of embedded
systems, where the system architect either reuses earlier
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solutions or use standard architecture patterns to start the
evaluation from. Please note, that the initial model can
also be empty.

– The goal representing the conditions that need to hold in
a valid solution of the problem. For example, in model-
based modular embedded software design this can mean
a certain level of redundancy that the system needs to im-
plement or a connectivity restriction on the communica-
tion network of the system.

– A set of global constraints representing a special sub-
set of constraints that needs to be satisfied by all models
(states) traversed during the search for a solution. The use
of global constraint is not mandatory but they can effec-
tively prune the search space by early detection of invalid
models. For example, when allocating software compo-
nents a global constraint can define the maximum number
of allowed components on a CPU, pruning out all invalid
models where too many components were allocated to a
CPU.

– A set of labeling rules capturing the permitted operations.
These labeling rules are conceptually similar to opera-
tions in planner algorithms [18], which aim to restrict the
possible transitions in the search space. For example, in
case of software component allocation a labeling rule can
describe the underlying model manipulations required to
allocate a free (non-allocated) SW component to a CPU.

Figure 6 Overview of CSP(M) Solver

Formally, a CSP(M) (M0,C,G,L) : Ms is a structure where:
M0 is the initial model; C is a set of global constraints; G is a
set of subgoals which together in conjunction form the goal;
and L is a set of labeling rules. The output Ms is the solution
model satisfying:

1. M0 ; Ms; there exists a trajectory T : Mo
l1→M1

l2→ ..
ln→

Ms where i= 1..s : li ∈ L. Informally, Ms is reachable from
M0 through a sequence of applied labeling rules in trajec-
tory T .

2. ∀Gi ∈ G : Ms |= Gi; Ms satisfies all subgoals Gi
3. ∀Ci ∈C : Ms |=Ci; Ms also satisfies all global constraints

Ci
4. ∀Mi ∈ T,∀C j ∈C : Mi |=C j; along the trajectory T from

the initial to the solution model all visited model Mi sat-
isfies each global constraint.

As models in MDE are usually described as graphs we in-
stantiate our formalism on graph transformation a well-known
model transformation language. In our instantiation both the
initial and solution models are defined by typed graphs over
a given metamodel. Based on this metamodel we use graph
patterns to declaratively define both goals and global con-
straints. This way constraints are directly defined over the
problem domain and no mapping to other formalisms (e.g.,
finite domain constraint logic programming) is required. Fi-
nally, model manipulation operations described by the label-
ing rules are captured by graph transformation rules. Alto-
gether, the complete problem can be defined in a declara-
tive manner using model driven techniques making the whole
formalism intuitive, especially for complex structural con-
straints.

Additionally, this instantiation allows to directly apply the
GT defined labeling rules on the underlying (graph) models,
giving way to a better insight of the solving process with po-
tential feedback on (i) valid and invalid goals and global con-
strains and (ii) applicable labeling rules in each states, allow-
ing easier traceability of the solving process.

For the concrete definition of CSP(M) problems we used
the VIATRA2 [15] transformation language. However, this
formalism can also be incorporated into other modeling ap-
proaches such as MOF models, OCL constraints and QVT
rules.

4.2.1 Goal and Global constraints Both subgoals and global
constraints are defined by graph patterns. The goal G is the
conjunction of subgoals where a subgoal (graph pattern) is a
disjunction of alternate pattern bodies.

A subgoal or global constraint C described by the graph
pattern GP is either a positive or negative constraint. A neg-
ative constraint is satisfied by a model (M |= C) if it does
not have a match in M, formally 6 ∃m : GP −→ M. While a
positive constraint is satisfied if its representing graph pat-
tern has a match in M; ∃m : GP −→M. A further restriction
on positive constraints can be formulated by stating that they
are satisfied iff their representing graph pattern has a prede-
fined minimum number of of matches (Cardinality), formally
|{m : GP −→M}| ≥Cardinality. In our IMA case study all
patterns are considered as negative constraints.

4.2.2 Labeling rules Labeling rules are described as graph
transformation rules. A labeling rule l is enabled when the
precondition LHSl of its representing graph transformation
rule is applicable to the underlying model M, formally ∃m :
LHSl −→ M. However, additional properties are used to re-
fine the execution order and semantics of an enabled rule ap-
plication:

– Priority (integer: 0..100): Defines a precedence relation
on labeling rules. It organizes the labeling rules into sets
based on their priorities. In each state the solver selects
its next step from the set with the highest priority. In our
IMA case study we use the same priority for all labeling
literals.
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– Execution mode ( forall — choose ): Defines whether a
rule is simultaneous applied at all possible matches (forall)
(as a single transition) or only once on a randomly se-
lected single matching (choose). In the IMA case study
all labeling rules are using choose type execution mode.

Example. Our IMA case study formalized as a CSP(M)
problem is depicted in Fig. 7. The jobInstancewithoutPartition,
partitionwithoutModule and modulewithoutCabinet subgoals for-
mulating the goal describe that in a solution model each JobIn-
stance, Partition and Module is allocated to a corresponding
Partition, Module and Cabinet, respectively. For example, the
jobInstancewithoutPartition subgoal captures its requirement
using a double negation (NAC and negative constraint) stat-
ing that there are no unallocated job instance JI in the so-
lution model. Similar double negation is used in case of the
other two subgoals.

Global constraints formulate the safety and memory re-
quirements. The partitionMemoryHigherThan0 pattern captures
the simple memory constraint that all partitions must have
higher than zero free memory. The safety requirement stat-
ing that a partition can only host jobs of one criticality level
is captured by the partitionCriticalityLevelSimilar pattern. As it
is a negative constraint it describes the (positive) case where
the P1 partition holds two job instances J1 and J2 of a sim-
ple and a critical job Job1 and Job2, respectively. The crit-
icalInstanceonSamePartition and criticalInstanceonSameMo-
dule patterns imply in a similar way that no job instances J1
and J2 of a critical job Job can be allocated to the same par-
tition P1 or module M1.

Finally, labeling rules describe the allocation operations.
The allocatePartition graph transformation rule defines how
a partition P can be allocated to a module M1. As a com-
mon technique in graph transformation based approaches, a
negative application condition stating that the partition is not
already allocated is used to indicate that the rule should only
be used for unallocated partitions. On top of that the allocate-
Module rule uses an additional NAC to forbid allocation of
module M to cabinet C1 when two other modules M1 and M2
are already presented on C1, while the allocateJobInstance
defines an additional attribute operation to decrease the free
memory value MP of partition P1 by the required memory MJ
of the allocated job J. The createModule rule simply creates
a module M without any precondition.

4.3 Solving CSP over Models

To traverse the search space of a constraint program intro-
duced in Sec. 4.2, we define the solver as a virtual machine
that maintains a 4-tuple (CG,CS,AM,LS) as a state. CG is
called the current goal; CS is the constraint store; AM is the
actual model; and finally LS is the labeling store. The (i) cur-
rent goal stores the subgoals that still need to be satisfied; (ii)
the constraint store holds all constraints the solver has satis-
fied so far while (iii) the actual model represents the under-
lying actual model and finally (iv) the labeling store contains
all enabled labeling rules. An element in the labeling store is

a pair (l,m), where l is a labeling rule and m is a valid match
of its precondition LHSl in AM; formally m : LHSl −→ AM.

Initially, the CG, CS and LS are all initialized with the
goal, global constraints and the enabled labeling rules of the
CSP(M) problem, respectively, while AM is set to the initial
model. The solver proceeds by selecting an enabled label-
ing rule (l,m) and applies it to AM resulting in AM′. After
each labeling rule application (and after initialization) CS is
checked for consistency. In principle, whenever (i) a global
constraint in CS is violated the solver backtracks, (ii) a sub-
goal in CG is satisfied by M it is moved to CS and (iii) vica-
versa moved from CS to CG if it becomes unsatisfied and
finally (iv) a successful termination is reached when CG be-
comes empty.

Formally, a transition in the search space is a pair of 4-
tuples of (CG,CS,AM,LS)→ (CG′,CS′,AM′,LS′), which de-
scribes a step between the two states. A transition is possi-

ble iff ∃(l,m) ∈ LS where AM
l,m
=⇒ AM′; i.e., a labeling rule

can be applied on the actual model for a certain match. A
goal G can be proved if there exists a trajectory of individ-
ual steps (CG,CS,M0,LS); ( /0,CS′,Ms,LS) for a satisfiable
constraint store CS. In other words, a solution model is found
if there exists a sequence of labeling rule applications, that
lead to an empty CG and satisfiable CS.

Example. Let us consider that our IMA case study is in
the initial state S0 depicted in Fig. 8. The actual model is the
initial model M0 (detailed in Fig. 2(a)); the current goal CG
contains the jobInstancewithoutPartition and the partitionwith-
outModule subgoals; the constraint store CS holds all global
constraints and the modulewithoutCabinet subgoal while the
labeling store LS holds the following elements: (allocateJobIn-
stance, CJI1), (allocateJobInstance, CJI2) and (createModule,
/0). The solver has three enabled labeling rules (transitions)
t1, t2, t3 resulting in states S1, S2, S3. For example, S1 is tra-
versed by applying the allocateJobInstance labeling rule on
the critical job instance CJI1. In S1 the actual model changed
with an additional j1 jobs relation (highlighted in grey) be-
tween partition P1 and job instance CJI1; the current goal and
constraint store did not change and contain the same elements
as in S0, while the labeling store changed to: (allocateJobIn-
stance, CJI2) and (createModule, /0). For easier readability,
actual models of the states are depicted in Fig. 8 in a sim-
plified way without type information e.g., the element CJI1:
JobInstance is denoted as CJI1.

5 Flexible and Dynamic Constraint Satisfaction
Problems over Models

Our formalism also supports dynamic and flexible constraint
satisfaction problems. In the current section we briefly in-
troduce how these different CSP definitions are adopted in
CSP(M).
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Figure 7 Goal, Labeling rules and Global constraints of the IMA case study
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Figure 8 Example State Space

5.1 Flexible Constraint Satisfaction Problems

Classical constraint satisfaction techniques support only hard
constraints specifying exactly the allowed combinations. Hard
constraints are imperative (a valid solution must satisfy all
constraints ) and inflexible (constraints are either entirely sat-
isfied or violated). In order to overcome these weaknesses
flexible CSPs introduced soft constraints [19] to relax these
assumptions and allow solutions that do not satisfy all con-
straints.

One well-known approach, called weighted CSP [20], in-
troduces the use of weights attached to each constraint indi-
cating its relative importance. A solution is acceptable if the
sum of the weight of the satisfied constraints is higher than a
predefined value.

By extending the classical CSP(M) formalism (in Sec. 4.2)
we define weighted CSP(M) as (M0,C,G,L, fw,Sw) : Ms. Sw
is the predefine sum weight required for a solution model to
be satisfied and fw : Gs,M→ N is a weight function, which
takes as input a subgoal Gs ∈G and a model M and produces
the weight of the subgoal Gs in the model M. The weight
function is usually specific to each problem domain and can
use the additional attributes of the satisfiability criteria of the
subgoals. For example, this can be the number of matches in
a specific state or the cardinality value of a positive subgoal.

The definition of a solution model Ms changes in the fol-
lowing way:

1. M0 ; Ms; there exists a trajectory T : Mo
l1→M1

l2→ ..
ln→

Ms where i= 1..s : li ∈ L. Informally, Ms is reachable from
M0 through a sequence of applied labeling rules in trajec-
tory T .

2.

∑
{Gi|Gi∈CS∧Ms|=Gi}

fw(Gi,Ms)≥ Sw (1)

In a solution model Ms, the summarized weight of the
satisfied subgoals Gi has to be greater or equal to the pre-
defined Sw value.

3. ∀Ci ∈C : Ms |=Ci; Ms also satisfies all global constraints
Ci

4. ∀Mi ∈ T,∀C j ∈C : Mi |=C j; along the trajectory T from
the initial to the solution model all visited model Mi sat-
isfies each global constraint.

This way the solving process described in Sec. 4.3 is slight-
ly modified to; a solution model is found if there exists a se-
quence of labeling rule applications, that leads to a constraint
store that fulfills the inequality defined in 2 and contains all
global constraints.

5.2 Dynamic Constraint Satisfaction Problem

A further limitation of classical CSP is in its assumption of
a static problem. This means that once the constraints have
been defined they are fixed for the duration of the solving
process. However, in certain cases problems are subject to
change either as a solution is being constructed or while the
constructed solution is in use. Classical CSP usually can deal
with this situation by considering the changed problem as an
entirely new problem which needs to be solved from scratch.

Dynamic constraint satisfaction [21] addresses this kind
of problems and allows to add and remove constraints from
the actual problem definition as necessary. However, to utilize
the advantage of dynamic constraint manipulation and re-use
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partial solutions obtained for a problem before it changes,
additional techniques [22] are required.

In our case, it is possible to dynamically add or remove
global constraints, labeling rules and goals from a problem
definition in a solution state. However, not all combinations
are worth to be carried out as a dynamic constraint satisfac-
tion problem with respect to solution re-use:

Global constraint

– In case a global constraint Cr is removed from the con-
straint store then all previously visited states remain valid
except those leaf states, that were invalidated by the con-
straint, need to be recalculated as potentially valid states.
The original problem is redefined as (M0,C,G,L) : Ms→
(M0,C\{Cr}, G,L) : M′s. In this case all already visited
states are left as valid states of the new problem.

– If a global constraint Ca is added then all already visited
states need to be re-evaluated with the new constraint,
which is almost identical to a fresh state space explo-
ration from the initial state of the original problem. This
means that the new problem is (M0,C∪{Ca},G,L) : M′s.
Assuming that V S is the set of the already visited states
of the original problem, the invalidated visited states are
{Si|Si ∈V S}.

Labeling rule

– If a labeling rule Lr is removed, then all transitions that
used this rule are invalid. It means that all visited states
after these transitions are also invalid and must be deleted
from the already visited states. Depending on the actual
traversal this might affect the entire visited state space or
no states at all. Informally, the new problem is (M0,C,G,
L\{Lr}) : M′s, where the invalidated states by the removed

labeling rule are {Si|Si,S0..n ∈ V S∧ S0 ; S j
Lr→ S j+1 ;

Sn∧ j < i≤ n}.
– In case a labeling rule La is added, then similarly to the

global constraints all previously visited states need to be
re-evaluated with the new rule as it can potentially create
new branches for the exploration. However, these states
are not invalid, thus they can re-evaluated on demand only
when the solver algorithm revisits these states. In this way
the new problem is (M0,C,G,L∪{La}) : M′s, where the
states to be re-visited are {Si|Si ∈V S}.

Labeling rules and global constraints can be treated simi-
larly in case of classical and flexible CSP(M) problems. How-
ever, as the definition of a satisfying solution is different in a
both cases, different actions needed to be carried out when a
subgoal is dynamically added or removed:

Goal Classical CSP(M)

– If a subgoal Gr is removed, then the problem definition
changes to (M0,C,G\{Gr},L) : M′s and all visited states
have to be re-evaluated, {Si|Si ∈V S}. However, these up-
dates are rather simple as only the subgoal Gr needs to
be removed from either the current goal or the constraint

store and this does not involve constraint evaluation (pat-
tern matching). Additionally, solution states remain valid
and states S j where Gr is the only unsatisfied subgoal be-
comes solution states (Gr ∈CG j ∧|CG j|= 1).

– In case a subgoal Ga is added ((M0,C,G∪{Gr},L) : M′s),
then all visited states have to be updated with constraint
evaluation in each state. Similarly to an addition of a global
constraint the problem becomes identical with a fresh state
space exploration of the original problem.

Flexible CSP(M)

– If a subgoal Gr is removed (M0,C,G\{Gr}, L, fw,Sw) :
M′s, then similarly to the classical case all already visited
states have to be updated, {Si|Si ∈ V S}. The complexity
of the update mainly depends on the weight function fw
as it have to be recalculated on each already visited states
along with the deletion of Gr from the constraint store or
the current goal.

– Similarly to the case in classical CSP(M) all already vis-
ited states have to be updated with complete constraint
evaluation and weight calculation when a subgoal Ga is
added to a flexible constraint definition (M0,C,G∪{Ga},
L, fw,Sw) : M′s.

– Additionally, a flexible CSP(M) problem (M0,C,G,L, fw,
Sw) : Ms can be changed through its weight function fw
and solution weight Sw. A change in the weight func-
tion fw cannot be treated as a dynamic manipulation in
the problem definition as it requires a complete recalcu-
lation of all visited states, which is identical to a fresh
state space exploration of the changed problem. However,
if the solution weight Sw is changed, all already visited
states remain valid and the state space exploration can
continue from the solution state of the original problem.
Formally, the new problem becomes (M0,C,G,L, fw,S′w) :
M′s.

In case more than one constraint, goal or labeling rule is
added or removed from the problem definition, then the union
of the effects described has to be carried out.

In overall, dynamic CSP(M) can effectively and incre-
mentally solved by reusing the previous solution in the fol-
lowing cases: (i) elements are removed from the problem defi-
nition, (ii) the solution weight is modified in a flexible CSP(M)
definition or (iii) depending on the solver algorithm in cases
where labeling rules are added.

5.3 The Cloud Case Study as a Flexible Constraint
Satisfaction Problem

Our cloud example formalized (see in Sec. 2.2 as a flexible
CSP(M) problem is depicted in Fig. 9. Similar to the IMA
example the labeling rules capture the operations of the allo-
cation.

– The allocateDatabase rule allocates the database DB to a
server S1 if it is not already allocated.
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Figure 9 Global Constraints, Goals and Labeling Rules of the Cloud Case Study

– The createDB C Cluster rule simply creates a cluster-pair
through the inCLuster relation between the DB and DB2
databases of type DB C if DB is not already in a cluster.

– The last shutDownVServers labeling rule is used to turn
off a virtual server VS hosted by the physical server PS
if no database DB is running on VS. Only this simple rule
is required to model the server infrastructure as our ini-
tial model will represent the state where each physical
server is hosting its maximum allowed number of virtual
servers.

As mentioned in Sec. 5.1 a solution state is defined by
its structural goal G, its weight function fw and the required
solution weight Sw. In this example the weight function is
fw(Gi,M j) = per fGi ∗ |{m : Gi −→ M j}|. It means that the
weight of a subgoal Gi in state M j is equal to the number
of its matches in M j multiplied by a predefined constant per-
formance indicator per fGi . The performance indicator is a
relative value derived from the requirements to capture the
performance characteristic of the different database types.

The goal is captured by six positive subgoals each with its
own performance indicator depicted by the number in their
top right corner.

– The DBonPServer and the DBonVServer patterns with per-
formance indicators of 7 and 4 set the average perfor-
mance of a server running on a physical or a virtual server,
respectively. Compared to these average values, the other
four patterns formulate the relative performance differ-
ence defined in the problem specification.

– The DB VonVServer and the DB ConVServer patterns cap-
ture the requirement that the database type DB V is faster,
with a performance indicator of 2, than the other types.

– Additionally, the DB PonPServer pattern describes that
the database type DB P performs almost twice as fast on
a physical server than the other types.

– Finally, the DB C Cluster pattern defines that if two DB Cs
are running on different servers and form a cluster-pair
then they produce an additional performance of 5.

The negative global constraints onlyOneDBperServer and
DB0-or0-VS0-onPhysical specify that no server can hold more
than one database and a physical server can hold either a vir-
tual server or a database, respectively.

As the specification does not precisely define the perfor-
mance differences between the databases the current defi-
nition of the problem can be a subject to change. Possible
changes to the problem definition are discussed in Sec. 5.3.1
along with the required dynamic manipulation to model them
in our formalism.

5.3.1 Dynamic Problem Extensions However, it is possible
that the imprecise assumptions on performance, newer ver-
sions of databases or a change in business rules can slightly
modify the problem definition and it requires changes in its
CSP(M) definition. These changes can be treated as separate
dynamic constraint satisfaction problems of our cloud exam-
ple. To simulate such modifications we defined three different
changes. These three modifications represent the practically
relevant cases, where dynamic reevaluation does not require
a fresh state space exploration and previous solutions can be
partially reused.

– Let us assume that the additional plus 1 performance indi-
cator defined by the DB ConVServer pattern for the DB C
database is no longer required and needs to be removed
from the problem definition.

– It is also possible that a newer version of the DB C data-
base supports not only cluster-pairs but also cluster-triplets,
where the performance output is doubled compared to
three single instances. This modification can be captured
by the createDB C ClusterTriplet labeling rule (depicted
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Figure 10 Dynamically added Labeling rule

in Fig. 10). The double performance is calculated by the
fact that the DB C Cluster pattern matches three times on
a single cluster-triplet.

– Finally, a third variant of dynamic change can be that
business reconfiguration is no longer available due to other
services provided by the cloud. This case can easily be
handled by removing the shutdDownVServer labeling rule
from the definition.

To assess the performance aspects of dynamic CSP(M)
problem changes, Sec. 7.2 gives a first experimental evalua-
tion of the introduced dynamic capabilities based on the cloud
case study implemented in our CSP(M) solver.

6 Optimization Strategies and Implementation Details

The current section describes several optimization and im-
plementation considerations built into our prototype CSP(M)
solver. Section 6.1 briefly introduces the different search strate-
gies applied for the guided state space traversal, while Sec. 6.2
details optimization techniques to reduce the travelled state
space and finally, Sec. 6.3 focuses on concrete implementa-
tion details.

6.1 Search (Labeling) Strategies

Most algorithms for solving CSPs systematically traverse the
possible search space. Such algorithms (often called as search
or labeling strategies) are guaranteed (in case of finite search
space) to find a solution, if one exists, or to prove that the
problem is unresolvable.

The most common algorithm for performing systematic
search is backtracking based on depth-first search. Backtrack-
ing incrementally builds candidates to the solutions, and aban-
dons each partial candidate (”backtracks”) as soon as it deter-
mines that it cannot possibly be completed to a valid solution.
In our case it means that in the actual state a global constraint
is violated or its labeling store is empty, thus the system back-
tracks to the last applied step and continue with a different
one. One of the main drawbacks of the simple backtracking
algorithm is thrashing; i.e. repeated failure due to the same
reason. Thrashing occurs because the backtracking algorithm

does not identify the root cause of a conflict, i.e., the unsat-
isfiable global constraint or subgoal leading to a dead-end.
Therefore, search in different parts of the search space keeps
failing for the same reason.

In order to overcome trashing we implemented two addi-
tional search strategies:

6.1.1 Random Backjumping is a backtracking strategy based
on the assumption that a traversal might be in a dead-end if
no solution was found within a certain amount of time (dead-
line). When the solver exceeds this deadline, it jumps back to
a state at least as high as the half of the actual depth of the
search space tree. This way the solver can restart the traversal
from an earlier state and continue on different random transi-
tions. However, to keep the completeness of the traversal we
implemented a simple policy introduced in [23] that is to in-
crease the height of the backjump each time it is used. This
approach is obviously not effective to prove unsatisfiability
because all the runs except the last are wasted, but has a good
average performance in certain real world scenarios.

6.1.2 Guided traversal by Petri net abstraction is a state
space traversal strategy which conducts search towards the
most promising candidate paths calculated according to a Petri
net abstraction of graph transformation systems introduced
in [24]. It introduces temporal numerical cuts to guide the
state space exploration by temporally pruning the state space
to postpone the unpromising paths. By formulating the solu-
tion state configuration as submarking of the Petri net, we can
solve an integer linear programming problem of the derived
Petri net using its incidence matrix to obtain an optimal tran-
sition occurrence vector leading to a designated target state
(formulated as a target submarking). A transition occurrence
vector prescribes how many times a labeling rule needs to be
applied in order to reach the derived submarking of a solution
model. Then the search strategy first explores those branches
(i.e. labeling rule applications) which are consistent with this
hint. This means that if a graph transformation (labeling) rule
is applied more than prescribed in the vector, then the explo-
ration of its branch is postponed. If no solution is found on
the level of CSP(M), then the next optimal transition occur-
rence vector candidate is derived, and the exploration of the
CSP(M) problem continues.

Note that due to the abstraction, the transition occurrence
vector might not represent a feasible trajectory in the search
space of the CSP(M) problem. However, it provides a good
lower bound on the minimal number of labeling rule appli-
cations required to reach a solution model if its correspond-
ing solution submarking can be precisely estimated or calcu-
lated. The first transition occurrence vector calculated for our
IMA example is (2,1,1,1) meaning that to achieve a solution
submarking derived from a solution model where all job in-
stances and partitions are allocated, the allocateJobInstance
rule has to be applied twice while the other three only once.

It is important to mention that in case of flexible CSP(M)
problems the estimation of the solution occurrence vector heav-
ily depends on the weight function. Additionally, in case of
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Figure 11 Modified allocateJobInstance rule

dynamic CSP(M) problems, in each case the problem changes
the abstraction needed to be updated and recalculated. This
traversal technique becomes less useful in these cases.

6.2 Optimization

To further reduce the size of the traversed state space we in-
troduce two additional optimization techniques that comple-
ment our search strategies described in Sec. 6.1.

6.2.1 Look-ahead pattern Additional restrictions on the ap-
plicability of labeling rules can be formulated by incorpo-
rating a subset of global constraints called look-ahead con-
straints into the precondition (LHS) of rules. These constraints
are validated in the precondition of labeling rules to prevent
unnecessary steps which would violate these constraints. Cur-
rently, this is a manual hint by the designer, but in the future,
we plan to automate this task by applying critical pair analy-
sis [25] or transformations of graph constraints to precondi-
tions [26].

In our IMA example the allocateJobInstance rule can be
further restricted regarding the memory consumption of the
JIns job instance making the partitionsMemoryHigherThan
global (look-ahead) constraint obsolete. Its modified version
with the extra check condition on the required and available
memory is depicted in Fig. 11. Similarly, the global constraint
onlyOneDBpreServer can be integrated as part of the allocate-
Database labeling rule in the cloud example.

6.2.2 Exception priority In order to explicitly restrict the
number of application of labeling rules along a trajectory we
introduced a priority class called exception. Exception rules
have the lowest priority and will only be selected when no
other labeling rules are enabled. In any trajectory if the num-
ber of applications of an exception rule exceeds its predefined
value the solver backtracks and continues along another tran-
sition. Exception rules are used as hints by the search strategy
to avoid state explosion, especially when the Petri net based
abstraction cannot predict the number of labeling rule appli-
cations for element creation rules without preconditions such
as the createModule rule in the IMA example.

6.3 Implementation

We implemented an experimental solver for CSP(M) includ-
ing all the techniques above on top the VIATRA2 model trans-
formation framework, which offers efficient rule- and pattern-
based manipulation of graph models by the means of graph
transformation. In order to implement the solver using graph
based state representation we had to address the problems of
constraint evaluation, backtracking and typed graph compar-
ison.

– For effective evaluation of constraint satisfiability we
rely upon the incremental pattern matcher component [27]
of the framework. In case of incremental pattern match-
ing, the matches of a pattern are stored to be readily avail-
able in constant time, and they are incrementally updated
when the model changes. As matches of patterns are cached,
this reduces the evaluation of constraints and precondi-
tions of labeling rules to a simple check. This way, the
solver has an incrementally maintained up-to-date view
of its constraint store and enabled labeling rules. Fur-
thermore, incrementality provides an efficient constraint
propagation technique to immediately detect constraints
violations after a labeling rule is fired.

– For backtracking between states, we implemented a sim-
ple transaction mechanism that saves the atomic model
manipulation operations applied on the model in an undo
stack. This stack not only allows us to backtrack the ma-
nipulations but also eases the computation of difference
between neighbour states. However, the undo stack based
implementation also has a drawback as backtracking is
only possible from the actual state upward to the root and
no jumping is supported between different paths of the
state space. This means that traversal algorithms in the
state space needs to follow a depth-first strategy.

– To be able to detect already visited states we needed to
store and compare states represented by graphs as when-
ever the solver traverse a new state it also checks that it
have not already visited this state.
For fast graph comparison we adapted the DSMDIFF [28]
algorithm, which relies on (i) signatures (for nodes and
edges) composed of type and name information and (ii)
containment relations between nodes of the graph, both
supported by VIATRA2. However, the general algorithm
did not scale well with large models, especially when a
significant part of the model is static and cannot change
during evaluation but is always compared between states.
To overcome this problem, we defined a domain specific
model comparator based on the general DSMDIFF algo-
rithm. This new algorithm (i) compares only non-static
parts of the model and (ii) the user can restrict elements
(from the metamodel) to be used for the model compari-
son. In the current implementation these comparators are
hand coded for each domain (meta)model.

– Finally, to keep the memory consumption low, we stored
already visited states in a serialized form using a simple
breadth-first algorithm and applied our graph comparison
algorithm directly on this representation. Additionally, to
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reduce the number of candidates for comparison we also
applied a hash function based on the number of elements
on each level of the model containment hierarchy. How-
ever, to further reduce the number of comparisons the use
of domain specific hash functions are also supported by
our implementation. Note that these domain specific hash
functions are also have to satisfy that if two models are
equal then their hash values are also equal.

The introduced solver is already in use in the context of
the DIANA [29] European project as its underlying alloca-
tion engine for a system-level integration scenario for avion-
ics software allocation.

7 Evaluation

To evaluate the performance of our CSP(M) solver, we car-
ried out experiments both on our IMA (in Sec. 7.1) and cloud
(in Sec. 7.2) allocation case studies for classical and dynam-
ic/flexible CSP(M), respectively. Moreover, in order to com-
pare our results with other available tools , we selected three
from closely related fields:

– Standard CSP tools over finite integer domains are the
most widely used and general purpose constraint solvers
available. For our evaluation we selected the commercial
SICStus Prolog [30] CLP(FD) library version 4.1.2.

– Structural constraint solvers similarly to our CSP(M) aim
to find object graphs satisfying a given set of structural
constraints. For our measurements we selected the origi-
nal KORAT [31] framework based on bounded exhaustive
testing.

– Finally, we used the GROOVE 4.0.1 [11] a model checker
for graph transformation system as our third tool due to
its very close problem definition language. Note that only
the IMA case study was implemented in GROOVE as it
does not support flexible constraints.

For all of our measurements, we used an average PC with
Mobile Core Duo@1.8 GHz and 3GB RAM running Win-
dows XP and Java SDK 1.6.13. Prior to the actual experi-
ments we expected that:

– The SICStus CLP(FD) library will outperform our ap-
proach in all cases by orders of magnitude.

– The KORAT constraint solver will be faster especially on
large models where huge traversals are expected.

– Finally, the GROOVE model checker will have a com-
parable performance with our implementation on small
problems and we would outperform it on larger problem
sizes due to the exhaustive search algorithm of GROOVE.

7.1 The IMA Case Study

We assume that we have to allocate different software work-
loads (functionalities) on a system with three cabinets (which

1 the source code of the case studies is available from
http://home.mit.bme.hu/∼ahorvath/papers/sosymHVSource.zip

Table 1 IMA Test Cases

corresponds to the avionics architecture used in the DIANA
project).

7.1.1 CSP(M) Solution Each row in Table 1 defines a soft-
ware workload allocation test case of different Size. The Sim-
ple Job, Critical Job, and Partition columns define the actual
number of software components to be allocated, where criti-
cal jobs are separated based on their redundancy scheme into
double (DMR) and triple (TMR) modular redundancy. All Job
Instances represents the total number of job instances to be
allocated. For our initial measurement (denoted by ATTR) we
assume that each job requires the same amount of memory
(30 units) and each partition offers the same free memory
(300 units).

Runtime results of the four test cases are captured in Ta-
ble 2. Due to the random strategy of our solver we considered
an allocation completed if a solution was found within 200
seconds. In each case we executed the solver ten times and
present the number of Finished Allocations. Runtime perfor-
mance and the size of the traversed State Space for the com-
pleted allocations are also presented by their minimum (min),
maximum (max) and average (avg) values for each test case.

Lessons Learned During the analysis and profiling of our
implementation we have discovered that the performance bot-
tleneck in our system is mainly related to the model manage-
ment component of the underlying VIATRA2 transformation
framework (which is obviously not optimized for constraint
solving purposes). In almost all cases we have observed that
core attribute manipulation functions (e.g., setValue) are the
most time consuming. This is due to the low-level notifica-
tion mechanism that keeps the incremental pattern matcher
up-to-date after changes in the model space, which is more
effective for graph manipulations than for attribute changes.

Therefore we also evaluated our approach without attribute
manipulation (i.e., memory requirements) on the IMA case
study denoted by NON ATTR.. In order to solve a concep-
tually similar problem we defined an additional global con-
straint stating that a partition cannot host more than ten job
instances. Results show that (i) in both cases solutions were
found traversing only a small number of states compared to
the size of the problem, (ii) the NON ATTR implementation
scales almost up to twice the size in the number of job in-
stances to allocate and (iii) due to the heuristic character of
the state space traversal the runtime performances can vary
up to two orders of magnitude.
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Table 2 Runtime Characteristic of the CSP(M) solution on the IMA Allocation Problem

Figure 12 Runtime Results of all Approaches on the IMA Case Study

7.1.2 Other Approaches We implemented the IMA case study
on additional three different tools. In all three cases the max-
imum number of modules were explicitly given and any so-
lutions within this given range were accepted.

SICStus Prolog CLP(FD) The complete IMA problem was
translated into a CLP(FD) problem, where both job instances,
jobs, partitions, modules and all mappings between them were
mapped to CLP variables. It is important to note, that we op-
timized the labeling strategy to effectively search for the first
solution rather than do a breadth-first like traversal to find all
solutions. As a personal experience, the implementation of
the IMA case study in SICStus CLP(FD) required far more
man-hour (approximately, 30 with optimization and debug-
ging) than the other three solutions. At the end the whole im-
plementation consisted of 31 Prolog clauses in 150 lines of
code.

KORAT It required three inputs for instance generation: (i)
a Java class hierarchy of the problem domain that we de-
rived directly from the IMA metamodel (see in Sec. 1) with
minor modification as inheritance is not supported by the

framework, (ii) a finitization statement that explicitly speci-
fies bounds on the number of objects to be used for the in-
stance construction and finally, (iii) an imperative predicate
that specifies the desired structural constraints of the IMA
case study, written as a Java method consisting of approxi-
mately 100 lines of code .

GROOVE Due to the similar graph transformation based
specification language of GROOVE, we simply adopted the
graph patterns and GT rules of the NON-ATTR version of the
IMA case study. Additionally, the initial models of the test
cases were also easily reused. Note that, we used only the ba-
sic constructs of the GROOVE language and did not apply
advanced features like nested graph transformation rules.

7.1.3 Evaluation of the Results The results are shown in
Fig. 12 with average execution times in a logarithmically scaled
Runtime axis for all four test cases (see in Table 1). Test cases
are identified by their size. All test cases were executed ten
times. We also applied a 200000 milliseconds (200 seconds)
upper limit on the execution times. Results exceeding this up-
per limit are not shown.
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Table 3 Cloud Test Cases

Within the 200 seconds limit both the KORAT and the
GROOVE framework failed to provide a solution even for
the smallest test case. In case of the GROOVE engine it is
acceptable, as it had to generate the complete state space of
the problem to check if there is a solution state that satisfies
all given constraints. However, also KORAT failed to provide
a solution and it was parametrized to stop after the first valid
solution. During the analysis of KORAT, we have discovered
that it always tried to allocate first, job instances to partitions
and only after going through all combinations started to allo-
cate partitions to modules. This resulted in a giant state space
even for the smallest test case. The SICStus implementation
generated results at least two orders of magnitudes faster than
our approach with very similar execution times.

The results of this case study show that (i) our approach
outperforms the GROOVE model checker that uses an ex-
haustive state space exploration, (ii) it finds a single solution
significantly faster than the well-known KORAT algorithm
based on bounded exhaustive testing and (iii) our current im-
plementation is lagging behind classical CLP(FD) libraries
with orders of magnitude.

7.2 The Cloud Case Study

We assume that we have to allocate a predefined number of
different databases to an infrastructure consisting of virtual
and physical servers and reach a predefined overall perfor-
mance indicator value for the whole system.

7.2.1 CSP(M) results Each row in Table 3 defines a sepa-
rate cloud allocation test case of predefined Size and differ-
ent performance indicator to achieve. The number of servers
in the cloud are defined by the Physical Server and Virtual
Server columns. Similarly, the number of database licences
are captured by the DB P, DB V and DB C columns, respec-
tively.

In each test case we did four different measurements (see
in Table 7.2.1. First, we evaluated the flexible CSP(M) with
the defined resources and required overall performance (see
in Table 13(a)). Based on this flexible constraint satisfaction
problem we assessed three different dynamic changes of the
original problem. We evaluated the cases described in Sec. 5.3.1
where

– SubGoal removal: The subgoal DB ConVServer was re-
moved from the problem.

– Labeling rule removal: The labeling rule shutDownVServer
was removed from the definition.

– Labeling rule addition: Finally, the labeling rule creat-
eDB C ClusterTriplet (depicted in Fig. 10) was added. In
the latter two cases we also modified the required overall
performance indicator to balance out their effects.

In all three dynamic modifications we followed the con-
siderations discussed in Sec. 5.2:

– In case of the subgoal removal it means that all already
traversed states were updated, but that only required a re-
calculation of the weight function on each state.

– The labeling rule removal required the pruning of the al-
ready visited state space after any transaction that applied
the shutDownVServer rule.

– Finally, for the labeling rule addition we followed the
strategy to continue the solving process after the modi-
fication without re-evaluating any already visited states.
This was mainly used as our transaction mechanism does
not effectively support jumping between states belonging
to different branches.

All three dynamic changes were made in a solution state from
where the evaluation of the modified constraint problem started.
Their performance results using our CSP(M) framework are
captured in Figure 13(b), 13(c) and 13(d), respectively.

For the flexible CSP(M) we measured the overall Runtime
of the solving process and the number of traversed states. As
for the three different dynamic modifications we assessed the
number of newly traversed states (Traversed states) to solve
the dynamically changed problem. Additionally, we measured
the overall Runtime required for both the reevaluation of the
state space and the new solving process. In all four measure-
ments, we executed the solver five times and present the num-
ber of Finished Allocations using again a 200 seconds upper
limit on execution time.

Lessons Learned As a summary, our solver is capable of
handling reasonable sized flexible CSP(M)s. However, dur-
ing the analysis of the traversed state space we have dis-
covered that our search strategies do not always effectively
guide traversals of flexible constraint satisfaction problems.
Their main drawback is that they do not take into account the
weight function when selecting the labeling rules to apply.
We believe that effective guidance of flexible CSP(M) should
adapt informed search strategies like A* [32] with the esti-
mated cost function directly derived from the weight function
as it holds all relevant guidance information.

Similarly, the lack of guidance can be observed in case
of the dynamic modifications. After the re-evaluation of the
already visited states the traversals acted similarly as an ex-
haustive search, resulting in runtime performances that vary
up to several orders of magnitude. For example, on one hand
the addition of a labeling rule resulted in very fast traver-
sals for the new solution of the modified problem. On the
other hand, removal of the DB ConVServer constraint from
the problem definition resulted in a state space exploration
that exceeded our 200 seconds upper limit. These differences
were due to the fact that our engine preferred the use of clus-
ters and the allocation of databases to virtual server rather
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(a) Basic Flexible Problems (b) DB ConVServer SubGoal Removed

(c) shutDownVServer Labeling Rule Removed (d) createDB C ClusterTriplet Labeling Rule Added

Figure 13 Runtime Characteristic of the CSP(M) solution of the Cloud Case Study

than physical ones. In case of the addition of the createDB C-
ClusterTriplet labeling rule, it was able to easily produce the

required cluster triplets from the already allocated cluster pairs.
Moreover, the retraction of the shutDownVServer did not have
any effect when a solution mainly allocated to virtual servers
and extensively created clusters (like in case of our small
and medium sized test cases). However, when solutions could
only be found, which heavily relied on allocation to physical
server, our approach had to traversed large state spaces.

7.2.2 Other Approaches We implemented the cloud case study
using both SICStus and KORAT. As these approaches do not
support dynamic manipulation of constraints, we separately
evaluated the modified constraint problems starting from the
original initial state.

SICStus Prolog CLP(FD) Similarly to the IMA approach
we translated the servers to CSP variables and modelled the
available databases with the integer domain of these vari-
ables. Mapping of virtual serves to physical ones were im-
plemented as a set of constraint over their CSP variables. Ad-
ditionally, auxiliary CSP variables were used for the defini-
tion of clusters and for the evaluation of the weight function.
The implementation consists of 28 Prolog clauses in approx-
imately 170 lines of code. For the modified constraint prob-
lems, only small modifications were required on few clauses
of the original code. Again this implementation took consid-
erable more time than any other.

KORAT KORAT cannot define constraints for a dedicated
instance of a class (only for the class itself, to our best knowl-
edge). We had to modify the problem definition that all servers
can host the same amount of virtual servers. As a conse-
quence, the case study where the shutDownVServer labeling
rule were removed could not be effectively defined in the im-
perative predicate and therefore we omitted it from from the
measurements. Similarly, the Java classes were derived di-
rectly from the Cloud metamodel (see in Sec. 3) and the im-
perative predicate were also given as a Java method consist-
ing of approximately 140 lines of code.

7.2.3 Evaluation of the Results The results are shown in
Fig. 14 with separate figures for the basic flexible problem
and its three modified version. Average execution times in
milliseconds are presented in a logarithmically scaled Run-
time axis. Each measurements were executed five times. We
again applied a 200000 milliseconds (200 seconds) upper limit
on the execution times and results exceeding this upper limit
are not shown in Fig. 14.

Again, within the 200 seconds limit the KORAT frame-
work failed to provide a solution even for the smallest test
case for the original problem or its two modified versions.
The main reason is that KORAT always preferred to allocate
databases to physical servers rather than to virtual ones. This
resulted in extremely large search spaces.

The SICStus implementations again produced very con-
sistent execution times and in certain cases orders of magni-
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(a) Basic Flexible Problems (b) DB ConVServer SubGoal Removed

(c) shutDownVServer Labeling Rule Removed (d) createDB C ClusterTriplet Labeling Rule Added

Figure 14 Runtime Results of all Approaches on the Cloud Case Study

tude faster than any other approach. However, for the Small
sized test case in average our engine produced solutions within
a comparable range. This was due to the fact that in our im-
plementation the labeling algorithm of the SICStus engine al-
ways tried to allocate databases to physical servers and only
slowly found solutions were both clusters and virtual servers
were required. This is one of the main difference between
the two solutions and reason for the diverse runtime perfor-
mances.

Altogether, these measurements demonstrated that in four
out of nine dynamic cases partially reusing the solution ob-
tained from a previous traversal of the original problem is
a competitive alternative. Additionally, in case of complex
structural constraints, the way how the search space is tra-
versed has a significant impact on performance and effective
solutions require explicit problem specific fine-tuning or hints
to achieve acceptable performance.

7.3 Summary

Our measurements show that our constraint solver based upon
incremental pattern matching is able to solve non-trivial clas-
sical and flexible problems of model oriented constraints. We
also demonstrated that certain dynamic changes of constraint
definitions can be effectively handled with a good level of
solution reuse. More specifically:

– Constraint satisfaction problems with complex structural
constraints can be intuitively captured by our proposed
formalism combining graph patterns and graph transfor-
mation rules. In contrast, expressing structural constraints
in the traditional CLP(FD) formalism requires significant
modeling workaround.

– Our approach outperformed in all cases the well-known
academic KORAT structural constraint solver. We believe
that this is a combined effect of using (i) incremental pat-
tern matching to efficiently detect possible continuations
and (ii) explicit labeling rules to guide the traversal.

– Unsurprisingly, exhaustive generation of the state space
(like in case of GROOVE) is not a feasible solution for
constraint satisfaction problems without further support.
Ongoing research in the GROOVE framework aims to re-
strict state space travels by adding a conjunction of global
constraints.

– As we expected, the industrial SICStus CLP(FD) library
outperformed our engine in the static cases by orders of
magnitude. However, in case of dynamic constraint satis-
faction problems our approach resulted in comparable (in
certain cases even better) runtime thanks to good level of
solution reuse.

– Additionally, in almost all cases to achieve acceptable
performance problem specific hints or fine-tuning is ad-
vantageous. However, these fine tuning hints would in-
crease the complexity of the problem definition. We be-
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lieve that our graph transformation based CSP formalism
gives a good trade-off between easy declarative problem
definition and fine-tuning.

– Due to the nondeterministic nature of our traversal strat-
egy, execution times may vary significantly. For this rea-
son we plan to better exploit adaptive search algorithms.

It is also important to note that these measurements were
carried out on specific problems derived directly from our on-
going research projects. Despite the large set of predefined
synthetic case studies used mainly for performance measure-
ments in model transformation tool contests ( [33, 34]), very
few cases (e.g., the live contest at [35]) address related chal-
lenges (like backtracking or flexible problems). We plan to
submit our case studies to future editions of these tool con-
tests.

Our further investigations have to be directed to (i) com-
bine our constraint definitions with constraints over regular
attributes, (ii) develop specific informed search strategies for
traversals of flexible CSP(M)s and (iii) further examine the
effects of dynamic constraint changes to enhance solution
reuse.

8 Related Work

Applications of CSP in MDE. Constraint satisfaction tech-
niques have been successfully applied in the context of MDD.
[36] proposes an approach for partial model completion based
on constraint logic programming. [4] support efficient do-
main specific modeling by transforming constraints to a Pro-
log representation. In [3], poor design patterns are detected
by using off-the-shelf CSP techniques and tools. [37] defines
an interactive guided derivation algorithm to assist model de-
signers by providing hints about valid editing operations that
maintain global correctness of models.

In the context of model transformations, [38] proposes
constraint solving as a graph pattern matching strategy. [5]
proposes Constraint Relation Transformation an extension of
QVT Relations with numerical constraints by integrating lo-
cal numerical constraint solving (over attributes of model el-
ements).

Recent approaches like [39–41] aim at automatically cre-
ating instance models, which conform to a given metamodel
and a set of constraints. This model generation problem is
solved by existing back-end tools like Alloy as in [39], or by
a dedicated theorem prover for Horn-like clauses as in [41].
This problem can also be interpreted as a special (restricted)
CSP problem without numeric constraints on attributes. Ad-
ditionally, UMLtoCSP [42] verifies certain correctness prop-
erties of OCL adorned UML model by translating them into
the ECLiPSe CSP solver and executes a bounded instantia-
tion search.

In all these papers, constraint satisfaction techniques are
used to assist model-driven development. The main innova-
tion of our work is just the opposite: it investigates how model
transformation techniques can contribute to solve complex

constraint satisfaction problems over complex structural con-
straints and dynamic labeling rules.

Structural constraint solving allows finding object graphs
that satisfy given constraints both on attributes and (object)
structures for systematic testing by exploring a (usually) bound-
ed number of possible object graphs. Many promising ap-
proaches exist like the CUTE [43] framework that uses a
combination of symbolic and concrete execution to derive
path constraints for each separate execution paths, the Java
PathFinder [44] that is based on Generalized Symbolic Exe-
cution [45] that first introduced the idea to use model check-
ers for solving structural constraints, Alloy [12] a lightweight
object modelling framework using a simplified Z notation
that is translated to boolean formulas for SAT based evalua-
tion or KORAT [46] that performs specification based testing
by using a predicate representing the properties (constraints)
of the desired output structures and explores the input state
space of the predicate using bounded exhaustive testing.

It is common in these approaches that each solution sat-
isfies all given constraints similar to our approach; however,
their main difference is that they cannot define restrictions on
how these solutions are achieved from the initial state, mean-
ing that no constraints can be defined to hold on states visited
during a solution trajectory, which in our case is supported by
the global constraints.

State Space Exploration for GT. There are several state
space exploration approaches to analyze graph transforma-
tion systems (GTS).

Augur2 [47] is a GTS model checker that tackles the com-
plexity associated with independent rules by condensing the
entire state space into a single graph with unfolding seman-
tics. It also provides some approximative techniques to deal
with infinitely large state spaces, and counterexample-guided
refinement of this abstraction.

GROOVE [11] is a model checker over graph transfor-
mation systems. Its main benefit is the ability to verify model
transformation and dynamic semantics through applying CTL
model checking on the generated state space of the GTS. It
is mainly used for modeling and verifying the design-time,
compile-time, and run-time structure of object-oriented sys-
tems.

It is common in these solutions that they store system
states as graphs and directly apply transformation rules to
explore the state space similar to our approach. Their main
difference is that they use an exhaustive state space explo-
ration to verify certain conditions in the graph transformation
system, while our approach relies on guided traversals.

Graph constraints were first introduced in the context of
negative application condition and later extended as a speci-
fication formalism [48, 49] to define constraints associated to
visual modelling formalisms and reason about them with a
set of sound and complete inference rules. Our graph pattern
based constraint specification is based on these foundations,
however, we use a different pattern language that allows re-
cursive pattern compositions but more restrictive on formulas
and does not support all connectives e.g., implication. How-
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ever, we believe that CSP(M) can also be instantiated over
this graph constraint formalism.

Graph transformation rules are also used in [50] to de-
fine a non-restrictive contract specification language by the
means of pre- and postconditions. It combines GT rules with
OCL in order to be able to capture non-deterministic speci-
fications and overcome the frame-problem [51]. Its language
is far more expressive than our, however due to this expres-
siveness no implementation is available to evaluate its perfor-
mance as in our case.

Constraint based graphic systems define complex (graph
based) drawings and diagrams using constraints on their graph-
ical objects and relationships.

ThingLab [52] is an extensible constraint solver for graph-
ical simulation. In ThingLab, constraints are imperatively de-
fined providing functions to solve individual constraints, and
the solver attempts to invoke them in an appropriate order for
solving the complete constraint store. It also supports defi-
nition of constraints in an object oriented manner, allowing
inheritance of constraints along the supertype relationship.

DeltaBlue [53] is a perturbation based constraint hierar-
chy solver, maintaining solutions incrementally as constraints
are dynamically added or removed. Additionally, it minimizes
the cost of finding a new solution after each change by ex-
ploiting its knowledge of the last solution.

Juno-2 [54] is a constraint-based double-view drawing
editor for the definition of interactive graphics. It uses a ex-
tensible declarative constraint language including non-linear
functions and ordered pairs compiled into effective constraint
primitives for interactive feedback.

On one hand, common in these approaches that they sup-
port only a limited set of constraints and (except Juno-2) can-
not define cyclic constraints (e.g., simultaneous equations and
inequalities on the variables). On the other hand, many tech-
niques applied in these approaches for handling large num-
ber of constraints such as (i) packing and unpacking con-
straints into constaint primitives and (ii) propagation of val-
ues through predefined constraint hiearchies can be partially
adopted to our framework giving space for future research.

CSP-specific Research in the field of constraint satisfac-
tion programming has been conducted towards flexible and
dynamic constraints [8, 55]. Our approach shows similarities
with both approaches as (i) it also allows to add (or remove)
additional constraints during the solution process as defined
in the dynamic extension, and (ii) can give support for cost
based optimization defined over the constraint (flexible) even
in the case of complex structural constraints.

Additionally, our state space exploration approach also
builds on the idea of random traversals described in [23] to
solve large problems.

9 Conclusion and Future Work

In order to address design space exploration in complex em-
bedded and IT systems using MDE techniques, in the cur-
rent paper, we presented a novel approach (by extending ini-
tial work [13]) for defining constraint satisfaction problems

directly over models using graph transformation rules and
graph patterns. Compared to traditional CSP, we extended
labeling by using model manipulation as provided by graph
transformation to dynamically create and delete model ele-
ments. Additionally, we introduced dynamic CSP(M) that al-
lows to dynamically add or remove global constraints, sub-
goals and labeling rules to alter the problem definition. Fur-
thermore, we have presented weighted CSP(M) an extension
to classical CSP(M) that supports flexible constraint satisfac-
tion problems based on relaxable soft constraints.

We have also built a prototype solver implementation on
top of the VIATRA2 model transformation framework using
incremental pattern matching that provides an efficient con-
straint propagation technique to immediately detect constraint
violation. Moreover, the solver integrates various strategies
(e.g. random backjumping, directed search) to guide the state
space traversal.

On top of that, we carried out various comparative mea-
surements to assess the performance of our approach, which
demonstrated that our solver based upon incremental pattern
matching is able to solve non-trivial classical, flexible and
dynamic problems for model-oriented constraints.

As a summary, we argue that model transformation tech-
nology can efficiently contribute to formulate and solve con-
straint satisfaction problems with complex structural constraints
and dynamic labeling rules.

However, by analyzing the measurement results, we have
also identified some key ares as where the performance of the
solver tool could be further improved in the future such as
(i) to combine traditional constraint programming techniques
to our algorithms to effectively handle constraints over at-
tributes, (ii) to adapt informed search strategies for effective
traversals of flexible problem definitions, (iii) to further ex-
amine the effect of dynamic problem definition changes espe-
cially, when more than one part of the definition changes and
finally (iv) to handle traversed states space in a more space
efficient way and use more advanced graph comparison algo-
rithms like [56, 57] that can handle larger graphs.

In addition to improving performance, we plan to support
automatic detection of look-ahead pattern based on critical
pair analysis for state space optimization.
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