
Scalable Incremental Query Evaluation for
Large Models?

Gábor Szárnyas1, István Ráth1 and Dániel Varró1,2,3

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
H-1117 Magyar tudósok krt. 2, Budapest, Hungary

{szarnyas, rath, varro}@mit.bme.hu
2 DIRO, Université de Montréal

3 MSDL, Dept. of Computer Science, McGill University

Abstract. Model query operations form the basis of model-driven
software engineering tools and transformations. While the last decade
brought considerable improvements in scalable, distributed storage tech-
nologies, known as NoSQL systems, evaluation of graph-like queries on
large models requires further research. Unlike typical NoSQL workloads,
e.g. key-value lookups or queries utilising full-text search, model queries
often include lots of join, antijoin and complex filtering operations. The
goal of our research is to propose an approach for scalable incremen-
tal query evaluation in a distributed system. This includes designing an
architecture which allows querying on databases using different data rep-
resentation formats. To achieve high performance, such a system should
be capable of automatically allocating its resources (e.g. data shards and
query processing nodes) in the cloud. To support this, we plan to define
query and model metrics for estimating the resources required for the
evaluation of each query.

1 Introduction

Nowadays, model-driven software engineering (MDE) plays an important role
in the development processes of critical embedded systems. Advanced modelling
tools provide support for a wide range of development tasks such as require-
ments and traceability management, system modelling, early design validation,
automated code generation, model-based testing and other validation and ver-
ification tasks. With the dramatic increase in complexity that is also affecting
critical embedded systems in recent years, modelling toolchains are facing scala-
bility challenges as the size of design models constantly increases, and automated
tool features become more sophisticated. Models from other MDE applications
are also getting larger [3]. Reverse engineering software code to models, collect-
ing sensor data and building geo-spatial models of cities can yield to models with
model elements in the magnitude of 109 or more [15]. Modern web applications,
? This work was partially supported by the CERTIMOT (ERC_HU-09-01-2010-0003)
and MONDO (EU ICT-611125) projects.



such as social networks and analytical services are also producing large graphs
with diverse structural characteristics.

Most of these applications, especially software modelling and geo-spatial
models include complex queries. These queries differ from the ones used in typical
transactional databases as they often feature lots of join and antijoin operations
along with recursive patterns and transitive closures [18]. Previous results have
shown that current state-of-the-art tools from various technological spaces (in-
cluding model frameworks, relational databases, triplestores, graph databases)
are not able to run such complex queries on models consisting of more than 107

models elements [19,9], leaving plenty of room for improvements.
Many scalability issues can be addressed by improving query performance [3].

A well-known approach for increasing query performance is incremental query
evaluation which aims to reduce query response time by storing partial results of
the query and only calculating the impact of modifications. This technique has
been proven to improve performance dramatically in several scenarios (e.g. on-
the-fly well-formedness validation or model synchronisation) [18], at the cost of
increasing memory consumption. Since single-computer heaps cannot grow arbi-
trarily (due hardware and operating system limitations), memory consumption
is the most significant scalability limitation.

An alternative approach to tackling MDE scalability issues is to make use of
advances in persistence technology. As the majority of model-based tools uses
a graph-oriented data model, recent results of the NoSQL and Linked Data
movement are straightforward candidates for adaptation to MDE purposes. Un-
fortunately, this idea poses difficult conceptual and technological challenges as it
requires mapping from traditional metamodelling languages (such as Ecore4 to
the domain property graphs or RDF. Additionally, while there are initial efforts
to overcome the mapping issues between the MDE and Linked Data worlds [7],
even the most sophisticated NoSQL storage technologies lack efficient and ma-
ture support for executing expressive queries incrementally.

The main goal during this PhD research is to find a solution for scaling
complex queries on large models. We plan to determine the key challenges of
incremental graph pattern matching in a distributed system and combine ex-
isting NoSQL technologies with a distributed graph pattern matcher algorithm.
In this article, we introduce the IncQuery-D approach, an architecture that
is capable of scaling up from a single-workstation tool to a cluster to handle
very large models and complex queries efficiently. This paper is based on our
earlier publications [8,16] about the IncQuery-D system and aims to present
the research landscape for a scalable incremental query engine.

2 Related Work

A wide range of special languages have been developed to support graph-based
representation and querying of computer data. The Ecore metamodel of the

4 http://www.eclipse.org/emf

http://www.eclipse.org/emf


Eclipse Modeling Framework (EMF4) provides a modelling language, where
classes along with their references and attributes are used to describe the do-
main. Extensive tooling helps the creation and transformation of such domain
models. For EMF models, OCL is a declarative constraint description and query
language that can be evaluated with the local-search based Eclipse OCL5 engine.
To address scalability issues, impact analysis tools [5] have been developed as
extensions or alternatives to Eclipse OCL.

The Resource Description Framework (RDF6) is developed to support the
description of instances of the semantic web, assuming sparse, ever-growing and
incomplete data. Semantic models are built up from triple statements, which can
be queried using the SPARQL graph pattern language with tools like Sesame7.
Property graphs [14] provide a more general way to describe graphs by annotat-
ing vertices and edges with key-value properties. They can be stored in graph
databases like Neo4j8 which provides the Cypher language for defining patterns
and the Gremlin language for defining graph traversals.

In the context of event-based systems, distributed evaluation engines were
proposed earlier [1], scaling up in the number of rules rather than in the num-
ber of data elements. As a recent development, caching approaches based on
the Rete algorithm have been proposed for the processing of Linked Data. IN-
STANS [13] also uses this algorithm to perform complex event processing (for-
mulated in SPARQL) on RDF data, gathered from distributed sensors. Dia-
mond [12] evaluates SPARQL queries on Linked Data, but it lacks an indexer
so their main challenge is efficient data traversal. Trinity [17] is a closed source,
pure in-memory solution, which executes a highly optimized local-search based
algorithm on top of the Trinity distributed key-value store with low response
time. However, the effect of data updating on query performance is currently
not investigated. A recent development is a graph transformation system based
on the Apache Giraph framework, which utilises the Bulk Synchronous Parallel
programming paradigm [10].

As web-based collaborative modelling environments are also gaining momen-
tum [11], they could also benefit from a distributed backend and query engine.

3 Research Plan

3.1 Research Questions

Our research proposes numerous questions, the most important among which
are the following.

Architecture and data representation. Is it possible to serve multiple users
concurrently? Is it possible to build a query engine which works on various
backends using different data representation formats?

5 http://eclipse.org/modeling/mdt/?project=ocl
6 http://www.w3.org/standards/techs/rdf/
7 http://www.openrdf.org/
8 http://neo4j.org

http://eclipse.org/modeling/mdt/?project=ocl
http://www.w3.org/standards/techs/rdf/
http://www.openrdf.org/
http://neo4j.org


Server 0

Database 

shard 0

Transaction

Server 1

Database

shard 1

Server 2

Database 

shard 2

Server 3

Database 

shard 3

Distributed query evaluation network

Notifications3

Results

1

Model 

manipulation
Elementary queries 

and modifications
2

4

Distributed indexer Model access adapter

Fig. 1. The architecture of IncQuery-D, an incremental query framework.

Scalable incremental query evaluation. Is it possible to utilise an in-
crement query evaluation algorithm in a distributed system for high-
performance query evaluation?

Optimisation and dynamic reconfiguration. How can we scale and opti-
mise such a system? How can the system adapt to the changes, both in the
system (e.g. changing models and queries) and in the cloud environment of
the system? How can we estimate the resources required by a certain setup?

3.2 Architecture and Data Representation

The primary goal of our research is to design an architecture that can make use
of the distributed cloud infrastructure to scale out memory-intensive incremen-
tal query evaluation techniques. In our earlier work, we proposed a three-tiered
architecture [16]. To maximize the flexibility and performance of the system,
model persistence, indexing and incremental query evaluation are delegated to
three independently distributable asychronous components (Figure 1). Consis-
tency is ensured by synchronized construction, change propagation and termi-
nation protocols.

3.3 Scalable Incremental Query Evaluation

The Rete algorithm in a distributed environment. IncQuery-D con-
structs a distributed and asynchronous network of communicating nodes that
are capable of producing the results set of the defined queries. Our prime candi-
date for this layer is the Rete algorithm, however, the architecture is capable of
incorporating other incremental and search-based query evaluation algorithms
as well. The Rete algorithm was originally proposed for rule-based expert sys-
tems [4] and later improved and adapted for EMF models in [2]. The algorithm
defines a query evaluation network, an asynchronous network of communicating



nodes capable of producing the results of the query and incrementally maintain-
ing the result set. The nodes of the query evaluation network can be distributed
in a cluster of machines which provides a way to scale of the system.

Dimensions of scalability. The scalability of the system is affected by a num-
ber of different parameters. To implement a horizontally scalable system, we
should consider the following parameters.

– Infrastructure. The number of machines, the available memory and comput-
ing power of each machine, the performance of the network in the cloud, the
number of concurrent users of the system.

– Model. The size of the model, the characteristics of the model (e.g. number
of nodes, edges, the structure of the graph).

– Queries. The number and complexity of the queries in the system.

The design of the system should consider these aspects and provide ways to
scale along these parameters. Defining precise metrics for instance models and
queries is an ongoing research topic.

3.4 Optimisation and Dynamic Reconfiguration

Allocation of resources. Allocating the nodes of the distributed query eval-
uation network to the machines in the cloud is a nontrivial task and offers the
possibility for using various optimisation techniques. For example, the problem
can be formalized as a constraint satisfaction problem (CSP). Furthermore, the
parameters of the problem are continuously changing, including not just the
memory consumption of the Rete nodes but also the number of machines (due
to demands for elastic scalability) and the number of Rete nodes (due to queries
being added to and removed from the system). The highly dynamic nature of
such a system gives way for using more advanced optimisation techniques, such
as design space exploration (DSE) [6], an optimisation technique capable of pro-
viding detailed steps for the dynamic reconfiguration of the system.

Fault-tolerance. To support high availability, the system has to be designed
with fault-tolerance in mind. The most common problems are hardware failures
and resource exhaustion. By careful replication of data and the processing nodes
of the query evalution network, the system should be capable of continuing its
operation. Replication can also improve the performance of the queries. Devel-
oping sharding and replication strategies is a major goal of the research.

4 Conclusion

In this paper, we outlined the current state of research for scalable incremental
graph pattern matching and proposed a solution for the problem. The proposed
system, IncQuery-D, is designed from the ground up for scalable query eval-
uation. The layered architecture of the system offers flexibility as the system is
not tied to any particular data representation format or platform.



References

1. Acharya, A. et al. Implementation of Production Systems on Message-Passing
Computers. IEEE Trans. Parallel Distr. Syst., 3(4):477–487, July 1992.

2. G. Bergmann. Incremental Model Queries in Model-Driven Design. Ph.D. disser-
tation, Budapest University of Technology and Economics, Budapest, 2013.

3. Dimitrios S. Kolovos et al. A Research Roadmap Towards Achieving Scalability in
Model Driven Engineering. In Proceedings of the Workshop on Scalability in Model
Driven Engineering, BigMDE, New York, NY, USA, 2013. ACM.

4. C. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligences, 19(1):17–37, 1982.

5. T. Goldschmidt and A. Uhl. Efficient OCL Impact Analysis, 2011.
6. Á. Hegedüs, Á. Horváth, I. Ráth, and D. Varró. A Model-driven Framework

for Guided Design Space Exploration. In 26th IEEE/ACM Int. Conf. on ASE),
Lawrence, Kansas, USA, 11 2011. IEEE Computer Society.

7. G. Hillairet, F. Bertrand, J. Y. Lafaye, et al. Bridging EMF applications and RDF
data sources. In Proceedings of the 4th International Workshop on Semantic Web
Enabled Software Engineering, SWESE, 2008.

8. B. Izsó, G. Szárnyas, I. Ráth, and D. Varró. IncQuery-D: Incremental Graph
Search in the Cloud. In Proceedings of the Workshop on Scalability in Model Driven
Engineering, BigMDE ’13, pages 4:1–4:4, New York, NY, USA, 2013. ACM.

9. B. Izsó, G. Szárnyas, I. Ráth, and D. Varró. MONDO-SAM: A Framework to
Systematically Assess MDE Scalability. In BigMDE ’14, 2014. Accepted.

10. C. Krause, M. Tichy, and H. Giese. Implementing Graph Transformations in the
Bulk Synchronous Parallel Model. In FASE, volume 8411 of LNCS, pages 325–339.
Springer Berlin Heidelberg, 2014.

11. Miklos Maroti et al. Online Collaborative Environment for Designing Complex
Computational Systems. In ICCS, Cairns, Australia, 2014. Elsevier Procedia.

12. Miranker, Daniel P. et al. Diamond: A SPARQL query engine, for linked data
based on the Rete match. AImWD, 2012.

13. M. Rinne. SPARQL update for complex event processing. In ISWC’12, volume
7650 of LNCS. 2012.

14. M. A. Rodriguez and P. Neubauer. Constructions from dots and lines. CoRR,
abs/1006.2361, 2010.

15. M. Scheidgen, A. Zubow, J. Fischer, and T. H. Kolbe. Automated and Transparent
Model Fragmentation for Persisting Large Models. In Proceedings of the 15th Int.
Conf. on MODELS, pages 102–118, Berlin, Heidelberg, 2012. Springer.

16. G. Szárnyas, B. Izsó, I. Ráth, D. Harmath, G. Bergmann, and D. Varró.
IncQuery-D: A Distributed Incremental Model Query Framework in the Cloud.
In ACM/IEEE 17th Int. Conf. on MODELS, Valencia, Spain, 2014. Accepted.

17. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for
web scale RDF data. In Proceedings of the 39th international conference on Very
Large Data Bases, PVLDB’13, pages 265–276. VLDB Endowment, 2013.

18. Zoltán Ujhelyi et al. Anti-pattern detection with model queries: A comparison of
approaches. In IEEE CSMR-WCRE 2014 Software Evolution Week. IEEE, 2014.

19. Zoltán Ujhelyi et al. EMF-IncQuery: An Integrated Development Environment for
Live Model Queries. Science of Computer Programming, 2014. Accepted.


	Scalable Incremental Query Evaluation for Large Models

