
Scalable Graph�ery Evaluation and Benchmarking with
Realistic Models
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ABSTRACT
Model queries are widely used in model-driven engineering

toolchains: models are checked for errors with validation queries,

model simulations and transformations require complex pa�ern

matching, while injective mappings for views are de�ned with

model queries. E�cient and scalable evaluation of complex queries

on large models is a challenging task. To achieve scalable graph

query evaluation, I identi�ed key challenges such as the lack of

credible benchmarks and di�culties of obtaining real models for

performance testing. To address these challenges, my contribu-

tions target (1) distributed incremental graph queries, (2) a cross-

technology benchmark for model validation, (3) characterization of

realistic models, and (4) realistic models generation.

ACM Reference format:
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1 PROBLEM AND MOTIVATION
Model-Driven Engineering (MDE) is a development methodology

used in many application domains such as critical applications (au-

tomotive, avionics and railway systems [11, 25, 49]). To increase

the e�ciency of development, MDE facilitates the use of models in

various modelling languages targeting di�erent levels of abstrac-

tion. Models can be used not only for presenting the structure and

behaviour of the system, but also for synthesizing various design ar-

tifacts (such as source code, con�guration �les, documentation). To

catch design �aws early, model validation techniques check the well-
formedness of models. Design rules and well-formedness constraints
are o�en captured in the form of graph pa�erns [6] to highlight

invalid model elements to systems engineers. MDE tools check

these pa�erns by evaluating graph queries.1

1
In this paper, I use the term graph as a synonym for instance model.
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1.1 Scalable Graph�eries
As models are rapidly increasing in size and complexity, e�cient

execution of model validation operations is challenging for the

currently available toolchains, like ARTOP [1], Capella [31] or

Papyrus [16].

�e last decade brought considerable improvements in dis-

tributed storage and query technologies, known as NoSQL systems.

�ese systems provide quick evaluation of simple retrieval oper-

ations and they are able to answer complex queries in a scalable

manner, albeit not instantly. Providing quick response times for

evaluating such queries over large and evolving data sets is still a

challenging task.

Graph queries capturing validation constraints are o�en complex,

including many join, antijoin and �ltering operations. However,

most query technologies cannot e�ciently evaluate such operations

for models with 10 million model elements [42], while models of

critical systems, so�ware and geospatial models are o�en 1–2 orders

of magnitude larger [36]. A possible solution for scalable graph

queries is to use distributed query processing techniques [13, 50].

�is brings us to the �rst research question I investigated.

RQ 1. How to incrementally evaluate graph queries over a
distributed platform?

1.2 Benchmarking
To assess the performance of a graph query engine, a benchmark

framework is of high importance. According to the Benchmark
Handbook [17], a useful benchmark is (1) relevant, (2) portable,

(3) scalable, and (4) simple. To ensure relevance, the benchmark

must use a representative workload and data sets similar to realis-

tic ones. Providing relevant results, while also guaranteeing the

other properties (portability, scalability and simplicity) is a major

challenge.

For real-world industrial systems, both metamodels and instance

models are protected by intellectual property rights (IPR). For ex-

ample, AUTOSAR [11] is not an open standard, but only available

to members of the consortium, therefore it is not suitable for an

open performance benchmark. Similarly, engineering models in the

avionics and railway domains are also not available to the public.

�ese challenges con�rm the need for a benchmark framework,

which provides a real-world-like workload scenario and evaluates

realistic queries on realistic models. �erefore, the second research

question is the following.

RQ 2. How to assess query technologies for a continuous model
validation scenario?
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1.3 Characterization of Realistic Models
While existing generators may produce large models in increasing

sizes, these models are usually simple and synthetic, which hinders

their credibility for industrial and research benchmarking purposes.

Up to my best knowledge, there are no existing techniques to char-

acterize models used in MDE practice. To develop such a technique,

�rst I had to address questions about model metrics, such as:

• Which metrics can be used for characterizing models?

• Is is possible to distinguish models of di�erent domains,

purely based on their metrics?

To answer these questions, I conducted a literature review in

other disciplines, e.g. network theory and social network analy-

sis. �e high-level goal of the research is to answer the following

question.

RQ 3. What makes a model realistic?

1.4 Generating Realistic Models
Custom generators of graph-based models are used in MDE for

many purposes such as functional testing and performance bench-

marking of modeling environments to ensure the correctness and

scalability of tools. However, none is capable of generating realistic

models scalable in size:

• Logic-based synthesis (like Alloy [21]) generate well-

formed models but lack scalability.

• Rule-based approaches [42] are capable of generating large

models by using transformation rules or random mutations

to add new elements. However, they provide no guarantees

that the resulting model is realistic. Some approaches do

not even guarantee well-formedness, which is a prerequi-

site for realistic models.

It is an open research question if it is possible to ensure these

properties.

RQ 4. How to generate scalable and realistic models?

2 PRELIMINARIES
�is section introduces an example used throughout the paper and

presents the concept of incremental queries.

2.1 Running Example: Railway Network
As a running example, I use a small railway network, de�ned on

the metamodel of the Train Benchmark [42], a model validation

benchmark (the benchmark and my related contributions are dis-

cussed in Section 4.2).
2

Figure 1 shows a schematic representation

of the network, with routes (1–3), switches and segments. As the

�rst switch is set to a straight position and the second switch is set

to a diverging position, a train passing through this track would

follow route #3, hence that route active.
Modeling tools o�en represent their models as graphs. Figure 2

shows the example network as a labelled, a�ributed graph, along

with the metamodel of the graph. Routes follow a set of switch

2
To guarantee that the example is concise and easy to understand, the example only

uses a fraction of the Train Benchmark metamodel. �e benchmark uses models that

are signi�cantly more complex: they contain more metamodel elements (types) and

consist of more elements (objects).

2
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Figure 1: Railway example model. �e positions of the
switches designate route #3 as active.

Figure 2: Representing the railway example of Figure 1 as a
graph. �e top le� corner shows themetamodel is in the, the
top right corner presents the graph pattern for �nding the
active routes. �e instance model is shown in the bottom.

positions that contain the prescribed position (straight or diverging)

of the switch. �e railway track consists of switches and segments.

�e active route can be determined by evaluating a graph query
(by graph pa�ern matching). A route is active if all its switches are

in the position prescribed by the switch positions of the route. In

other words, a route is active if none of its switches are set to a

di�erent position as the prescribed position. �is pa�ern is shown

in the upper right corner of Figure 2. In the example, the graph

query selects route #3 as the active one, as both its switch positions

(6 and 8) are satis�ed by the corresponding switches (10 and 13).

2.2 Incremental�ery Evaluation
In many use cases, queries are continuously evaluated, while

changes a�ect only a restricted part of data. �e queries and trans-

formations for simulation and well-formedness validation in MDE

are typical examples of such a workload. �e goal of incremental
query evaluation is to speed up such queries, utilizing the (partial)

results obtained during the previous executions of the query to

compute the latest set of changes. For example, if the current po-
sition of the second switch in Figure 1 changes from diverging to

straight, the change only a�ects a small part of the graph (node 13

in Figure 2). �is allows an incremental query engine to quickly

reevaluate the query: in this case, the active route is changed from

#3 to #2.
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Incremental query evaluation algorithms use additional data

structures for caching interim results, hence they consume more

memory than search-based, non-incremental algorithms. In other

words, they trade memory consumption for execution speed. While

incremental query engines provide quick response times for various

use cases [6, 42], their excessive memory consumption limits their

scalability.

3 RELATEDWORK
To appropriately address all the research questions in the context of

MDE, a wide range of multidisciplinary topics needs to be covered.

Distributed incremental graph queries. �e Rete algorithm was

originally created by Charles Forgy for rule-based expert sys-

tems [15]. Bunke et al. [10] were the �rst to propose the Rete

algorithm in the context of graph transformations. Bergmann et al.

adapted the algorithm for the Eclipse Modeling Framework in the

EMF-Inc�ery project [6], now part of the Viatra project [46].

�ery languages and execution engines have been developed

to support incremental graph queries on a single-machine envi-

ronment. Drools [22] is an incremental business rule engine for

Java-based systems. INSTANS [33] provides incremental queries

over RDF [48].

Cross-technology benchmark for continuous validation. Numerous

benchmarks have been proposed to compare the performance of

query and transformation engines, but no openly available cross-

technology benchmarks exist for continuous model validation.

�e �rst transformation benchmark was proposed in [47], which

gave an overview of typical application scenarios of graph trans-

formations together with their characteristic features. Many trans-

formation challenges have been proposed as cases for graph and

model transformation contests. However, only [18, 51] focus on

query performance, while others measure the usability of tools,

the conciseness/readability of query languages and test various

advanced features, including re�ection, traceability, etc.

�ere are numerous benchmarks from the area of semantic

databases. SP2Bench [37] features a synthetic DBLP-like dataset,

the Berlin SPARQL Benchmark (BSBM) [7] simulates an e-commerce

application, while the DBpedia SPARQL benchmark [29] features

a real data set with queries based on real-world user queries. �e

Linked Data Benchmark Council (LDBC) recently developed the

Social Network Benchmark [14], a cross-technology benchmark,

which provides an interactive workload and focuses on naviga-

tional pa�ern matching (i.e. traversal operations). While some of

these benchmarks feature update operations and hence measure

incremental query performance, they provide workloads that sig-

ni�cantly di�er from MDE use cases.

Characterization of realistic models. Revealing essential struc-

tural similarities and di�erentiations among networks from dif-

ferent �elds is a fundamental objective in network theory with a

wide range of applications. �e authors of [12] list 22 areas using

network theory, including social network analysis, transportation,

biomolecular networks and chemistry. Network theory is also

studied in physics, e.g. in the context of statistical mechanics [3].

However, most of these applications use untyped (one-dimensional)

networks. So far, existing multidimensional studies only focused on

models of a single application domain, such as neighbourhood and

centrality analysis of a social network [8], relevance and correlation

analysis of di�erent dimensions in Flickr [23], community detection

in the network of YouTube [44]. Multidimensional metrics are also

de�ned in [5] where the authors study the expressiveness of their

metrics on real-life networks.

Metrics are also used for understanding the main characteristics

of domain-speci�c metamodels, for studying model transforma-

tions with respect to the corresponding metamodels, and search

correlations between them via analytical measures [34].

Realistic model generation. �e SP2Bench [37] benchmark uses a

generator based on the statistics of the DBLP library. �e authors

of [30] use Boltzmann samplers to ensure e�cient generation of uni-

form models. OMOGEN [9] is a tool for automatically generating

models for testing model transformations. �e tool combines a set

of model fragments to build larger instances. gMark [4] is a domain-

independent framework for synthesizing large graphs, allowing

the user to specify parameters for the graphs to be generated.

4 APPROACH AND CONTRIBUTIONS
�is section presents my approach along with achieved and pro-

posed contributions.

4.1 Distributed incremental graph queries
To achieve scalable incremental query evaluation, I adapted the

Rete algorithm for distributed systems. I demonstrate the Rete algo-

rithm works on the ActiveRoute query (Figure 2). As described in

Section 2.1, the query collects Routes, where all Switches along the

route are in the position prescribed by the corresponding Switch-

Position. In other words, without using the universal quanti�er

(∀), it searches for routes that do not have a SwitchPosition which

prescribes a position di�erent from the current position of its target

Switch [32].

Join

〈swP, sw, p〉

Route.

follows

〈r, swP〉

Switch.

currentPosition

〈sw, cP〉

SwitchPosition.
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r
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Notifications

Model access adapter
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Figure 3: Rete network for the ActiveRoute pattern.

Figure 3 shows a distributed Rete network implementing this

relational algebra expression. �e network is allocated to two

machines, Server 1 and Server 2. �is allows the query engine to

scale for larger graphs, for which the Rete network would not �t in
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the memory of a single workstation. However, this approach still

has a bo�leneck limiting scalability: if a Rete node cannot �t to the

memory of a single workstation, it will run out of memory. Using

these techniques and algorithms, I made following contributions.

Combine distributed actor model with Rete-based query evalua-
tion network. I designed a distributed architecture and prototyped

Inc�ery-D, a Rete-based query engine using actors for distributed

scalability. I presented a detailed performance evaluation in the

context of incremental well-formedness validation. �e results

showed nearly instantaneous complex query reevaluation beyond

50M+ model elements [39]. To further extend the scalability of the

system, I proposed sharding individual Rete nodes in [26].

Distributed termination protocol for asynchronous Rete. As Rete

is an asynchronous algorithm, determining if the network is in a

consistent state w.r.t. the latest change set requires a distributed

termination protocol. �e protocol was presented in [39] and [26].

Experimental evaluation over distributed NoSQL databases. �e

proposed architecture and algorithms are representation-agnostic.
�ey have been integrated with graph databases, such as Neo4j [19]

and 4store, a semantic database [39].

Evaluation of Rete network optimization and allocation strategies.
Allocating the Rete nodes in the cloud is a complex optimization

problem, where the goal is to minimize the cost of communication

between the nodes. I presented a solver-based approach for allocat-

ing Rete nodes in [27]. I also proposed optimization techniques used

in relational query optimization for enhancing the performance of

graph queries [43].

Uniqueness. Up to my best knowledge, existing technologies are

either distributed [24, 38] or incremental [46], but there is no system

that provides scalable, distributed incremental graph queries.

4.2 Cross-technology benchmark for
continuous validation

In Section 2.1, I used a running example from the Train Benchmark

framework. �e Train Benchmark is an incremental model vali-

dation benchmark, continuously developed by the Fault-Tolerant

Systems Research Group since 2010. I have signi�cantly extended

the Train Benchmark, both conceptually and implementation-wise.

�e Train Benchmark is a macro benchmark that aims to measure

the performance of continuous model validation with graph-based

models and constraints captured as queries. �e benchmark is cross-
technology, i.e. it is implemented on a range technologies, including

Eclipse-based model-driven engineering toolchains (EMF), graph

databases [35], relational databases (SQL) and semantic technolo-

gies (RDF [48]). �e framework is extensible which allows users of

the benchmark to incorporate new technologies.

Earlier versions of the benchmark have been continuously used

for performance measurements since 2012 [39, 45]. �e benchmark

is also part of the benchmark suite used by the MONDO EU FP7 [28]

project and was selected as a case for the 2015 Transformation Tool

Contest [40] as well. �e benchmark framework is available as an

open-source project.
3

3
h�ps://github.com/FTSRG/trainbenchmark

Scalable technology-agnostic model generator. While the original

benchmark framework included a model generator, its scalability

was limited. I redesigned the model generator focusing on two

aspects: (1) ensuring scalability for large models, and (2) allowing

the framework users to easily adapt new representations.

Propose novel query and transformation mixes for benchmark.
�e workload pro�le of the benchmark simulates real-world model
validation scenarios of users loading, validating and transforming

their models. �e transformations capture user edits and quick-

�x like automated refactoring operations. Some queries in the

benchmark are structurally similar to AUTOSAR [11] validation

queries (presented in [6]), while other aim to test various features

of graph query engines (such as e�cient �ltering and evaluation of

negative conditions).

Automated visualization and reporting. �e framework features

end-to-end automation [20] to (1) set up con�gurations of bench-

mark runs, (2) generate large model instances (3) execute bench-

mark measurements, (4) synthesize diagrams for measurements.

Cross-technology evaluation of incremental query execution time
and memory consumption. �is cross-technology benchmark can be

adapted to di�erent model representation formats and query tech-

nologies. �is is demonstrated by 12+ reference implementations

over four di�erent technological spaces (EMF, graph databases, RDF

and SQL) presented in [42].

Uniqueness. Compared to other benchmarks, the Train Bench-

mark has the following set of distinguishing features:

• �e workload pro�le follows a real-world model validation

scenario by updating the model with changes introduces

by simulated user edits or transformations.

• �e benchmark measures the performance of both initial

validation and incremental revalidation.

• �is benchmark was designed with cross-technology adap-

tations in mind. It can be implemented with di�erent model

representation formats and query technologies.

4.3 Characterization of realistic models
In [41], I presented multidisciplinary graph metrics and evaluated

them on instance models from di�erent domains. As a result, I pro-

posed some metrics which turned out to be useful for characterizing

the structure of models.

Adapt multidisciplinary metrics for engineering models. I per-

formed a literature review and identi�ed several graph metrics

from other disciplines. For evaluating these metrics, I gathered in-

stance models from six so�ware and systems engineering domains.

Statistical characterization of di�erent domains and models. I used

both exploratory and con�rmatory data analysis techniques in order

to determine the “usefulness” of metrics. I considered a metric useful
if it separates models of di�erent domains from each other, while

provides similar values for models within the same domain. I also

investigated whether some of these metrics can distinguish real
models from auto-generated synthetic ones.

Exploratory analysis relied on data visualization, while con-

�rmatory analysis used statistical methods (such as performing

https://github.com/FTSRG/trainbenchmark
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Kolmogorov–Smirnov tests on the derived metrics distributions).

My initial �nding is that di�erent versions of clustering coe�cients

(i.e. how tightly connected the model elements are) were particu-

larly useful for such classi�cations. But, unsurprisingly, no single

metric was able to su�ciently handle all the domains. �e analy-

sis also provides some insights that can be used in future model

generators to synthesize realistic models.

Automated classi�cation of domain models using machine learn-
ing. As a future research objective, I plan to use machine learning
techniques for automated classi�cation of domain models.

Uniqueness. Up to my best knowledge, this is the �rst investi-

gation for using multidimensional graph metrics for both charac-
terizing the realism of models and distinguishing di�erent domain
models from each other.

4.4 Realistic model generation
As a proposed contribution, I plan to design and develop a generator

that is capable of producing realistic models scalable in size. While

there are solutions for generating either scalable or realistic mod-

els, there are no known approaches for the combination of both,

rendering this a high-risk research task. �e long-term research

objective of generating scalable and realistic models breaks down

to the following steps:

(1) metrics-guided generation of realistic models,

(2) domain model generation by design space exploration [2],

(3) scalable rule-based generation of domain models.
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[40] Gábor Szárnyas and others. 2015. �e TTC 2015 Train Benchmark Case for

Incremental Model Validation. In TTC. 129–141.

[41] Gábor Szárnyas and others. 2016. Towards the Characterization of Realistic

Models: Evaluation of Multidisciplinary Graph Metrics. In MODELS. 87–94.
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