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Abstract As recent tool contests demonstrated, graph
transformation tools scale up to handle very large mod-
els for model transformations thanks to recent advances
in graph pattern matching techniques. In this paper, we
assess the performance and capabilities of the Viatra2

model transformation framework by implementing the
AntWorld case study of the GraBats 2008 graph trans-
formation tool contest. First, we extend initial measure-
ments carried out in [1] to assess the effects of combin-
ing local-search based and incremental pattern match-
ing strategies. Moreover, we also assess the performance
characteristics of various language features of Viatra2

as well as the cost of certain model manipulation oper-
ations. We observe by experimentation how Viatra2

can scale up to large iteratively growing model sizes and
focus on execution time and memory consumption. We
believe that the results obtained from the benchmark
example can set the course for further performance en-
hancement of Viatra2 and other future model trans-
formation frameworks.

1 Introduction

Automated model transformations play an important
role in modern model-driven system engineering in or-
der to query, derive and manipulate large, industrial
models. Since such transformations are frequently inte-
grated into design environments, they need to provide
short reaction time to support software engineers.
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Graph transformation (GT) [2] based tools have
been frequently used for specifying and executing com-
plex model transformations. In GT tools, graph patterns
capture structural conditions and type constraints in a
compact visual way. At execution time, these conditions
need to be evaluated by graph pattern matching, which
aims to retrieve one or all matches of a given pattern
to execute a transformation rule.

Benchmark measurements conducted at recent tool
contests [3,4] demonstrated that GT tools scale up
for transforming very large models, thanks to sophis-
ticated, local-search based graph pattern matching al-
gorithms proposed in transformation tools such as Gr-
GEN.NET [5], FUJABA [6], or Viatra2 [7]. As a com-
monality in all these approaches, pattern matching is
driven by a search plan, which provides an optimal (or
sufficiently good) ordering for traversing and matching
the nodes and edges of a graph pattern.

As an alternative, incremental pattern matching ap-
proaches (INC) [8–12] have recently become a hot re-
search topic in the model transformation community.
The basic idea is to improve the execution time of the
time-consuming pattern matching phase by imposing
additional memory consumption. Essentially, the (par-
tial or full) matches of graph patterns are stored explic-
itly, and these match sets are updated incrementally
upon elementary model changes. While model manip-
ulation becomes slightly more complex, all matches of
a graph pattern can be retrieved in constant time, thus
eliminating the need for recomputing existing matches.

The Viatra2 model transformation framework [7]
supports both pattern matching strategies, which can
be selected separately for each graph pattern / trans-
formation rule. While initial measurements [13] implied
that in many scenarios the incremental pattern match-
ing approach (of Viatra2) significantly outperforms
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the local-search based approach (of Viatra2), recent
applications [14] revealed that available memory can be
insufficient for caching match sets for the incremental
approach, especially, on an average desktop computer.

A primary goal for the current paper is to inves-
tigate if there are benefits in combining incremental
and local-search based pattern matching strategies us-
ing the AntWorld benchmark [15]. This extends our ini-
tial investigations for the problem [1] by carrying out a
more systematic evaluation and fine tuning for selecting
the right strategy for the AntWorld case study.

In addition, we also investigate the efficiency of (the
implementation of) certain features of the Viatra2

language [16] to support the transformation designer in
using the appropriate language constructs and to trig-
ger further development efforts. Then, we reason about
the performance of core model manipulation operations
of the Viatra2 model space, and apply these results
to futher optimization. Finally, we also give some esti-
mations on the complexity class of the case study itself
and suggest some improvements for future cases for tool
comparison.

The rest of the paper is structured as follows. Sec-
tion 2 briefly introduces graph patterns, graph trans-
formation rules, and control structures as available in
the Viatra2 transformation language. Then Section 3
introduces our solution to the case study, while Sec-
tion 4 focuses on the different pattern matcher strate-
gies provided by the Viatra2 framework. We present
our comparative benchmark results and analysis along
with our suggestions for improvement of Viatra2 and
the case study in Section 5. Finally, Section 6 concludes
the paper.

2 Background

In order to understand the concepts of Viatra2 graph
transformation environment, we give a brief overview
of the metamodeling foundations and transformation
language of this framework.

2.1 Metamodeling foundations

The Viatra2 framework is based on the VPM (Vi-
sual and Precise Metamodeling) [17] metamodeling ap-
proach, which can support different metamodeling par-
adigms by supporting (i) multi-level metamodeling with
explicit and generalized instance-of relations and (ii)
dynamic typing of elements.

The VPM language consists of two basic elements:
the entity (a generalization of MOF package, class, or

Fig. 1 The AntWorld metamodel

object) and the relation (a generalization of MOF as-
sociation end, attribute, link end, slot). Entities repre-
sent basic concepts of a (modeling) domain, while rela-
tions represent the relationships between other model
elements. Furthermore, entities may also have an asso-
ciated value which is a string that contains application-
specific data and generalization is supported by the use
of explicit supertypeOf relations (similar to the concept
of UML).

In traditional graph transformation terms, entities
can be interpreted as nodes while relations are edges.
Entities in a metamodel define node types while entities
in models are simply referred to as nodes. In the paper,
we use the Viatra2 terminology for models to avoid
the overloading of terms “node” and “edge”.

A simplified metamodel of the AntWorld case study
used in our experiments, represented in Viatra2, is
shown in Fig. 1. The entity Field represents a field of
AntWorld (grid node in the original specification, but
we use the term field to avoid confusion); CornerField
entities are fields that are located on the axis, and the
AntHill is the central field. Fields are connected by
paths. Each circular path formed by circlePath rela-
tions connects the set of fields that were created in a
single round. Except for the anthill, each field has a
single outgoing returnPath relation pointing towards
a field in the previous circle; most fields have a single
incoming returnPath as well, but corner fields have
three, and the anthill has four.

Fields may be associated with an integer number
of food items or pheromones associated with them. Fi-
nally, a field may contain two kinds of ants: Searcher-
Ant entities represent ants that do not carry food but
are in search of a food bundle, while CarrierAnt enti-
ties represent ants that carry a food item and are on
their way to return to the anthill.
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2.2 Graph patterns

The transformation language of Viatra2 (Viatra Tex-
tual Command Language – VTCL [16]) consists of sev-
eral constructs that together form an expressive lan-
guage for developing both model to model transforma-
tions and code generators. Graph patterns (GP) define
constraints and conditions on models, graph transfor-
mation (GT) [2] rules support the definition of elemen-
tary model manipulations, while abstract state machine
(ASM) [18] rules can be used for the description of con-
trol structures.

Graph patterns are the atomic units of model trans-
formations. They represent conditions (or constraints)
that have to be fulfilled by a part of the model space in
order to execute some manipulation steps on the model.
The basic pattern body contains model element and re-
lationship definitions.

In VTCL, patterns may call other patterns using the
find keyword. This feature enables the reuse of existing
patterns as a part of a new (more complex) one. The
semantics of this reference is similar to that of Prolog
clauses: the caller pattern can be fulfilled only if their
local constructs can be matched, and if the called (or
referenced) pattern is also fulfilled. For more complex
pattern specification the VTCL language also allows to
define alternate (OR) pattern bodies for a pattern, with
a meaning that the pattern is fulfilled if at least one of
its bodies is fulfilled. A negative application condition
(NAC, defined by a negative subpattern following the
neg keyword) prescribes contextual conditions for the
original pattern which are forbidden in order to find a
successful match. Negative conditions can be embedded
into each other in an arbitrary depth (e.g. negations of
negations), where the expressiveness of such patterns
converges to first order logic [19].

As an example, the ants that are searching for food,
but are not attracted by a pheromone trace, use the
anyNeighborButHome graph pattern to determine which
field to move to. This pattern, used to match neighbor-
ing fields (excluding the AntHill) is shown in Fig. 2.

This pattern uses alternate pattern bodies to repre-
sent moving in the forward or reverse direction of a path
relation between Field1 and Field2. It also reuses the
home pattern as its NAC to put the not AntHill type
constraint on Field2.

2.3 Graph transformation rules

Graph transformation (GT) [2] provides a high-level
rule and pattern-based manipulation language for
graph models. In VTCL, graph transformation rules
may be specified by using a precondition (or left-hand

pattern home(Field2 ) =
{AntHill(Field2 );}

pattern
anyNeighborButHome(Field1 , Field2 ) =
{
field(Field1 );
field(Field2 );
field.path(P, Field1 , Field2 );
neg find home(Field2 );

} or {
field(Field1 );
field(Field2 );
field.path(P, Field2 , Field1 );
neg find home(Field2 );

}

Listing 1 Viatra2 source code for the anyNeighborButHome
pattern

Fig. 2 The AnyNeighborButHome graph pattern

side – LHS) pattern determining the applicability of the
rule, and a postcondition pattern (or right-hand side –
RHS) which declaratively specifies the result model af-
ter rule application. Elements that are present only in
(the image of) the LHS are deleted, elements that are
present only in the RHS are created, and other model el-
ements remain unchanged. Further actions can be initi-
ated by calling any ASM instructions within the action
part of a GT rule, e.g. to report debug information or
to generate code.

For instance, the GT rule return defines how the
ants that are carrying food take a step towards the hill,
as shown in Fig. 3. The mechanism of leaving phero-
mones is omitted here for the sake of brevity.

2.4 Model manipulation

The ASM language of Viatra2 also includes constructs
to directly manipulate models from ASM rules. It is
important to point out that in our solution to the case
study, we have opted to perform the model simulation
entirely programmatically, using ASM sequences (in-
stead of declarative GT rules, as shown above), but
still relying on graph patterns for preconditions.
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// Ant returns along returnpath .
gtrule return(in Ant ) =
{
precondition pattern lhs(Ant ,
InnerNeighbor , OuterNeighbor ,Loc ) = {
field(InnerNeighbor );
field(OuterNeighbor );
field.returnPath(RP,OuterNeighbor ,InnerNeighbor );
carrierAnt(Ant);
carrierAnt.location(Loc ,Ant ,OuterNeighbor)

}
// Deletes Loc and creates NewLoc
postcondition pattern rhs(Ant ,
InnerNeighbor , OuterNeighbor ,Loc ) = {
field(InnerNeighbor );
field(OuterNeighbor );
field.returnPath(RP,OuterNeighbor ,InnerNeighbor );
carrierAnt(Ant);
carrierAnt.location(NewLoc ,Ant ,InnerNeighbor );

}
}

Listing 2 VIATRA source code for graph transformation rules

Fig. 3 Graph Transformation rule for ants returning towards the
hill

The example code shown in Lst. 3 demonstrates how
the sequence of grabbing a food item is defined using
ASM model manipulation constructs. First, the remain-
ing amount of food is calculated. If this is positive, the
new value of the food bundle is set accordingly; other-
wise, the food bundle is exhausted and must be deleted
(also deleting implicitly all edges pointing to-or-from
the deleted element which in this case is the hasFood
edge connecting it to the field). Then instead of deleting
(and recreating) the ant it is dynamically retyped from
a searcherAnt to a carrierAnt; instantiation relation-
ships can be manipulated much the same way as ordi-
nary model elements. Please note that the location
edge needs retyping too, since we opted to use different
types of location relations for the two ant types, instead
of lifting this Relation to the common supertype ant.

rule grab(in Ant , in LocationEdge , in Food ) =
let Rest = toInteger(value(Food )) -1 in seq{
if (Rest >0) setValue(Food , Rest ); else delete(Food);
delete(instanceOf(Ant ,ants.metamodel.searcherAnt ));
delete(instanceOf(LocationEdge ,
ants.metamodel.searcherAnt.location ));

new(instanceOf(Ant ,ants.metamodel.carrierAnt ));
new(instanceOf(LocationEdge ,

ants.metamodel.carrierAnt.location ));}

Listing 3 Viatra2 source code for food grabbing

2.5 Control structure

To control the execution order and mode of transfor-
mations, abstract state machines [18] are used. ASMs
provide complex model transformations with all the
necessary control structures including the sequencing
operator (seq), ASM rule invocation (call), variable
declarations and updates (let and update constructs),
if-then-else structures, non-deterministically select-
ing (random) constructs, iterative execution (applying
a rule as long as possible (ALAP) iterate), the simul-
taneous rule application at all possible matches (loca-
tions) (forall) and single rule application on a single
match (choose).

The example code shown in Lst. 4 demonstrates how
typical control structure combinations are used in Vi-

atra2.

The first choose rule tries to find a single match
for the Ant, LocationField, Food and Field variables
(defined in its head), which satisfy the canGrab graph
pattern, and then executes the grab ASM rule. If more
variable substitutions satisfy the pattern, then one is
chosen non-deterministically and if there are no such
substitutions then the choose rule fails.

Using the iterate rule in the example allows to ap-
ply its choose rule as-long-as-possible (ALAP), i.e. as
long as a match for the canGrab pattern can be found.
In other terms, the choose rule is applied on a sin-
gle non-deterministically selected match followed by its
grab ASM rule invocation and repeated as long as the
canGrab pattern can be matched.

As for the following forall rule, it finds all substi-
tutions (matches) for variables defined in its head (Ant,
LocationField), which satisfy the hasCarrierAnt
pattern, and then executes the deposit ASM rule for
each substitution separately. If no variable substitutions
satisfy the pattern, then the forall rule is still success-
ful and does not fail. In contrast to the iterate rule, it
first collects all available matches and then applies its
ASM rule for each in a single step. Note that the Hill
variable will have to be defined prior to the execution of
the forall rule as it is assumed as an input parameter
for the hasCarrierAnt pattern and is not defined in its
head along with the Ant and LocationEdge variables.

iterate choose Ant , LocationEdge , Food , Field with
find canGrab(Ant , LocationEdge , Food , Field) do
call grab(Ant ,LocationEdge ,Food ); // grab food

forall Ant , LocationEdge with // desposit on the Hill
find hasCarrierAnt(LocationEdge , Hill , Ant) do
call deposit(Hill ,Ant ,LocationEdge );

Listing 4 Example control structure combinations
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3 Description of the solution

The AntWorld case study [15] is a model transformation
benchmark featured at GraBaTs 2008 [4]. AntWorld,
probably inspired by Ant Colony Optimization [20],
simulates the life of a simple ant colony searching for
food to spawn more ants on a dynamically growing rect-
angular world. The ant collective forms a swarm intel-
ligence, as ants discovering food sources leave a phero-
mone trail on their way back so that the food will be
easily found again by other ants.

The sequence shown in Lst. 5 defines how one itera-
tion of the AntWorld case study is managed in our im-
plementation. An iteration is divided into seven differ-
ent phases; four for the ant simulation and three for the
world management. All phases are captured by a com-
bination of forall and choose structures guarded by
graph patterns (see in Fig. 4) filtering the input model
parameters of their invoked ASM rule. How each phase
manages its task is described in the following Sec. 3.1
and Sec. 3.2 for the ant and world simulation phases,
respectively.

rule doRound ()= let Hill =ants.model.hill in seq {
// Ant actions
iterate choose Ant , LocationEdge , Food , Field with

find canGrab(Ant , LocationEdge , Food , Field)
do call grab(Ant ,LocationEdge ,Food ); // grab food

forall Ant , LocationEdge with // desposit on the Hill
find hasCarrierAnt(LocationEdge , Hill , Ant)

do call deposit(Hill ,Ant ,LocationEdge );
forall Ant , FromField , LocationEdge with // return
find hasCarrierAnt(LocationEdge , FromField , Ant) do
choose NewField with
find alongReturnPath(FromField , NewField ) do seq {
call moveAnt(HA1 , NewField );
call leavePheromone(FromField );

}
forall Ant with find searcher(Ant) // search for food

do call search(Ant); // both kinds of search
// World management
forall Pheromone with find pheromone(Pheromone)

do call evaporate(Pheromone ); // evaporate pheromone
iterate // create new ants

if(toInteger(value(Hill )) > 0) call consume(Hill);
else fail; // until all deposited food is consumed

// only searchers can breach the boundary !
if (find boundaryBreachedBySearcher ())

call growGrid (); // grow the game map
}

Listing 5 Viatra2 source code for an iteration

3.1 Ant simulation

Grab phase: First, the food gathering is managed by
an ALAP execution of the grab rule guarded by the
canGrab (see in Fig. 4(a)) pattern that iterates over all
searcher ants standing on a food bundle. This way for
each ant standing on a food pile the grab ASM rule cal-
culates the remaining amount of food. If it is positive,

the new value of the food bundle is set accordingly oth-
erwise, the food bundle is exhausted and deleted from
the model. The actual model manipulation operations
are detailed in Sec. 2.4.

Deposit phase: The hasCarrierAnt pattern (depicted
in Fig. 4(d)) with the Field parameter bound to the
anthill in a forall construct identifies all carrier ants
that have successfully delivered a food bundle to the
hill. The deposit rule increases the integer value of the
hill representing the actual number of food bundles on
the hill and dynamically changes the type of its Ant in-
put parameter from CarrierAnt to SearcherAnt along
with its LocationEdge parameter in the inverse way as
it is done in the grab rule.

Return phase: In this phase all carrier ants that did not
reach the hill yet, will step one field closer to home along
the returnPath relation. Their next position NewField
is determined by the alongReturnPath pattern (de-
picted in4(c)) used with a choose structure while all
the carrier ants are iterated over by the outer forall
with the hasCarrierAnt (see in Fig. 4(d) pattern. The
concrete model manipulations are carried out by the
moveAnt and the leavePheromone rule. The moveAnt
rule is only a single operation that sets the target of
the OldLocation edge to its NewField input parameter.
While the leavePheromone leaves a pheromone on its
Field input parameter. To do so it first checks that the
input Field already has a Pheromone using a try-else
control structure combined with a choose invoking the
hasPheromone pattern. If it has, then simply add 1024
to its integer value, otherwise the else branch executes
attaching a newly created Pheromone with 1024 as its
value to the Field. Note that, because the deposit phase
was already executed in the current iteration there are
no carrier ants standing on the anthill for which the
hasCarrierAnt pattern could be reused.

Search phase: Finally, searcher ants looking for a food
source are actuated by the search rule (handling both
the unguided and pheromone-guided cases) executed in
a forall construct using the searcher (see in Fig. 4(f))
pattern. The search rule retrieves the Field1 field
on which the input Ant is standing. Additionally, it
checks if there is any pheromone infested field neighbor-
ing Field1 using the attractingOuterNeighbor pat-
tern in a try-else construct invoked by a choose rule.
If there is, then it steps to that, otherwise to one of
the neighboring fields (except the anthill) selected by
the anyNeighborButHome pattern (detailed in Sec. 2.2).
Both patterns are matched in a true pseudo-random
fashion defined by the @Random annotations.
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3.2 World management

Evaporate Pheromone phase: To volatilize the Phero-
mones in the model the simple pheromone pattern (see
in Fig. 4(e)) in a forall construct invoking the eva-
porate rule is used. In the evaporate rule first the
remaining amount of pheromone is calculated. If this
is positive, the new value of the pheromone is set ac-
cordingly; otherwise the pheromone is exhausted and
deleted from the model. The calculation is kept in the
integer domain using the JAVA built in rounding mech-
anism on the division operator.

Create Ants: As the number of food bundles on the
anthill is managed by the integer value of the hill it-
self, the creation of the ants does not involve pattern
matching. It is handled using an iterate construct
which executes the consume rule as-long-as the inte-
ger value of the hill is higher than zero and terminates
the loop with the exit command. At every invocation
of the consume rule it decrements the integer value of
the hill by one and creates a new SearcherAnt with its
location pointing to the anthill.

Boundary Breached phase: Finally, in order to check
that a searcher ant has reached the boundary of the
actual world an if construct is used to check that the
boundrayBreachedBySearcher (see in Fig. 4(b)) pat-
tern matches to the actual model. If it matches the
growGrid rule is invoked to handle the expansion of the
world. The algorithm used is a circular based traversal
of the boundary fields along the circularPath start-
ing from a randomly selected border field. During the
traversal for each boundary field a new outer neighbor
is created connected to its neighboring fields along with
the update of the boundary relation from the hill. The
only exemption from this rule are the CornerFields
where three new (a CornerField and two simple Field
fields along with their relations between them and the
boundary relation to the hill) fields are generated to cre-
ate the new corner of the actually constructed bound-
ary. This way the distribution of the newly created food
bundles are also arranged during the traversal and on
every tenth newly created boundary field an additional
Food bundle is added.

The complete source code of the case study is avail-
able in Appendix A.

(a) canGrab pattern (b) boundaryBreached-

BySearcher pattern

(c) alongReturnPath pat-
tern

(d) hasCarrierAnt pattern

(e) pheromone pat-
tern

(f) searcher pat-
tern

Fig. 4 Patterns used in the doRound rule

4 Pattern matching strategies in VIATRA2

4.1 Pattern matching strategies in the VIATRA2
framework

Pattern matching plays a key role in the efficient ex-
ecution of all model transformation engines. In case
of graph transformation based approaches, the goal is
to find the occurrences of a graph pattern, which con-
tains structural as well as type constraints on model
elements. During pattern matching, each variable of a
graph pattern is bound to a node in the model such that
this matching (binding) is consistent with edge labels,
and source and target nodes of the model.

Most graph transformation approaches (e.g. [6,21,
22,5] and many more) usually rely on a local search
based pattern matching (LS) that starts the matching
process from a single node and extends it step-by-step
by neighboring nodes and edges.

As an alternatative approach, incremental pattern
matching (INC) [8,9,11,12] relies on a cache in which
the matches of a pattern are stored explicitly. Its match
set is readily available from the cache at any time with-
out searching, and the cache is incrementally updated
whenever changes are made to the model.
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As an important language feature, the ASM ma-
chine defining the entire transformation, as well as indi-
vidual patterns, can be annotated with special informa-
tion on how they should be treated. For example, pat-
terns marked with @Random will select a match in a true
pseudo-random fashion when used in a choose rule, as
required by the AntWorld specification. Furthermore,
our solution relies on explicitly specifying the desired
pattern matching strategies (see Sec. 5.1.1), which is se-
lected by annotating the machine with @localsearch
or @incremental; the decision can be locally overridden
on a per-pattern basis with the same annotations.

How these two fundamentally different approaches
are implemented in the Viatra2 framework is briefly
introduced in Sec. 4.2 and Sec. 4.3, respectively. How-
ever there are cases where the use of neither the in-
cremental nor the local search based pattern matching
approach is significantly more efficient than the other.
We argue that many transformations could benefit even
more from combining these two approaches, by using
different pattern matcher engines for different graph
patterns. How the combination of these different pat-
tern matching strategies (referred to as hybrid pattern
matching) within a transformation is possible in Via-

tra2 is briefly introduced through the AntWorld case
study in Sec. 4.4.

4.2 Local Search based Pattern Matching in VIATRA2

The generation of search plans [23,24] is a frequently
used and efficient strategy to drive the execution of LS
pattern matching algorithms. Informally, a search plan
defines the order in which pattern nodes are bound to
objects of the instance model during pattern matching.
In addition to simply specifying the binding order of
pattern nodes, it often also includes an order of ele-
mentary operations that have to be executed to drive
pattern matching.

The LS graph pattern matcher of Viatra2 follows
the same approach. Without going into technical de-
tails, our approach consists of the following steps (see
in Fig. 5):

First, we separate compile time parts from run-time
parts, where each part consists of the following steps:

Compile time At compile time each step is calculated
once for each pattern description.

– First, for each pattern description a call tree is gen-
erated capturing how patterns call other patterns.
A call tree is a directed bipartite tree describing the
structural dependencies of a given pattern by encap-
sulating the alternative pattern bodies and pattern
invocations.

Fig. 5 The Overview of the VIATRA2 LS pattern matcher

– Then for each call tree a corresponding search graph
is generated. A search graph is a joint representation
of pattern graph elements and operation constraints
that drives the pattern matching process. In our in-
terpretation a search graph is a hypergraph [24] rep-
resenting a constraint net, where graph nodes re-
flect variables, and hyperedges express constraints
(predicates) between the variables. In order to yield
better search plans, the operation scope of the opti-
mizer module is increased by flattening the call tree
and by merging pattern bodies and pattern invoca-
tions into a common search graph. This allows the
use of our optimization techniques on a global scale
rather than on isolated pattern bodies.

Run time After initializing the data structures at com-
pile time, run time steps have to be calculated for each
separate pattern invocation.

– A search plan is generated from the search graph
based on the input parameter binding and the cost
of search operations to drive the pattern match-
ing process. A search plan is a totally ordered list
of search operations (one possible traversal of the
search graph), where search operations represent the
atomic units of pattern matching (a single step in
the matching process). It is either an extend op-
eration which extends the matching by a new ele-
ment (e.g match the target node along an edge), or
a check operation used for checking constraints be-
tween pattern elements (e.g., whether an edge runs
between two nodes).

– Finally, after executing the search plan matches rel-
evant to the input parameter binding are passed out.

As an illustration, Fig. 6(a) shows the search graph
built for the first pattern body of the anyNeighbor-
ButHome pattern depicted in Fig. 2. It is a very sim-
ple search graph containing only two nodes Field1
and Field2 connected by the P relation with the home
NAC invocation with Field2 as its input parameter.



8

(a) Search Graph

operation type

1: Field1 instance of Field check
2: source of P is Field1 extend
3: P instance of Path check
4: target of P is Field2 extend
5: Field2 instance of Field check
6: nac home invocation check

(b) Search Plan for bound Field2

Fig. 6 Search Graph and Plan for the first pattern body of the
anyNeighborButHome pattern

Fig. 6(b) shows a possible search plan generated from
the search graph with Field1 considered as an input
parameter. The search plan extends the already bound
Field1 to Field2 through the P relation and checks
that all newly matched element has their appropriate
type and finally invokes the home pattern as a NAC. A
more detailed description how the LS pattern matcher
of the Viatra2 framework works is given in [24].

Overall, the Viatra2 LS strategy can produce rea-
sonable performance with a relatively small memory
footprint, although adaptive graph pattern matching
using run-time model sensitive search optimization [25]
are not yet supported.

4.3 RETE-based incremental graph pattern matching
in VIATRA2

Incremental pattern matching [9] offers an entirely dif-
ferent execution model compared to local search-based
implementations. The match sets for all patterns in-
volved in the graph transformation are computed in
an initialization phase prior to execution (e.g. when
the model itself is loaded into memory), and as the
transformation progresses, this match set cache is in-
crementally updated as the model graph changes (up-
date phases). Thus, model search phases are reduced
to fast read-from-cache operations, in exchange for the
overhead imposed by cache update phases which oc-
cur synchronously with model manipulation operations.
Benchmarking [13] has shown that in certain scenarios,
this approach leads to several orders-of-magnitude in-
creases in speed.

The incremental graph pattern matcher of the Vi-

atra2 framework adapts [9] the RETE algorithm [26],
which is a well-known technique in the field of rule-
based systems.

RETE net for graph pattern matching. RETE-based
pattern matching relies on a network of nodes storing
partial matches of a graph pattern. A partial match
enumerates those tuples of model elements which sat-
isfy a subset of the constraints described by the graph

Fig. 7 Simple RETE matcher

pattern. In a relational database analogy, each node
stores a view. Matches of a pattern are readily avail-
able at any time, and they will be incrementally up-
dated whenever model changes occur.

Input nodes serve as the underlying knowledge base
representing a model. There is a separate input node for
each entity type (class), containing a view representing
all the instances that conform to the type. Similarly,
there is an input node for each relation type, containing
a view consisting of tuples with source and target in
addition to the identifier of the edge instance.

At each intermediate node, set operations (e.g. fil-
tering, projection, join, etc.) can be executed on the
match sets stored at input nodes to compute the match
set which is stored at the intermediate node. The match
set for the entire pattern can be retrieved from the fi-
nal production node. One kind of intermediate node is
the join node, which performs a natural join on its par-
ent nodes in terms of relational algebra; whereas an
anti-join node contains the set of tuples stored at the
primary input which do not match any tuple from the
secondary input (which corresponds to anti-joins in re-
lational databases).

As an illustration, Fig. 7 shows a RETE network
matcher built for the anyNeighborButHome (see Fig. 2)
pattern illustrating the use of anti-join nodes for NAC.
By anti-joining two input nodes (the top-most nodes on
Fig. 7), this sample RETE net enforces a relation type
constraint (path relation type connecting two fields,
see left input node) and the non-satisfiability of an en-
tity constraint (anthill type, see right input node). To
ensure that the directed path edges can be traversed
in both directions, two opposite directions of the path
edge are checked in two separate pattern bodies; the fi-
nal production node contains a union of the two cases.

Updates after model changes. Input nodes receive
notifications about each elementary model change (e.g.
when a new model element is created or deleted) and
release an update token on each of their outgoing edges.
Such an update token represents changes in the partial
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matches stored by the RETE node. Positive update to-
kens reflect newly added tuples, and negative updates
indicate tuples being removed from the set. Upon re-
ceiving an update token, a RETE node determines how
the set of stored tuples will change, and release update
tokens of its own to signal these changes to its child
nodes. This way, the effects of an update will propagate
through the network, eventually influencing the result
sets stored in production nodes.

The match set can be retrieved from the network
instantly without re-computation, which makes pattern
matching very efficient. As a trade-off, there is increased
memory consumption, and update operations become
more complex.

4.4 Hybrid pattern matching strategy

Recent benchmarks evaluations [13] and tool contests
[4] in the graph transformation community have shown
that INC can be order(s) of magnitude faster than LS
approaches for certain problem classes. There are also
other cases where the use of local search based pat-
tern matching approach is significantly more efficient on
memory consumption than any other. We believe that
many transformations could benefit even more from
combining these two approaches to use the most suiting
pattern matcher engine for each graph patterns.

In the Viatra2 framework, a transformation de-
signer can fine-tune the performance or memory con-
sumption of graph pattern matching by prefixing it
with @localsearch or @incremental annotations to
select the designated pattern matching strategy. This
way the interpreter automatically uses the defined pat-
tern matcher during the transformation execution. This
feature also holds for composite patterns which allows
the definition of different matching strategies for certain
parts of the pattern. This way the search plan generated
for these composite patterns are optimized to favor (al-
ready) incrementally matched patterns traversal in the
early steps of the matching process to bind elements for
the later LS matched part. The same algorithm as for
LS is used to generate these search plans. It differs only
in two parts: (i) the flattening process is not invoked on
the incrementally matched patterns and (ii) during ex-
ecution the incrementally matched pattern invocations
are transformed into one search operation that bound
its interface symbolic parameters from its cache. The
high-level workflow of this technique is illustrated in
Fig. 8.

To illustrate how hybrid pattern matching is per-
formed in Viatra2, Listing 6 shows the attracting-
OuterNeighbor pattern composed of the attracting-
Field and alongReturnPath patterns defined to be

Fig. 8 Selecting pattern matching strategies

matched by INC and LS, respectively. The pattern is
used to match any attracting (has pheromone) neigh-
boring field of Field1 that is leading to a food source
(away from the hill). The idea behind using hybrid ap-
proach in this case comes from following considerations:
(i) the alongReturnPath pattern matches to all neigh-
boring fields that consume a large amount of mem-
ory if incrementally cached, (ii) a pure LS approach
would have to go through all neighboring fields and
check if they hold pheromone leading to a relatively
low performance and (iii) as Field1 is normally an in-
put parameter of the attractingOuterNeighbor pat-
tern and Field2 is already incrementally cached the
alongReturnPath pattern needs only to check if there is
a returnPath edge between its input parameters. The
search plan generated for the attractingOuterNeigh-
bor with Field1 considered as an input parameter is
depicted in Fig. 9.

@localsearch // hybrid pattern matching
pattern attractingOuterNeighbor(Field1 , Field2 ) = {
find alongReturnPath(Field2 , Field1 ); // LS
find attractingField(Field2 ); // INC

}
@incremental
pattern attractingField(Field ) = {
field(Field );
field.hasPheromone(HF , Field , Pheromone );
pheromone(Pheromone );
check(toInteger(value(Pheromone )) > 9);

}
@localsearch
pattern alongReturnPath(OuterNeighbor ,InnerNeighbor )=
{
field(InnerNeighbor );
field(OuterNeighbor );
field.returnPath(RP , OuterNeighbor , InnerNeighbor );

}

Listing 6 Viatra2 source code for the attractingOuterNeighbor
composite pattern

Based on our previous experience [13,14], we iden-
tified the following factors to be important in general
for transformation designers to choose between LS and
INC strategies:
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operation type

1: Field1 instance of field check
2: attractingField invocation (incremental) extend
3: Field2 instance of field check
4: source of RP is Field2 extend
5: RP instance of returnPath check
6: target of RP is Field1 check

Fig. 9 Search Plan of the attractingOuterNeighbor pattern

Static attributes of graph patterns: One of the most im-
portant factor, in the sense of memory consumption,
is the number of graph patterns in a transformation
program. The cache size of a pattern increases overall
memory consumption when matched by INC strategy.
However, in practical applications, we experienced that
the number of matches gradually decrease as the pat-
tern to be matched becomes more and more complex
(having more and more elements). This contradicts the
intuition that larger patterns will have more matches
due to more combinatorial possibilities. Although this
combinatorial increase may hold for smaller patterns,
it is overwhelmed by the scarcity due to restrictiveness
of larger patterns in many practical scenarios. As a re-
sult, large patterns should be preferably matched by
INC and in case of large number of patterns smaller
ones should be by LS.

Control structure How patterns are used and invoked in
a transformation program has a huge impact on over-
all performance and can greatly influence the cost of
pattern matching. Usage frequency of patterns is rele-
vant, since the more often a pattern is used, the more
advantage INC has. Frequently used patterns can be
identified by static analysis of the transformation code,
e.g. by marking patterns that are used from within a
loop. Another significant factor can be parameter pass-
ing, i.e. to reuse the result of other rules or patterns
as an input. This technique increases efficiency in LS
as search operations are much more efficient if one or
more pattern variables are bound, i.e. their values are
known at time of the query. INC performance is not
affected.

Model-specific graph characteristics Ultimately the un-
derlying model determines all performance characteris-
tics. In order to indicate its effect on each pattern we
defined a simple scalar metric called node type com-
plexity. It is a rough upper bound on the number of po-
tential matches can be obtained as the product of the
cardinalities (number of model instances) of the types
of each node in the graph pattern. This estimate is,
of course, accurate as there are also edges in the pat-
tern to constrain the possible combinations of nodes.

However, high complexity may result in high memory
consumption for INC, and long search operations for
LS.

A more detailed investigation how relevant factors
influence pattern matcher selection is available in [1].
How we specified our hybrid implementation is dis-
cussed in Sec. 5.1.

In overall a well defined hybrid approach can usually
largely reduce memory consumption within reasonable
run-time performance degradation.

5 Benchmarking

In this section, we present our experiments to assess Vi-

atra2’s performance on the AntWorld case study. Our
main goal with benchmarking is two-fold: (i) to demon-
strate how the performance of Viatra2 evolved with
the incremental pattern matching approach (Sec. 4.3),
and (ii) to present some useful design-time optimiza-
tions and fine-tune options in Sec. 5.1 which can have
significant impact on performance.

5.1 Fine-tuning

Based on the involved segment of Viatra2 we cate-
gorized our optimizations into three categories: (i) pat-
tern matching strategy selection (see Sec. 5.1.1), (ii) ad-
vanced model management application(see Sec. 5.1.2)
and (iii) language specific consideration (see Sec. 5.1.3).

5.1.1 Pattern matching strategy

We designed our implementation to effectively support
a hybrid pattern matching approach (see Sec. 4.1) that
trades runtime performance for memory consumption
compared to the pure incremental solution. This hybrid
solution was based on the following considerations:

– Considerable memory can be saved by ensuring that
the map (fields and path relations) is not contained
in the RETE net, as these are the types with the
highest number of instances. Patterns concerning
these model features should be assigned to the local
search based matcher, to keep the RETE net small.
As these patterns happen to establish simple local
relationships of low complexity, they are efficiently
matched using the local search based engine.

– To achieve high performance through avoiding ex-
pensive repeated searching, the incremental pattern
matcher was selected to deal with the hasFood, lo-
cation, hasPheromone, boundary relations. This al-
lowed useful collections such as ants stumbling upon
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food, ants reaching the boundary, or pheromones
that are still strong enough to attract ants to be
incrementally maintained.

– Some patterns contain model features of both kinds.
On certain occasions, a subpattern was extracted
for the incremental pattern matcher, and the local
search based matcher utilized this cache in a true
hybrid fashion. See Lst. 6 as an example.

– The design of patterns and the metamodel had to
support efficient division of pattern matching tasks
between the two matching strategies. Fig. 1 shows
that the Viatra2 solution uses a relation type
boundary connecting the anthill to exactly those
fields that are on the boundary of the currently ex-
plored grid. This relation identifies boundary fields,
which is useful when determining whether the grid
needs to be expanded by another circle, and also
during said expansion. The motivation for introduc-
ing it into the solution was to enable these parts
of the transformation to be efficiently executed us-
ing the local search based pattern matcher, effec-
tively reducing the size of the incremental pattern
matcher, making the hybrid solution a viable com-
promise. It is important to point out that had we re-
lied entirely on the incremental pattern matcher, us-
ing these boundary relations would have become un-
necessary, as path relations would have been admis-
sible in the RETE net, and boundary fields would
have been efficiently expressible as a pattern with a
NAC (see Lst. 7).

@incremental
pattern boundary(Field ) = {
field(Field);
neg pattern nonBoundary(Field ) = {
field(Field);
field(OuterNeigbor );
field.returnPath(RP , OuterNeigbor , Field);

}
}

Listing 7 Identifying boundary fields without relying on an ex-
plicit marking

5.1.2 Model management issues

Viatra2 is an interpreted model transformation en-
gine, and has a generic reflective model representation.
Among many other features, model elements are al-
lowed to have multiple types at once, instantiation is
expressed as an explicit relationship between type and
instance model elements, and this type information can
be manipulated at runtime. In order to facilitate multi-
level metamodeling, every model element is allowed to
act as a type. Moreover, both relations and attributes
are first-class model elements that can be the sources

and targets of relations and have fully qualified names
in the hierarchical namespace scheme of Viatra2.

Although providing great flexibility, these features
of the model representation make model elements rela-
tively heavy-weight. Therefore this approach has a neg-
ative effect on performance, that should be taken into
consideration when designing the transformation. As a
simple example, model elements of special significance
(e.g. the anthill) can be looked up at the beginning of
the transformation, and later retreived from a cache
whenever needed. This avoids the cost associated with
accessing a specific model element identified by its fully
qualified name.

Moving an ant involves pointing its location rela-
tion to its new position. Instead of deleting and recreat-
ing location relations (which involves the deletion and
creation of instanceOf relationships and other admin-
istrative data, described in Sec. 2.4), we merely change
the target end of the relation. This simplification helps
to reduce the amount of model manipulation. When
growing the grid and expanding its boundary, boundary
relations are reused in a similar fashion.

As seen in Fig. 1, the type of ant (searcher / carrier)
is not represented by graph elements or attributes, but
by using two disjoint entity types. This choice was made
to reduce the number of model elements, as no further
attributes or connected model elements are required to
express the type of an ant, which is an entity with a
high number of instances. Changing ants from one type
to another is achieved by dynamic retyping (see Lst. 3).

5.1.3 Language-specific considerations

As described in Sec. 2.3, transformation semantics can
be specified using the well-known graph transforma-
tion formalism. Our solution takes a slightly different
approach: the precondition (LHS) patterns of the GT
rules are kept intact, but instead of specifying the action
declaratively by a RHS, model manipulation is given as
an imperative sequence, using the ASM language of Vi-

atra2. The foremost benefit of this choice is that the
transformation is able to take advantage of some more
advanced model manipulation operations, such as the
ones needed by the methods described in Sec. 5.1.2.
Additionally we expected that this imperative language
usage itself has a noticeable performance advantage, be-
cause the declarative GT rule specification may imply
some expensively checked type constraints that may be
unnecessary and can be omitted in an imperative rule
definition.
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5.2 Measurements

We conducted benchmark measurements on our test
system with a quad-core Intel Xeon CPU clocked at
2.00 GHz and 12 GBs of system memory. We used the
OpenJDK 64-bit Server VM (IcedTea6 1.3.1 build 12)
on Linux 2.6.18 with 10GBs of memory allocated to the
JVM.

5.2.1 Variants

We divided our experiments into two groups: the first
group was performed to demonstrate the difference be-
tween various pattern matching strategies (Sec. 5.1.1),
while the second was aimed at illustrating the effects of
fine tuning described in Sec. 5.1.2 and Sec. 5.1.3.

For the first group, we configured the transforma-
tion program (available in Appendix A) with annota-
tions to create the following run configurations:

1. the local search solution made exclusive use of the
traditional, local search-based pattern matcher im-
plementation described in Sec. 4.2.

2. in contrast, the incremental solution relied solely
on the RETE-based pattern matcher described in
Sec.4.3.

3. finally, we combined the pattern matching strategies
with techniques described in Sec. 4.4 and 5.1.1 to
create a hybrid solution.

For the second group, the following run configura-
tions were created:

1. in order to illustrate the attainable performance
gain by avoiding expensive model management
operations, we compared an unoptimized variant
(which did not make use of dynamic typing and re-
lation retargeting as described in Sec. 5.1.2) to the
optimized variant which incorporated both.

2. finally, we designed two variations to determine the
performance impact of a language-specific optimiza-
tion which involves using imperative model manip-
ulation rules instead of purely declarative graph
transformation rules (Sec. 5.1.3).

5.2.2 Telemetry

To obtain numeric results, we designed the simulation
transformation to generate XML output containing ex-
ecution time and memory usage telemetry data.1 Ev-
ery 25 rounds, telemetry data was written to an output

1 Execution time was measured by the
System.currentTimeMillis() Java call, while heap usage was
estimated by performing garbage collection calls (System.gc())
and recording the result of Runtime.totalMemory() -

Runtime.freeMemory().

Fig. 10 Execution Time per Iteration

buffer, which was flushed to a file after the transforma-
tion has terminated.

Overall, we executed five 500-round simulation runs
for each variant, with the exception of the local search
solution where only 150 rounds were executed (since
it is significantly slower than the other two variants).
Memory consumption measurements were performed in
separate execution runs to avoid a potential negative
performance impact.

5.3 Analysis of the results

Results were analyzed by transforming the XML output
to CSV spreadsheets which were processed in OpenOf-
fice.Org 3.0. We combined the results from each of the
five separate execution runs to create a data series con-
sisting of 100 records for INC and HYB (30 records for
LS).

5.3.1 Complexity class analysis

By looking at the data, we found that there is a very
high correlation (correlation coefficient R2 > 0.995)
between the time needed to execute a round and the
number of ants (Fig. 10). There is also a fairly high
correlation (R2 > 0.97) between the number of fields
in the grid and the measured memory consumption
(Fig. 14). The number of rounds, however, has a
significantly weaker correlation (R2 < 0.9 for some
solutions) with both the round time and the memory
footprint size. Thus, we generated charts which show
cumulative and per-round execution times against
the number of ants, and heap usage compared to the
number of fields.
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Fig. 11 Cumulative Execution Time

The cumulative execution time chart with linear
scales is shown in Fig. 11. While the local search vari-
ant exhibits a high-order polynomial increase as the ant
population is growing, both the pure incremental and
hybrid variants perform significantly better, following
a low-order polynomial characteristic.

In order to determine the polynomial order more
precisely, we conducted the following analysis. In the
followings, we follow the Landau notation [27] to de-
scribe asymptotical limiting behaviour of characteristic
functions.

First, we split cumulative execution time into the
cumulative time required to simulate the behaviour of
the ants, the cumulative time required to grow the
grid, and the cumulative time consumed by dropping
and evaporating pheromone traces. The dropping of
pheromone is included in the pheromone time, not in
the ant management time. Formally,

Time = TimeAnts + TimeArea + TimePheromones (1)

where the cumulative time spent on building the grid,
TimeArea, should be intuitively proportional to the grid
size with any efficient implementation:

TimeArea ∼ Area (2)

The lower bound of the time consumed by
pheromone management is approximated by the total
number of times pheromones were dropped. This is also
an upper bound of the total pheromone management
time with an appropriate constant coefficient, because
if pheromone is left on a new field, its evaporation will
have to be simulated once each round, and there will be
a constant number of rounds before it vanishes. Even
if pheromone is dropped on the same field multiple
times2, this evaporation cost will be sub-additive, as the

2 this phenomenon is actually very common, as several thou-
sand ants may retrieve food along the same path; our experiments

Fig. 12 New Ants Per Round

pheromone trace containing the combined amount will
still evaporate only once per round, and the exponential
decay lends it a sub-additive lifespan. Consequently,

TimePheromone ∈ Θ(PheromoneDroppings) (3)

In our experiments, we plotted the ant population
increase against the size of the population in Fig. 12.
The plot shows an approximately square root-type up-
per bound for the increase, in harmony with the follow-
ing theoretical considerations. In order to give birth to
the nth ant (excluding the initial 8), the colony needed
to gather n food units. As food is distributed propor-
tionally to the grid area, it follows that the discovered
area defines an upper bound to the number of ants:

Ants ∈ O(Area) (4)

The area is a quadratic function of the radius of the
map, therefore the nth food unit, giving birth to the
nth ant, needs to be delivered from a distance of at
least

√
n with some constant multiplier (let us neglect

the fact that the order of food units may actually vary).
Pheromones are dropped on each step, therefore the
spawning the nth ant involves at least

√
n pheromone

droppings; formally, this can be expressed as follows:

δPheromoneDroppings

δAnts
∈ Ω(Ants0.5) (5)

By integrating with respect to δAnts, we obtain the
following:

PheromoneDroppings ∈ Ω(Ants1.5) (6)

As previously established, the birth of the nth ant
requires retrieving food along a path having a length of
at least

√
n; since at most n ants are distributed along

this retrieval path, and each ant can make one step each
round, the birth rate per round can be approximated by

suggest that the number of individual fields with pheromone
traces tends to stay relatively low
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an upper bound of
√

n (Fig. 12). This observation can
be formalized as follows:

δAnts

δRounds
∈ O(Ants0.5) (7)

Thus, we are looking for the expression for the cu-
mulative time spent for ant management as the function
of the size of the ant population. Its rate of change is
expressed as follows:

δT imeAnts

δAnts
=

δRounds

δAnts
× δT imeAnts

δRounds
(8)

As moving each ant in a round takes a constant-
bounded time with an efficient implementation (and
potentially more with an inefficient implementation),

δT imeAnts

δRounds
∈ Ω(Ants) (9)

holds and by substituting Equation 7 into Equation 8,
we get Equation 10:

δT imeAnts

δAnts
∈ Ω(Ants−0.5 ×Ants) = Ω(Ants0.5) (10)

By integrating with respect to δAnts, we obtain
Equation 11:

TimeAnts ∈ Ω(Ants1.5) (11)

The area management component of the total time
can be approximated by combining Equation 2 and
Equation 4:

TimeArea ∈ Ω(Ants) (12)

The following lower-bound approximation holds for
the cumulative pheromone management time, as im-
plied by Equation 3 and Equation 6:

TimePheromone ∈ Ω(Ants1.5) (13)

Finally, from Equation 1, Equation 11, Equation 12
and Equation 13, we have an estimation of the time
complexity of AntWorld simulation with respect to the
number of ants:

Time ∈ Ω(Ants1.5 +Ants+Ants1.5) = Ω(Ants1.5)(14)

In reality, the ants do not follow an optimal strat-
egy for exhaustively retrieving all food available within
the discovered radius, but rather they are diverted by
pheromones towards the direction of previously found
food bundles, distorting the circularity of explored area,
and needlessly expanding the grid. Also, a number
of ant steps are wasted during the search for new
food sources. Consequently, the boundary expressed in
Equation 4 turns out to be weak; according to regres-
sion calculations performed on our measurements, the
number of ants seem to be proportional to the area to
the power of approximately 0.66. This also means that

Fig. 13 Cumulative Execution Time (double logarithmic scale)

Fig. 14 Memory Delta

ants have a smaller birthrate than allowed in Equa-
tion 7, and therefore Equation 10 will not give a close
approximation of the time spent on ant management.
Finally, as even Equation 12 gives a weak boundary,
the total time may have a complexity higher than
Ants1.5. Our experiments confirm this assumption: for
rounds 100-500, regression gave the approximation of
Time ∼ Ants1.68 with a correlation over 99% for our
solution (the first 100 rounds appeared more random
and less characteristic). Nevertheless, this is still a low-
order polynomial behaviour, see Fig. 11 for the results;
the complexity is visually confirmed by using logarith-
mic scales for both axes (Fig. 13).

5.3.2 Effects of optimizations

Hybrid pattern matching Fig. 14 shows memory con-
sumption data comparing pure incremental pattern
matching with our hybrid approach. In both cases, the
overall heap consumption of the Viatra2 engine grows
linearly with the number of grid fields, however, the gra-
dient for the hybrid run is lower (for a given number of
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Fig. 15 Cumulative Execution Time (double logarithmic scale)
and Model Management Optimizations

fields, the pure incremental variant consumes approx-
imately 1.5 times more memory than the hybrid vari-
ant). Since the execution time per iteration values are
also linear for the hybrid variant (Fig. 10), it can be
concluded that the hybrid pattern matching approach
performs in the same complexity class as the pure in-
cremental version. In other words, for a linear decrease
in memory consumption, a linear decrease in execution
speed can be expected (as supported by the constant
difference in the logarithmic plot in Fig. 13).

Model management-specific optimizations Fig. 15
shows the performance gain attained by avoiding
expensive model management operations. We com-
pared an unoptimized variant (which did not make
use of dynamic typing and relation retargeting as
described in Sec. 5.1.2) to the optimized variant
which incorporated both. As the plots follow the same
low-order polynomial characteristic, the difference is
only a constant multiplier, yielding a performance gain
of approximately 30%.

Language-specific optimizations The results for the fi-
nal trial, which was designed to determine the perfor-
mance impact of a language-specific optimization which
involves using imperative model manipulation rules in-
stead of purely declarative graph transformation rules
(Sec. 5.1.3), are shown in Fig. 16. Similarly to the other
case, we measured a constant-multiplier difference of
about the same magnitude (30%).

5.3.3 Optimization summary

The summary of the results obtained from various op-
timization strategies is shown in Table 1.

Fig. 16 Cumulative Execution Time (double logarithmic scale)
and Language-Specific Optimizations

Variant Iterations Model elements Total time [s]

INC 1200 ∼1.5M 4969
Hybrid 1400 ∼2.0M 11907

Table 2 Statistics for the maximum possible iteration count

To see how far Viatra2 can go with the most op-
timized implementation on our test hardware, we con-
ducted a final test run which ran until the 10GB JVM
heap space was exhausted. The results are shown in
Table 2.

5.4 Suggestions for improvement

5.4.1 Viatra2-related issues

During the analysis and profiling of our various imple-
mentations we have discovered that the performance
bottleneck in our system is mainly related to how
we manage our models. In almost all cases we have
observed that core model management functions (e.g.
deleteEntity, getAllElementsOfType, etc.) are con-
suming most of the time. Most of our optimization tech-
niques described in Sec. 5.1.2 and Sec. 5.1.3 are aiming
to decrease the use of (inefficient) model management
functions either (i) by reducing their usage frequency
through reducing model size, or (ii) by replacing them
with less intrusive manipulation operations. Based on
this consideration we believe that future optimization
work should focus on the following aspects:

– The core model management component should
be streamlined to support much faster operations
(at least queries) and a more compact represen-
tation. Faster query operations would also signifi-
cantly boost the speed of local search based pat-
tern matching. A straightforward approach is to use
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Optimization strategy Performance Memory footprint

LS High-order polynomial Constant
Switch to INC Polynomial order reduction Linear increase with model size
Switch to Hybrid Linear 50% loss 50% reduction
Dynamic typing, relation retargeting Linear 30% gain none
Imperative rules Linear 30% gain none

Table 1 Optimization strategies

the incremental pattern matching technology at the
core level for the administration of type-instance re-
lationships.

– The generation of model manipulation operations
from the RHS of a GT rule has significant im-
pact on overall performance. We plan to inves-
tigate ways that allow the interpreter to semi-
automatically map declarative RHS specifications
into model manipulation operations incorporating
the efficient techniques discussed in Sec. 5.1.2.

– Furthermore, type constraints associated with a
declaratively specified GT rule should be enforced
through static type analysis instead of costly rule
application-time checking.

5.4.2 Case study-related issues

By analyzing the data, we have observed several fac-
tors, which, in our opinion, may negatively impact the
usefulness of the AntWorld example as a basis of per-
formance comparison.

Non-determinism. A random generator is used at crit-
ical phases of the transformation, which makes it dif-
ficult to validate the implementation. Moreover, ran-
domness may severely impact the overall performance
since (i) it is a dominant factor in ant behaviour (de-
termines the length of food searching phases) and (ii)
by using a well-crafted fake randomizer, one may force
the ants not to find food, thus falsifying the results eas-
ily (a few number of ants in a large number of rounds
on a small field is a lot cheaper than many ants in a
small number of rounds on a large field). Also, the high
degree of impact by non-determinism necessitates the
recording of a large number of data which, in our case,
slowed down the measurement process considerably. Fi-
nally, non-determinism prevented the establishment of
sample test cases (pairs of inputs and outputs) which
would have been useful for solution authors to verify
the soundness of implementation and validate the cor-
rect interpretation of the specification.

Ambiguous specification. The placement of food is
under-specified, and may impact the overall perfor-
mance. According to the specification, a food bundle

should be created on every tenth field, but there is no
unambiguous definition of the order in which fields of a
new grid circle are created when the grid is expanded.
We believe that the intention of the benchmark authors
was to have the new nodes created in the natural circu-
lar order (either clockwise or anti-clockwise), and our
implementation conforms to this assumption, placing
food packets evenly along the circular paths. An alter-
nate interpretation of the specification would permit
the creation of new fields in an arbitrary order (which
is in harmony with conventional graph transformation
practice), which would possibly result in uneven dis-
tribution of food; finding areas with very dense food
would result in higher ant birth rates, while missing
these concentrated areas would constrain the growth of
the population. As Sec. 5.3 shows, the number of ants
has a principal effect on performance.

Comparison difficulties. There is no specified way of
obtaining measurement results (no guidelines as to mea-
surement metrics, output formats, etc.), which makes
it difficult to compare the performance of the various
tools (especially in light of our observations regarding
the correlation of execution time vs. number of rounds
and number of ants in Sec. 5.3).

In order to overcome these weaknesses we believe
that two simple modifications in the specification could
erase the random behaviour of the case study:

Random generator specification. What kind of random
generator is used has the largest impact on the overall
performance, thus a specific pseudo random generator
like the linear congruential or Lagged Fibonacci gen-
erator [28] would ease reproducibility of measurement
results, especially with a concrete definition how to use
the randomly received values for the selection of possi-
ble actions in all situations (e.g., ant movement).

Ant processing order. In order to obtain deterministi-
cally reproducible results, the order in which the ants
are processed during iterations has to be specified pre-
cisely. This feature could easily be added using a single
integer attribute for each ant representing its place in
the processing sequence. Combining these two modifi-
cations would grant deterministic ant behavior on the
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same map leading back to the question of food distri-
bution that only needs some extra clarifications –as al-
ready mentioned– to obtain a similar map for each run-
down.

Overall, based on our considerations about the ef-
fectiveness of the case study as a basis of evaluation,
we decided to avoid investigating any detailed tool-
to-tool comparison. For instance, in our benchmarking
paper [13], we have included some comparisons with
GrGEN.NET, but with previous acknowledgement of
the GrGEN.NET team to avoid misunderstandings and
false claims due to the facts that: (i) we are not experts
of the transformation language of other tools, thus it is
difficult to make judgements about non-Viatra2 code;
(ii) most transformation tools have radically different
technological approaches for model persistence, which
makes it difficult to do a ”fair” comparison (since, for
instance, ”compiled” transformation engines are typi-
cally directed towards different use cases than ”inter-
preted” tools).

6 Conclusion

In this paper, we focused on a detailed performance
evaluation of the Viatra2 model transformation en-
gine with the AntWorld case study. We found the
case study very useful to compare various incarnations
of Viatra2 to each other. In addition to highlight-
ing the high-level differences between the local search-
based and incremental pattern matcher implementa-
tions, we also demonstrated that their combination can
form an effective hybrid approach capable of exploit-
ing their advantages without sacrificing additional re-
sources. Additionally, the transformation proved to be
powerful enough to also demonstrate language-specific
and model management-related fine-tuning possibili-
ties.

However, it is important to mention that as our
LS engine does not yet support model sensitive search
plan optimization [25,29], the actual assessment of the
complexity class does not necessarily hold for other ad-
vanced LS-based approaches (like GrGEN.Net).

As a main direction for future work, we plan to in-
tegrate the AntWorld example as a basis of functional
and non-functional test case set into the standard Vi-

atra2 testing environment. Additionally, we intend to
investigate further optimization possibilities related to
multi-threaded pattern matching and parallel transfor-
mation execution. We also feel that a more in-depth
analysis of how model persistence and low-level queries
affect the performance of LS and INC pattern matchers
is also needed, to provide effective model management
queries supporting both current LS and INC and future

parallel pattern matching strategies. Finally, additional
assesment of different transformation scenarios is re-
quired to come up with efficient general transformation
design patterns.
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A Complete VTCL source of the Antworld case
study

The following source code listing corresponds to our hybrid so-
lution. The pure incremental or local search based solutions dif-
fer only in annotations, namely they only have a single pattern
matcher selecting annotation, situated at the machine declara-
tion.

We included it in the reviewers’ version of the paper for the
sake of completeness (and easy access), it will be relocated to the
Eclipse site of VIATRA2.

The ASM machine expects 3 input parameters: the number
of rounds to execute, a name identifying this experiment (will
be used in the output tab name), and whether to enable memory
usage measurement (0 for no, 1 for yes; the latter impacts runtime
performance heavily).

import ants.metamodel;

@incremental
machine antMachine_sleek_hybrid{

5

// cache
asmfunction model /0;
asmfunction antHill /0;

10 // statistics
asmfunction pheromones /0;
asmfunction foodCounter /0;
asmfunction foodTotal /0;
asmfunction circlesTotal /0;

15 asmfunction antsTotal /0;
asmfunction roundCounter /0;

// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
// GRID GROWING

20 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

// matches fields marked as boundary fields
pattern boundary(BoundaryField , BoundaryEdge , Hill )={
antHill(Hill);

25 field(BoundaryField );
antHill.boundary(BoundaryEdge , Hill , BoundaryField );

}

// true if a searcher ant has reached the boundary
30 pattern boundaryBreachedBySearcher () = {

field(Field );
searcherAnt.location(HasAnt , Ant , Field);

searcherAnt(Ant);
find boundary(Field , BoundaryEdge , Hill);

35 }
// wraps the returnPath relation type
@localsearch
pattern alongReturnPath(OuterNeighbor ,InnerNeighbor )=
{

40 field(InnerNeighbor );
field(OuterNeighbor );
field.returnPath(RP , OuterNeighbor , InnerNeighbor );

}
// wraps the circlePath relation type

45 @localsearch
pattern circled(Field1 , Field2 ) =
{
field(Field1 );
field(Field2 );

50 field.circlePath(CP , Field1 , Field2 );
}
// identifies the next boundary field in
// the boundary circle provided that it is still
//at the boundary ( has not been expanded )

55 @localsearch
pattern nextBoundaryField(BoundaryField ,
NextBoundaryField , NextBoundaryEdge ) = {
find circled(BoundaryField , NextBoundaryField );
find boundary(NextBoundaryField ,

60 NextBoundaryEdge , Hill);
}

// wraps the cornerField entity type
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@localsearch
pattern corner(CornerField ) = {

65 cornerField(CornerField );
}

// expands the grid at the given boundary field
// BoundaryField determines the number of new fields

70 // (3 for corners , 1 otherwise )
// the first of them is returned in Back ,
// the last one in front
rule expandBoundary(in BoundaryField , out Back ,

out Front , in OldBoundaryEdge , in Hill ) =
75 let BRP = undef , Model = model () in seq {

new(field(Back) in Model );
new(field.returnPath(BRP , Back , BoundaryField ));
setTo(OldBoundaryEdge , Back);
call newField(Back);

80 if (find corner(BoundaryField ))
let BE1=undef , BE2=undef , CRP=undef , FRP=undef ,
CP1=undef , CP2=undef , ExpandedCorner = undef in
seq {
new(cornerField(ExpandedCorner ) in Model);

85 new ( antHill.boundary(BE1 ,Hill , ExpandedCorner ));
new(field.returnPath(CRP , ExpandedCorner ,

BoundaryField ));
new(field.circlePath(CP1 ,Back , ExpandedCorner ));
call newField(ExpandedCorner );

90

new(field(Front ) in Model);
new(antHill.boundary(BE2 , Hill , Front ));
new(field.returnPath(FRP , Front , BoundaryField ));
new(field.circlePath(CP2 , ExpandedCorner ,Front ));

95 call newField(Front );
}

else update Front = Back;
}

// creates food on every tenth field
100 rule newField(in Field ) = seq {

if ( foodCounter () < 9)
update foodCounter () = foodCounter () + 1;

else let Food = undef , HF=undef in seq {
update foodCounter () = 0;

105 update foodTotal () = foodTotal () + 1;
new (food(Food) in Field );
new (field.hasFood(HF , Field , Food ));
setValue(Food , 100);

}
110 }

// expands the grid with a new circle
rule growGrid () = let Hill=antHill (), CP=undef ,
FirstExpanded = undef , PreviousExpanded = undef ,

115 PreviousBoundaryField = undef in
choose FirstBoundaryField , FirstBoundaryEdge with
find boundary(FirstBoundaryField ,

FirstBoundaryEdge , Hill) do
seq {

120 update PreviousBoundaryField = FirstBoundaryField;
call expandBoundary(FirstBoundaryField ,

FirstExpanded , PreviousExpanded ,
FirstBoundaryEdge , Hill);

iterate choose NextBoundaryField , NextBoundaryEdge
125 with find nextBoundaryField(PreviousBoundaryField

, NextBoundaryField , NextBoundaryEdge ) do
let BackExpanded = undef ,

FrontExpanded = undef in seq {
update PreviousBoundaryField

130 = NextBoundaryField;
call expandBoundary(NextBoundaryField ,

BackExpanded ,FrontExpanded ,
NextBoundaryEdge , Hill);

new(field.circlePath(CP,
135 PreviousExpanded , BackExpanded ));

update PreviousExpanded = FrontExpanded;
}

new(field.circlePath(CP,
PreviousExpanded , FirstExpanded ));

140 update circlesTotal () = circlesTotal () + 1;
}

// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
// ANT ACTIONS

145 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

// wraps the carrierAnt entity type
pattern carrier(Ant ) = {
carrierAnt(Ant);

150 }
// wraps the searcherAnt entity type
pattern searcher(Ant ) = {
searcherAnt(Ant);

}
155 // wraps the searcherAnt .location relation type

pattern hasSearcherAnt(LocationEdge , Field , Ant ) = {
searcherAnt(Ant);
searcherAnt.location(LocationEdge , Ant , Field);
field(Field );

160 }
// wraps the carrierAnt .location relation type
pattern hasCarrierAnt(LocationEdge , Field , Ant ) = {
carrierAnt(Ant);
carrierAnt.location(LocationEdge , Ant , Field);

165 field(Field );
}
// wraps the hasFood relation type
pattern foodAvailable(Field , Food ) = {
field(Field );

170 field.hasFood(HF , Field , Food);
food(Food);

}

// identifies a searcher ant that stands on food
175 pattern canGrab(Ant , LocationEdge , Food , Field ) = {

find hasSearcherAnt(LocationEdge , Field , Ant);
find foodAvailable(Field , Food);

}

180 // takes the unit of food and
// transforms the ant into a carrierAnt
rule grab(in Ant , in LocationEdge , in Food ) =
let Rest = toInteger(value(Food )) -1 in seq{
if (Rest > 0) setValue(Food , Rest);

185 else delete(Food);
delete(instanceOf(Ant ,ants.metamodel.searcherAnt ));
delete(instanceOf(LocationEdge ,

ants.metamodel.searcherAnt.location ));
new(instanceOf(Ant ,ants.metamodel.carrierAnt ));

190 new(instanceOf(LocationEdge ,
ants.metamodel.carrierAnt.location ));

}
// deposits the food at the anthill
// and resumes the searching

195 rule deposit(in Hill ,
inout Ant , in LocationEdge ) = seq{

setValue(Hill , toString ( toInteger(value(Hill ))+1));
delete(instanceOf(Ant ,ants.metamodel.carrierAnt ));
delete(instanceOf(LocationEdge ,

200 ants.metamodel.carrierAnt.location ));
new(instanceOf(Ant ,ants.metamodel.searcherAnt ));
new(instanceOf(LocationEdge ,

ants.metamodel.searcherAnt.location ));
}

205 // moves an ant by retargeting its location relation
rule moveAnt(in OldLocation , in NewField ) =
setTo(OldLocation , NewField );

// wraps the hasPheromone relation type
210 pattern hasPheromone(Field , Pheromone ) = {

field(Field );
field.hasPheromone(HF , Field , Pheromone );
pheromone(Pheromone );

}
215 // leaves a pheromone trace at the field

rule leavePheromone(in Field ) =
try choose Pheromone with
find hasPheromone(Field , Pheromone ) do
setValue(Pheromone ,

220 1024 + toInteger(value(Pheromone )));
else let Pheromone = undef , HF = undef in seq {
new ( pheromone(Pheromone ) in Field);
new (field.hasPheromone(HF , Field , Pheromone ));
setValue (Pheromone , 1024);

225 update pheromones () = pheromones ()+1;
}
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// identifies fields with an attracting
// amount of pheromones

230 pattern attractingField(Field ) = {
find hasPheromone(Field , Pheromone );
check(toInteger(value(Pheromone )) > 9);

}

235 // a field away from the hill that attracts
// with pheromones , randomly selected if there
// are multiple ( from a corner)
@Random
@localsearch

240 pattern attractingOuterNeighbor(Field1 , Field2 ) = {
find alongReturnPath(Field2 , Field1 );
find attractingField(Field2 ); // true hybrid!

}

245 // wraps the antHill entity type
pattern home(Field ) = {
antHill(Field);

}

250 // a random neighboring field except the anthill
// traverses path relations in both directions
@Random
@localsearch
pattern anyNeighborButHome(Field1 , Field2 ) = {

255 field(Field1 );
field(Field2 );
field.path(P, Field1 , Field2 );
neg find home(Field2 ); // true hybrid!

} or {
260 field(Field1 );

field(Field2 );
field.path(P, Field2 , Field1 ); // reverse direction
neg find home(Field2 ); // true hybrid!

}
265

// performs a food searching step
// moves towards attracting pheromone , if any
// moves to random neigbor field otherwise
rule search(in Ant ) =

270 choose Field1 , HA1 with
find hasSearcherAnt(HA1 , Field1 , Ant) do
try choose /* random */ Field2 with
find attractingOuterNeighbor(Field1 , Field2 ) do
call moveAnt(HA1 , Field2 );

275 else choose /* random */ Field2 with
find anyNeighborButHome(Field1 , Field2 ) do
call moveAnt(HA1 , Field2 );

// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
280 // WORLD MANAGEMENT

// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

// wraps the pheromone entity type
pattern pheromone(P) = {

285 pheromone(P);
}
// evaporates 5% of the pheromone patch
// deletes the patch if it becomes empty
rule evaporate(in Pheromone ) =

290 let Rest = (19* toInteger(value(Pheromone )))/20 in
if (Rest > 0) setValue(Pheromone , Rest ); else seq {
delete(Pheromone );
update pheromones () = pheromones () - 1;

}
295

// consumes a deposited food item to create a new ant
rule consume(in Hill ) =
let Ant = undef , HA = undef in seq{
setValue(Hill ,toString(toInteger(value(Hill )) -1));

300 new(searcherAnt(Ant) in Hill);
new(searcherAnt.location(HA , Ant , Hill ));
update antsTotal () = antsTotal () + 1;
}

305 // >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
// MAIN
// >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

// executes a round
310 rule doRound () = let Hill = antHill () in seq {

// Ant actions
iterate choose Ant , LocationEdge , Food , Field with

find canGrab(Ant , LocationEdge , Food , Field) do
call grab(Ant ,LocationEdge ,Food ); // grab food

315 forall Ant , LocationEdge with // desposit on the Hill
find hasCarrierAnt(LocationEdge , Hill , Ant) do
call deposit(Hill ,Ant ,LocationEdge );

forall Ant , FromField , HA1 with // return
find hasCarrierAnt(HA1 , FromField , Ant) do // return

320 choose NewField with
find alongReturnPath(FromField , NewField ) do seq {
call moveAnt(HA1 , NewField );
call leavePheromone(FromField );

}
325 forall Ant with find searcher(Ant)

do call search(Ant); // both kinds of search
// only searchers can breach the boundary!

// World management
330 forall Pheromone with find pheromone(Pheromone)

do call evaporate(Pheromone );
iterate // create new ants
if(toInteger(value(Hill )) > 0) call consume(Hill);
else fail; // until all deposited food is consumed

335 if (find boundaryBreachedBySearcher ())
call growGrid (); // grow the game map

}

// what its name says
340 rule printStatistics(in Buf , in MemTelemetry ,

in RoundCounter , in Rounds , in BlockSize ,
in AntAccumulator , in StartTime ,
inout LastTime ) = let CurrentTime = systime () in seq
{

345 println(Buf ,"\t<round -block finished =\""
+ RoundCounter + "\" goal =\"" + Rounds
+ "\" block -size =\"" + BlockSize + "\">");

println(Buf , "\t\t<elapsed -time >");
println(Buf , "\t\t\t<per -block > "

350 + ( CurrentTime -LastTime ) + " </per -block >");
println(Buf , "\t\t\t<per -round > "
+ ( CurrentTime -LastTime )/ BlockSize
+ " </per -round >");

println(Buf , "\t\t\t<per -round -per -1000 ants > "
355 + 1000*( CurrentTime -LastTime ) / AntAccumulator

+ " </per -round -per -1000 ants >");
println(Buf , "\t\t\t<total > "
+ ( CurrentTime -StartTime ) + " </total >");

println(Buf , "\t\t</elapsed -time >");
360 println(Buf , "\t\t<circles > "

+ circlesTotal () + " </circles >");
println(Buf , "\t\t<grid -fields > "
+ circlesTotal () * circlesTotal () * 4
+ " </grid -fields ><!-- excluding the anthill -->");

365 println(Buf , "\t\t<food -bundles -created > "
+ foodTotal () + " </food -bundles -created >");

println(Buf , "\t\t<pheromone -traces > "
+ pheromones () + " </pheromone -traces >");

println(Buf , "\t\t<ants > "
370 + antsTotal () + " </ants >");

if ( MemTelemetry == 1) println(Buf , "\t\t<memory > "
+ measureMemoryFootprint (6) + " </memory >");

else println(Buf , "\t\t<memory > NA </memory >");
println(Buf , "\t</round -block >");

375 update LastTime = CurrentTime;
}

// entry point
rule main(in Rounds , in Variant , in MemTelemetry ) =

380 let StartTime = systime (), BlockSize = 25,
Buf = getBuffer("core ://"+Variant)

in seq {
// initialize asmfunctions
update model () = ref("ants.model");

385 update antHill () = ref("ants.model.hill");

update foodCounter () =
toInteger(value(

ref("ants.statistics.foodCounter")));
390 update foodTotal () =
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toInteger(value(
ref("ants.statistics.foodTotal")));

update circlesTotal () =
toInteger(value(

395 ref("ants.statistics.circlesTotal")));
update antsTotal () =
toInteger(value(

ref("ants.statistics.antsTotal")));
update pheromones () =

400 toInteger(value(
ref("ants.statistics.pheromones")));

update roundCounter () =
toInteger(value(

ref("ants.statistics.roundCounter")));
405

println(Buf , "<anthill -simulation rounds =\""
+ Rounds + "\" up -to=\""
+ ( Rounds + roundCounter ()) + "\">");

410

// execute rounds and print satistics after
// blocks of 25
let BlockCounter = 0 , AntAccumulator = 0,
RoundMax = Rounds + roundCounter (),

415 LastTime=StartTime in
iterate seq {
if ( roundCounter () >= RoundMax ) fail;
update roundCounter () = roundCounter () + 1;

420 call doRound (); // one round execution

update BlockCounter = BlockCounter + 1;
update AntAccumulator = AntAccumulator+antsTotal ();
if ( BlockCounter >= BlockSize ) seq {

425 call printStatistics(Buf , MemTelemetry ,
roundCounter (), RoundMax , BlockSize ,
AntAccumulator , StartTime , LastTime );

update BlockCounter = 0;
update AntAccumulator = 0;

430 }
}

// conclude output
println(Buf , "\t<final -statistics >");

435 println(Buf , "\t\t<total -elapsed -time > "
+ ( systime()-StartTime)
+ " </total -elapsed -time >");

println(Buf , "\t\t<circles > "
+ circlesTotal () + " </circles >");

440 println(Buf , "\t\t<grid -fields > "
+ circlesTotal () * circlesTotal () * 4
+ " </grid -fields ><!-- excluding the anthill -->");

println(Buf , "\t\t<food -bundles -created > "
+ foodTotal () + " </food -bundles -created >");

445 println(Buf , "\t\t<pheromone -traces > "
+ pheromones () + " </pheromone -traces >");

println(Buf , "\t\t<ants > "
+ antsTotal () + " </ants >");

println(Buf , "\t</final -statistics >");
450 println(Buf , "</anthill -simulation >");

// save statistics to the model space
setValue(ref("ants.statistics.foodCounter"),

foodCounter ());
455 setValue(ref("ants.statistics.foodTotal"),

foodTotal ());
setValue(ref("ants.statistics.circlesTotal"),

circlesTotal ());
setValue(ref("ants.statistics.antsTotal"),

460 antsTotal ());
setValue(ref("ants.statistics.pheromones"),

pheromones ());
setValue(ref("ants.statistics.roundCounter"),

roundCounter ());
465 }

}

Listing 8 Complete source code of the Viatra2 solution


