
Saturation-based Incremental LTL Model
Checking with Inductive Proofs

Vince Molnár1, Dániel Darvas1, András Vörös1, and Tamás Bartha2

1 Budapest University of Technology and Economics, Hungary
2 Institute for Computer Science and Control, Hungarian Academy of Sciences

Abstract. Efficient symbolic and explicit model checking approaches
have been developed for the verification of linear time temporal proper-
ties. Nowadays, advances resulted in the combination of on-the-fly search
with symbolic encoding in a hybrid solution providing many results by
now. In this work, we propose a new hybrid approach that leverages the
so-called saturation algorithm both as an iteration strategy during the
state space generation and in a new incremental fixed-point computa-
tion algorithm to compute strongly connected components (SCCs). In
addition, our solution works on-the-fly during state space traversal and
exploits the decomposition of the model as an abstraction to inductively
prove the absence of SCCs with cheap explicit runs on the components.
When a proof cannot be shown, the incremental symbolic fixed-point al-
gorithm will find the SCC, if one exists. Evaluation on the models of the
Model Checking Contest shows that our approach outperforms similar
algorithms for concurrent systems.

1 Introduction

Linear temporal logic (LTL) specifications play an important role in the his-
tory of verification. Checking these properties is usually reduced to finding
strongly connected components (SCCs) by checking language emptiness of the
synchronous product of two Büchi automata: one characterizing the possible be-
haviors of the system and another accepting behaviors that violate the desired
property. Two main approaches emerged during the history of model check-
ing. Explicit methods process the state graph using proven graph algorithms.
Symbolic model checking was introduced to address the problem of state space
explosion. Symbolic approaches based on decision diagrams usually apply great-
est fixed point computations on the set of states to compute an SCC-hull [14].
These approaches typically scale well, and they have improved considerably due
to the extensive research in this area.

A considerable amount of effort was put in combining symbolic and explicit
techniques [1,10–13]. The motivation is usually to introduce one of the main ad-
vantages of explicit approaches into symbolic model checking: the ability to look
for SCCs on the fly, i. e., continuously during state space generation. Solutions
typically include abstracting the state space into sets of states such as in the

case of multiple state tableaux or symbolic observation graphs. Explicit checks
can then be run on the abstraction on the fly to look for potential SCCs.

The goal of this paper is to present a new hybrid LTL model checking algo-
rithm that 1) builds a symbolic state space representation, 2) looks for SCCs
on the fly, 3) incrementally processes the discovered parts of the state space and
4) uses explicit runs on multiple fine-grained abstractions to avoid unnecessary
computations. Although example models are given as Petri nets, the algorithm
can handle any discrete state model. The state space is encoded by decision
diagrams, built using saturation. On-the-fly detection of SCCs is achieved by
running searches over the discovered state space continuously during state space
generation. In order to reduce the overhead of these searches, we present a new
incremental fixed point algorithm that considers newly discovered parts of the
state space when computing the SCC-hull. While this approach specializes on
finding an SCC, a complementary algorithm maintains various abstractions of
the state space to perform explicit searches in order to inductively prove the
absence of SCCs.

The paper is structured as follows. Section 2 presents the background of
this work. An overview of the proposed algorithm is given in Section 3, then
Section 4 and 5 introduces the main components in detail. The whole algorithm
is assembled in Section 6. A brief summary of related work is presented in Section
7, followed by an extensive evaluation of our approach and three other tools in
Section 8. Finally, Section 9 summarizes the contributions of the paper.

2 Saturation

Saturation is an iteration strategy specifically designed to work with decision
diagrams. It was originally used as a state space generation algorithm [5] to
answer reachability queries on concurrent systems, but applications in branching-
time model checking [17] and SCC computation [18] also proved to be successful.

Saturation works best if it can exploit the structure of high-level models.
Therefore, it defines the input model on a finer level of granularity, introducing
the concept of components and events into traditional discrete-state models.
Formally, the input model of the algorithm is in the form M = 〈S,Sinit, E ,N〉.
Provided that the model has K components, each with the set of possible local
states Sk, we call S = S1×· · ·×SK the set of possible global states. A single global
state s is then a K-tuple (s1, . . . , sK), where each sk ∈ Sk is a state variable
containing the local state of the kth component. The set of possible initial states
of the system is Sinit ⊆ S. Elements of set E are (asynchronous) events of
the model, usually corresponding to transitions of the high-level system model.
Events are used to decompose the next-state (or transition) relation N ⊆ S ×S
into separate (but not necessarily disjoint) next-state relations: N =

⋃
ε∈E Nε,

where Nε is the next state relation of event ε. We often use N as a function,
defining N (s) = {s′ | (s, s′) ∈ N} as the set of states that are reachable from
s in one step (and also N (S) as an extension to sets of states). The inverse of
a next state function is defined as N−1(s) = {s′ | (s′, s) ∈ N}. In this paper, a

state space will be denoted by a pair (S,N), where states of S and transitions
of N are nodes and arcs of the state graph.

By introducing components and events, saturation can exploit the locality
property of concurrent systems. Locality is the empirical assumption that high-
level transitions of a concurrent model usually affect only a small number of
components. An event ε is independent from component k if 1) its firing does
not change the state of the component, and 2) its enabling does not depend on
the state of the component. If ε depends on component k, then k is called a
supporting component: k ∈ supp(ε).

In order to map the components to variables of the underlying decision di-
agram, an ordering has to be defined. Without loss of generality, assume that
every component is identified by its index in the ordering. Using these indices,
it is possible to group events by defining Top(ε) = k as the supporting com-
ponent of ε with the highest index. The set of every event with a Top value
of k is Ek = {ε ∈ E | Top(ε) = k}. For the sake of convenience, we use Nk to
represent the next state function of all such events, formally Nk =

⋃
ε∈Ek Nε.

The notations N≤k =
⋃

i≤kNi and N<k =
⋃

i<kNi will also be used.
Symbolic encoding of the next state functions of events ε ∈ Ek relies on the

following observation: Nε((s1, . . . , sK)) and Nε((s1, . . . , sk)) × {(sk+1, . . . , sK)}
are equivalent (i. e., Nε does not change the local states of components above
k). From this fact, two important properties of saturation follows: 1) in the
encoding of Nε it is sufficient to encode the state changes of state variables
s1, . . . , sk, where k = Top(ε), as well as 2) it is possible to apply the individual
Nε functions in a finer granularity: Nε is not only applicable on a set of global
states, but also on sets of substates composed of state variables s1, . . . , sk.

In order to reason about sets of substates encoded by decision diagram nodes,
we will use the notations introduced in [4]. Let nk be a single node in a decision
diagram on the level representing the state variable of the kth component. Let
B(nk) represent the below substates encoded by nk. Below substates can be
regarded as the set of paths in the decision diagram that go from nk to the
terminal node 1. Throughout this paper, nk[i] will denote the child node of nk

on level k− 1 reachable through the arc corresponding to the local state i ∈ Sk.
With this notation, the set of substates B(nk) encoded by node nk is described
with the following recursive definition:

B(nk) =

{
{i | nk[i] = 1} if k = 1⋃

i∈Sk B(nk[i])× {i} otherwise.

A possible interpretation of the definition is that the set of substates encoded
by node nk is composed of different instantiations of the sets of substates encoded
by the children of nk.

The goal of saturation as a state space generation algorithm is to compute
the set of reachable states Srch = N ∗(Sinit) of model M , where N ∗ is the
transitive closure of the next-state relation. To do this, it exploits the structure
of decision diagrams and the aforementioned locality of concurrent systems by
dividing the global fixed-point computation into smaller parts, computing local

fixed-points with regard to a decision diagram node nk and its corresponding
next-state function Nk. A node nk is called saturated, if it is a terminal node,
or its child nodes are saturated and it represents a set of substates computed as
the fixed-point of the transitive closure of Nk, formally: B(nk) = N ∗≤k(B(nk)).
This definition yields a recursive algorithm that saturates nodes of the decision
diagram in a bottom-up order, recursively saturating new nodes discovered when
applying a next-state function on higher levels of the decision diagram.

3 Overview of the Algorithm

The goal of this paper is to present a new model checking solution that is 1)
symbolic, 2) looks for SCCs on the fly during state space generation with an
incremental fixed-point algorithm, and 3) uses cheap explicit proofs to indicate
the absence of SCCs when possible. The basis of the presented complex algorithm
is saturation, which is highly efficient in the symbolic state space generation of
large concurrent systems.

On-the-fly operation is achieved by performing fixed-point computations
when a node becomes saturated. Processing saturated nodes has the advantage
of handling a set of (sub)states that is closed with regard to events independent
from higher levels. This means that the set will not change anymore during the
exploration, i. e., each closed set has to be processed only once.

Even though a set with its related events will be processed only once, the
recursive definition of saturation will cause such sets to appear again as part of
larger sets encoded by the parent node in the decision diagram. The incremental
fixed-point algorithm presented in Section 4 avoids redundant computations by
restricting the search to SCCs containing at least one transition belonging to an
event not considered before, causing the computation to converge faster.

It has been shown many times that symbolic model checking approaches can
greatly benefit from explicit techniques [1, 10–13]. In this work, explicit checks
are applied in two ways. First, the saturation algorithm is enhanced with a sim-
ple modification that is able to collect individual states appearing more than
once during the exploration. As presented in Section 5.1, the absence of these
recurring states indicates that no SCCs can be found in the set of explored
states. Secondly, one of the main contributions of this paper is a cheap abstrac-
tion of the state space with regard to a single decision diagram node, on which
explicit SCC computation algorithms can be run with a negligible overhead. A
theorem presented in Section 5.2 gives an efficient method to inductively prove
the absence of SCCs in the state space explored so far. Both methods are used
to reduce the number of times a symbolic fixed-point computation is necessary,
often making the overhead of on-the-fly searches to almost disappear.

4 Incremental Symbolic Fixed-point Computation

This section presents a symbolic fixed-point computation algorithm to look for
SCCs incrementally in a growing state space. It can be regarded as a variation

of traditional SCC-hull algorithms [14], but it is unique in the sense that it is
optimized to run multiple times, each time on a superset of the previous input.
SCC-hull algorithms usually start with a set of states and a transition relation
and iteratively try to discard states to reach a fixed-point. Compared to this
strategy, the main difference in our concept is that we specify transitions to
discard. The reason for this design lies in the iteration strategy of saturation,
but the algorithm itself is not restricted to any iteration strategy.

As noted in Section 2, the set of substates encoded by a node nk can be
written as B(nk) =

⋃
i∈Sk B(nk[i]) × {i}, i. e., the union of the below substates

of each child node instantiated with the corresponding value of the kth state
variable. In case of a saturated node, each set in the union is closed with regard
to the next-state function N<k, so no new SCCs can be found in B(nk) using
these transitions only. However, the sets of substates are connected by transitions
in Nk that are not yet processed on B(nk). Figure 1 shows an example: black
arcs between sets of substates are transitions of Nk. Constraining the search for
SCCs to those that contain at least one transition from Nk can quickly discard
parts of the state space to make the fixed point computation converge faster.

The main function of the algorithm, DetectSCC, does not have to know about
saturation. It takes a set of states (S), a next-state relation (N), and a subset
of this relation (Nnew ⊆ N) as an input and returns a Boolean value indicating
if there exists an SCC consisting of states and transitions from S and N that
contains at least one transition from Nnew . The following observation provides
a way to use this function as an incremental SCC computation algorithm.

Observation 1 Consider a state space (S,N) containing an SCC and a subset
of transitions Nnew ⊆ N considered to contain new transitions. If S does not
contain any SCCs with only old transitions Nold = N \ Nnew , then the SCC
contains at least one transition from Nnew .

Let us assume that the function is called during state space exploration and
the input is the current set of (sub)states, the set of transitions fired so far, and
the set of transitions fired since the last time the algorithm was called. Then,
the observation guarantees that by the end of the state space generation, the
algorithm will have returned true at least once iff there exists an SCC in the
reachable state space (Srch ,Nfired). The case of calling the function in a recursive
setting is less obvious. To see that calling DetectSCC after a node is saturated
gives a complete algorithm, consider the previous discussion. When a node nk

on level k becomes saturated, the only transitions that were fired but have never
been input into the function yet are in Nk. This way, the correct inputs when
calling the function at that point are B(nk) as the set of states, N≤k as the
next-state relation and Nk as the subset of new transitions.

Algorithm 1 shows the pseudocode of DetectSCC. The function works by
discarding transitions from Nnew that cannot be closed with other transitions
through the states in S to form a loop. Transitions are not processed directly: the
set of their source states S− and target states S+ represent them in the fixed-
point computation. States of S− that are not reachable from S+ and states of

input : S,N ,Nnew : set
// S: set of states,

// N ,Nnew: set of transitions

output : bool

1 S− ← N−1
new (S); S+ ← Nnew (S−);

2 if S+ = ∅ then return false;
3 repeat
4 S− ← S− ∩N ∗(S+);
5 S+ ← S+ ∩Nnew (S−);

6 until S+ and S− unchanged ;
7 return S− 6= ∅ ∨ S+ 6= ∅;

Algorithm 1. DetectSCC

B(nk) B(nk[0])

B(nk[3])
B(nk[1])

B(nk[2])

Fig. 1. Illustration of state space
(B(nk),N≤k).

S+ that are not reachable from S− through transitions in Nnew are discarded
iteratively in lines 4 and 5. Checking reachability is performed using saturation.
The iteration stops when no states can be discarded from the sets anymore, i. e.,
fixed point is reached. If S− and S+ are empty, then no appropriate SCC could
be found. Otherwise, the remaining states are part of an SCC containing at least
one transition from Nnew . Since the goal of this algorithm is to quickly decide if
an SCC exists in the input, it will not extract the SCC itself. However, remaining
states in S+ and S− can be used to aid the counterexample generation.

When looking for fair SCCs, i. e., SCCs containing at least one state from a
set of states F , the algorithm can be extended to involve F as the third set in
the loop. States of F are then discarded if they are not reachable from S+ and
states of S− are discarded if they are not reachable from F . When looking for
accepting SCCs during LTL model checking, F is the set of accepting states.

5 Explicit Proofs

After presenting an incremental way to detect the presence of strongly connected
components during state space generation, this section introduces methods to
prove the absence of SCCs without performing symbolic fixed point computa-
tions. These methods are used to decide if a symbolic check should be performed
when a node is saturated or it can be safely omitted.

When looking for accepting SCCs, checking the absence of accepting states
is a usual optimization in similar algorithms, for example in the abstraction
refinement approach presented in [16]. In this paper, we go two steps further.
Section 5.1 introduces the use of recurring states, while Section 5.2 presents a
new abstraction technique tailored to decision diagrams that allows the direct
use of explicit algorithms to reason about the presence or absence of SCCs.

5.1 Using Recurring States for Explicit Proofs

Recurring states are those that have already been discovered before reaching
them again during state space generation. In the context presented in Section

4, they are defined as follows: R = Sold ∩ Nnew(Sold), where Sold is the set of
discovered states before applying Nnew for the first time. Explicit SCC compu-
tation algorithms such as [15] primarily look for recurring states during graph
traversal as they are suspects to constitute SCCs. Checking backward reacha-
bility from these states offers a simple algorithm to check the presence of an
SCC [8]. Symbolic algorithms, on the other hand, execute many steps together,
making the individual checking of the states inefficient. However, computing the
set of recurring states during state space traversal can still be used to reason
about SCCs.

Observation 2 Given an SCC composed of a set of states S and a next-state
relation N , any traversal will yield at least one recurring state.

According to the observation, recurring states offer a cheap way to distinguish
situations where there is no chance of finding an SCC – situations that often arise
during an on-the-fly algorithm. In addition, they can also be used to initialize
the fixed-point computation algorithm with S ..= R in Algorithm 1. This is
useful if recurring states are collected between two subsequent DetectSCC calls,
because 1) only transitions of Nnew can end in recurring states and 2) this
way, the function can also exploit Observation 2 and restrict the search for SCC
candidates containing new recurring states.

5.2 Introducing Inductive Explicit Checks

Hybrid model checking algorithms usually use symbolic encoding to process
huge state spaces, accompanied by clever abstraction techniques to produce an
abstract model on which explicit graph algorithms can be used. In this context,
the goal of abstraction is to reduce the size of a system’s state space while
preserving certain properties, such as the presence or absence of SCCs. In this
work, we also use abstractions to reason about SCCs. However, unlike in most
approaches in this domain, multiple abstract state graphs are used, ordered in
a hierarchy matching the structure of the underlying decision diagram to build
an inductive proof about strongly connected components of the state space.

In a symbolic setting, components of the model provide a convenient basis for
abstraction. In LTL model checking, it is usual to use the Büchi automaton or its
observable language to group states and build an abstraction from these aggre-
gates. The abstraction framework presented in [16] goes beyond using only one
kind of abstraction and explores strategies on a tableau of possible abstractions
based on one or more components.

In addition to selecting the basis, there are multiple ways to define an ab-
straction based on a component. To illustrate this, two simple abstractions are
presented before introducing a new approach of using the structure of a decision
diagram to define a more powerful abstraction.

Simple Abstractions. Using abstractions to answer binary decisions has two
potential goals. One can create an abstraction that can say a definite yes (these

are called must abstractions), or one that can say a definite no (these are may
abstractions). To construct an abstraction, the definition of an abstraction func-
tion is required for both the states and the transitions in the global state space.
Abstracting states is straightforward, as the set of local states Sk of compo-
nent k can be used directly.3 Regarding may and must abstractions, different
transformations have to be defined for the transitions of the state space.

Must abstraction of transitions N ∀k ⊆ Sk ×Sk for component k is defined as:
N ∀k = {(sk, s′k)|∃ε ∈ E , supp(ε) = {k},∃(s, s′) = ((... , sk, ...), (... , s

′
k, ...)) ∈ Nε}.

May abstraction of transitions N∃k ⊆ Sk × Sk for component k is defined as
N ∃k = {(sk, s′k)|∃ε ∈ E , k ∈ supp(ε),∃(s, s′) = ((... , sk, ...), (... , s

′
k, ...)) ∈ Nε}.

The must abstraction of transitions is defined to keep only those transitions
that correspond to events fully within the support of the chosen component.
May abstraction preserves every local transition, but omits the synchronization
constraints (i. e., assumes that if a transition is enabled in component k, it is
globally enabled).

Due to this construction, it is sometimes possible to reason about the presence
or absence of global SCCs. If there is an SCC in a single must abstraction,
it is the direct representation of one or more SCCs of the global state space.
Complementary, if there is no SCC in the may abstraction of any component,
then the global state space cannot contain any SCCs either.

These abstractions usually yield small state graphs that can be represented
explicitly. Running linear-time explicit algorithms on them gives a very cheap
opportunity to possibly prove or refute the presence of SCCs before symbolic
methods are used. Moreover, the definition of may and must abstractions implies
N ∀k ⊆ N ∃k , so running the SCC computation on a may abstraction and then
looking for a strongly connected subcomponent with transitions of N ∀k effectively
considers both cases at the same time.

As an example, observe Figure 2 that illustrates the Petri net model of a
producer-consumer system, also showing the explicit state graph. Transitions of
the system are shown on Figure 3(a), with connected arcs representing a single
transition affecting multiple components. In this case, every transition belongs to
a separate event (events are related to transitions of the Petri net). Events affect-
ing multiple components can be regarded as synchronization constraints between
local transitions. Abstractions can be acquired by removing synchronizations and
local transitions. Figure 3(b) and 3(c) depict the transitions transformed by must
and may abstractions. If the goal is to find an SCC containing the state where
only the places at the bottom of the Petri net are marked (depicted as a black
state on Figure 2(b)), none of the abstractions can give an exact answer.

Node-wise Abstraction. As the example suggests, the simple abstractions
presented so far may often be too general/specific, limiting their usefulness. Also,
as before, the iteration strategy of saturation can be exploited when designing a
special type of may abstraction that is stronger than its simple version. The goal

3 It is assumed that local states in Sk actually appear in at least one reachable global
state.

producer buffer consumer

(a) Petri net

000
110

100

101

010

001
011 111

(b) State space

Fig. 2. Producer-consumer model with
non-deterministic buffer

0 1

0 1

0 1

(a) Original

0 1

0 1

0 1

(b) Must

0 1

0 1

0 1

(c) May

0 1

0 1

0 1

(d) Node-wise

Fig. 3. The effect of the abstractions to
the transitions

of the following construct is to match the order in which events are processed
during saturation, as well as the structure of the underlying decision diagram.

Definition (Node-wise abstraction) Node-wise abstraction of state space
(S,N) with regard to node nk is the pair A∃nk

= (Snk
,N ∃nk

), where Snk
=

{i | nk[i] 6= 0}, i. e., the local states encoded by arcs of nk, and N ∃nk
=

{(sk, s′k) | sk, s′k ∈ Snk
,∃(s, s′) = ((... , sk, ...), (... , s

′
k, ...)) ∈ Nk}, i. e., the pro-

jections of events Ek to component k.

By the time a node is saturated, the construction of its node-wise abstraction
is permanently finished. This way, a single abstraction has to be analyzed only
once. In addition, the set of node-wise abstractions corresponding to nodes of
a sub-diagram rooted in nk contains enough information to have the power of
the simple may abstraction, that is, to clearly state if no SCC is present in the
substate space (B(nk),N≤k).

The following theorem gives the basis for an inductive method of using node-
wise abstractions to prove the absence of SCCs.

Theorem Given a node-wise abstraction A∃nk
with regard to a saturated node

nk, the substate space (B(nk),N≤k) does not contain any SCC if 1) neither of
the substate spaces (B(nk[si]),N<k) belonging to the children of nk 2) nor A∃nk

contain an SCC.

The main idea of the proof is that node-wise abstraction represents the effects
of the events Ek exactly on the level of their Top value. At the time when a node
nk becomes saturated, the only transitions that can change the local states of
component k are in Nk. Node-wise abstractions contain the images of exactly

these transitions, thus they describe the possible transitions between sets of
substates encoded by the children of nk, as seen on Figure 1. This is why they
can be used to identify one-way walls that separate the possible spaces for SCCs.
Figure 1 can be seen as a node-wise abstraction if gray sets are considered as
states of A∃nk

, with black arcs between them being transitions of N ∃nk
.

Note that it is not specified how to ensure assumption 1 of the theorem.
Consequently even if the corresponding node-wise abstraction did contain an
SCC (which only implies the possible presence of a global SCC), the symbolic
fixed point computation algorithm of Section 4 can still be used to give a precise
proof. This way, the series of saturated nodes give a full inductive proof by the
end of the state space generation. In the previous example shown on Figure
3, node-wise abstraction can predict that SCC detection is unnecessary during
saturation until the top level is processed.

The computation of node-wise abstractions is simple and cheap. It can be
done on demand by projecting the next-state relation of corresponding events to
the Top component, or on-the-fly during saturation by adding vertices and arcs
each time a new local state is discovered or a new transition of the corresponding
events is fired, respectively. A simple must abstraction can also be examined as
part of computing SCCs of the node-wise abstraction by looking for a strongly
connected subcomponent whose transitions belong to events having only the
current component as a supporting one.

In addition to proving the absence of SCCs, the result of explicit compu-
tation on the abstraction can also be used to aid the incremental fixed point
computation algorithm in finding them. Arcs of the candidate SCCs found in
the node-wise abstraction correspond to a set of transitions in the state space
(NSCC). Since these are the only transitions in Nk that can be part of an SCC,
calling DetectSCC withNnew = NSCC helps the function to converge even faster.

6 Constructing the Algorithm

After getting familiar with the building blocks in Sections 2–5, this section assem-
bles the main contribution of this work, the new saturation-based incremental
LTL model checking algorithm. The algorithm uses saturation for state space
generation. Recurring states are collected on the fly and vertices and arcs of
node-wise abstractions may also be added continuously. Whenever a node be-
comes saturated, the following steps are executed:

1. The sets of encoded states and transitions are checked (shall be non-empty).
2. The set of collected recurring states is checked (shall be non-empty).
3. An explicit SCC computation algorithm is run on the current node-wise

abstraction to obtain an SCC candidate (there shall be one).
4. Function DetectSCC is called with the set of recurring states and transitions

in the candidate SCC to compute an SCC-hull.

If either of checks 1–3 fails, or DetectSCC returns false, saturation continues.
If at any point DetectSCC returns true, the algorithm is stopped and the LTL

input : sk : node // to saturate

output : node

1 n2k ← Nk as decision diagram;

2 tk ← new node; A∃tk ← (Sk, ∅);
3 foreach i ∈ Sk : sk[i] 6= 0 do
4 tk[i]← Saturate(sk[i]);
5∗ rk ← new node; // recurring states

6 repeat
7 foreach i, i′ ∈ Sk : sk[i] 6= 0∧n2k[i][i

′] 6= 0 do
8∗ r′k−1 ← new node; // temp for next call

9 uk ← RelProd(tk[i], n2k[i][i
′], tk[i

′], r′k−1);

10� if uk 6= 0 then add arc (i, i′) to A∃tk ;
11 tk[i

′]← (tk[i
′] ∪ uk); // collect states

12∗ rk[i
′]← (rk[i

′] ∪ r′k−1); // collect recurring

13 until tk unchanged;

14� NSCC ← TransitionsInSCC (A∃tk);
15◦ if DetectSCC(B(rk),N≤k,NSCC) then
16 terminate with counterexample;
17 return CheckUnique(tk);

Algorithm 2. Saturate

input : sk, n2k, ok : node

// sk: node to be saturated,

// n2k: next state node,

// ok: old node

in-out : rk : node

// rk: recurring states

output : node

1 if sk = 1 ∧ n2k = 1 then

2∗ if ok = 1 then

3 rk ← 1; // recurring state found

4 return 1;

5 tk ← new node;

6 foreach sk[i] 6= 0 ∧ n2k[i][i
′] 6= 0 do

7∗ r′k−1 ← new node;

8 tk[i
′]← (tk[i

′] ∪
RelProd(sk[i], n2k[i][i

′], ok[i
′], r′k−1);

9∗ rk[i
′]← (rk[i

′] ∪ r′k−1);

10 tk ← Saturate(CheckUnique(tk));

11 return tk;

Algorithm 3. RelProd

formula is declared invalid in terms of the system. If saturation finishes and
DetectSCC never returns true, the formula is declared valid.

Algorithm 2 and 3 presents the complete algorithm. Lines different from the
original saturation algorithm are marked. Although it is crucial to implement,
caching is now omitted for the sake of simplicity. CheckUnique is used to avoid
the duplication of decision diagram nodes. If an equivalent node has already
been registered, it returns that node, otherwise registers the input. The deci-
sion diagram representation of a next-state function has 2k levels. Even levels
encode from states and odd levels encode to states. Custom functions are Transi-
tionsInSCC and DetectSCC. The former performs an explicit SCC computation
(e. g., [15]) on the abstraction and returns transitions of the state space corre-
sponding to abstract arcs in an SCC. The latter is presented in Algorithm 1.

Lines marked with ∗ belong to the computation of recurring states. To iden-
tify recurring states, an additional node representing old states is passed to Rel-
Prod. Reached states that are also in the set of old states are collected similarly
to the approach of constrained saturation [17]. Sign � marks lines corresponding
to explicit search. The node-wise abstraction is built on-the-fly, then Transitions-
InSCC is used to extract candidate SCCs. Finally, on the line marked with ◦,
DetectSCC is called with the set of recurring states, N≤k, and transitions in the
candidate SCC to perform the incremental fixed-point computation.

7 Related Work

This section briefly summarizes different approaches to SCC computation, from
traditional SCC-hull algorithms to SAT-based solutions.

SCC-hull algorithms are usually variants of the algorithm of Emerson and
Lei [14]. They solve the SCC computation problem by computing a least fixed

point of the state space that is sure to contain at least one SCC. An SCC-hull is
a superset of states belonging to an SCC, thus it proves only the existence of an
SCC. The incremental SCC computation algorithm presented in Section 4 is also
based on the idea of SCC-hull computation. However, our method is tuned to
work on the fly, exploiting the results of previous runs to provide incrementality.

Saturation-based SCC computation has also been proposed. The algorithms
implemented in [18] are different from SCC-hull algorithms, because both the
algorithm of Xie and Beerel and the Transitive Closure method aim to compute
exactly those states that belong to an SCC. Because of the caching mechanism
of saturation, these algorithms can be very efficient to compute an exact coun-
terexample detected by our algorithm.

An extensive approach to using abstraction in SCC computation has been
proposed in [16]. By defining a lattice of abstractions based on one or more
components of the model, the paper presents strategies of using some of the ab-
stractions to discard uninteresting parts of the state space and search in relevant
components. While node-wise abstraction can be interpreted in that context, the
paper uses abstractions similar to the must abstraction presented in Section 5.2
and only accepting states are used to prove the lack of SCCs.

On-the-fly approaches to SCC computation and thus model checking also
exist [1, 11–13]. One particularly interesting solution is described in [10]. The
paper describes two types of abstractions used to achieve on-the-fly search, also
using saturation as a state space generation algorithm.

A different approach in SAT-based model checking is the recent approach
called IC3 [2]. By constructing a series of small intermediate lemmas, the k-
liveness algorithm [7] identifies one-way walls that separate the possible spaces
of SCCs. In this sense, the idea is similar to that of node-wise abstraction.

8 Evaluation

To demonstrate the efficiency of the presented new algorithm (referred to as
Hyb-MC), models of the Model Checking Contest4 have been used to compare
it to three competitive tools. NuSMV2 [6] is a BDD-based model checker imple-
menting traditional SCC-hull algorithms and is well-established in the industrial
and academical community. Its successor, nuXmv [3] implements a k-liveness al-
gorithm [7] based on IC3 for LTL model checking5. ITS-LTL is a powerful tool
based on saturation that implements various optimizations both for symbolic
encoding and on-the-fly SCC detection.

All four tools were run on 7 850 inputs: 27 scalable models of the Model
Checking Contest were used to obtain a total of 157 different instances, each
checked against 50 randomly generated LTL formulae produced by SPOT [9].
The models represent the behavior of mainly asynchronous, concurrent systems.
Out of the successfully checked cases, properties were fulfilled 2 811 times, while
3 565 cases gave negative results. In 1 474 cases, all the tools exceeded the time

4 http://mcc.lip6.fr/
5 nuXmv was executed with flag “-check ltlspec klive”.

http://mcc.lip6.fr/

n/a

102

100

10−2

n/a10210010−2

Hyb-MC (s, log)

S
S

G
(s

,
lo

g)

10−1

101

n/a

102

100

10−2

n/a10210010−2

Hyb-MC (s, log)

IT
S

-L
T

L
(s

,
lo

g)

10−1

101

n/a

102

100

10−2

n/a10210010−2

Hyb-MC (s, log)

N
u

S
M

V
(s

,
lo

g)

10−1

101

n/a

102

100

10−2

n/a10210010−2

Hyb-MC (s, log)

n
u

X
m

v
(s

,
lo

g
)

10−1

101

Hyb-MC

ITS-LTL

NuSMV

nuXmv

#
M

ea
su

re
m

en
ts 2000

1500

1000

500

0

Invalid
Valid

ITS/Hyb-MC

102100

Tie
10410−210−4

Hyb-MC winsITS wins ITSHyb-MC

#
M

ea
su

re
m

en
ts

2000

1000

0

Invalid
Valid

nuXmv/Hyb-MC

102100

Tie
10410−210−4

Hyb-MC winsnuXmv wins nuXmvHyb-MC
n/a n/a

#
M

ea
su

re
m

en
ts

4000

3000

2000

1000

0

Invalid
Valid

NuSMV/Hyb-MC

102100

Tie
10410−210−4

Hyb-MC winsNuSMV wins NuSMVHyb-MC
n/a n/a

5000

timeout timeout

timeout timeout

timeouttimeout

103102100 10010−2 10−1

Time limit (s, log)

4000

2000

0

6000

#
C

om
p
le

te
d

n/a n/a

Fig. 4. Measurement results.

limit. Generated expressions contained a nearly equal number of safety and guar-
antee properties, as well as obligation formulae and more complex properties.

Measurements were done on identical server machines with Intel Xeon pro-
cessors (4 cores, 2.2GHz) and 8 GB of RAM, with timeout set to 600 seconds.
The decision diagram based tools used the same variable ordering produced by
heuristics of the ITS toolset. Runtimes were measured internally by every tool,
usually including every step of the model checking process (in case of NuSMV
and nuXmv, internal transformation of the input was omitted from the result). A
prototype of Hyb-MC was implemented in .NET to conduct the measurements.

Results can be seen on Figure 4. On the scatterplots, each point represents a
single pair of model instance and property. The runtime of Hyb-MC is always on
the x-axis, while the runtimes of state space generation, ITS-LTL, NuSMV and
nuXmv are on the y-axis of the subfigures. A point above (below) the diagonal is
a measurement where Hyb-MC solved the problem faster (slower). The borders of
the diagrams represent the timeout of a measurement for one of the tools. As the
plots show, Hyb-MC usually finishes the verification faster than the state space
generation of the model, mainly because of on-the-fly operation and efficient
incremental operation. State space generation could be finished for some models
where model checking was unsuccessful, the overhead of model checking of these
complex properties could not be compensated by the incremental operation.
Comparing to the other model checking approaches, the vast majority of cases
show the competitiveness of our algorithm. The three histograms depict the

differences of runtimes: the bar in the middle shows cases where runtimes of the
tools were in the same order of magnitude, while every bar to the left or right
means an additional order of magnitude in the runtime of the corresponding tool
compared to the other. The last diagram shows the number of cases in which a
tool was able to finish the verification within the given time.

Analysis of collected data showed differences in the scalability of the algo-
rithms. While Hyb-MC and ITS-LTL is better in handling a huge number of state
variables, NuSMV and nuXmv performed much better on models with state vari-
ables of large domains. Only nuXmv’s k-liveness algorithm proved to be sensitive
to different classes of properties, the other tools did not show significant differ-
ences in the distribution of runtimes. During the measurements, Hyb-MC spent
only 17% of the time computing SCCs. Overall, 359 084 symbolic fixed point
computations were started, while abstraction and explicit algorithms prevented
1.22 ·108 runs of symbolic SCC computation, 99.7% of all the cases. 89% of these
cases were prevented by the absence of recurring states (as a first check), while
the remaining 11% were the cases where explicit runs on node-wise abstractions
managed to find even more evidence.6

9 Conclusion and Future Work

In this paper, a new algorithm has been presented for LTL model checking. The
described approach divides model checking into smaller tasks, and handles large
state spaces by performing efficient local computations on the components. The
absence of SCCs is proved with the help of a specialized abstraction function and
inductive reasoning, while existing SCCs are discovered by a new incremental
symbolic fixed point algorithm. These solutions constitute an efficient on-the-fly,
hybrid model checking approach that combines the advantages of explicit and
symbolic algorithms. Our solution uses saturation for state space traversal, which
makes it suitable for concurrent systems. Extensive measurements justified this
claim for the models of the Model Checking Contest.

The presented algorithm has a huge potential for future development. Fol-
lowing the idea of driving the symbolic algorithm with explicit runs, a promising
direction is to combine partial order reduction with symbolic model checking.
In addition, we also plan to use advanced representations of the properties to
further improve the speed of model checking.

References

1. Biere, A., Zhu, Y., Clarke, E.: Multiple state and single state tableaux for combin-
ing local and global nodel checking. In: Correct System Design, LNCS, vol. 1710,
pp. 163–179. Springer (1999)

2. Bradley, A.: Understanding IC3. In: Theory and Applications of Satisfiability Test-
ing – SAT 2012, pp. 1–14. No. 7317 in LNCS, Springer (2012)

6 For a detailed analysis of collected data, cf. http://inf.mit.bme.hu/en/tacas15.

http://inf.mit.bme.hu/en/tacas15

3. Cavada, R., Cimatti, A., Dorigatti, M., Mariotti, A., Micheli, A., Mover, S., Grig-
gio, A., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. Tech. rep.,
Fondazione Bruno Kessler (2014)

4. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy
for symbolic state space generation. In: Tools and Algorithms for the Construction
and Analysis of Systems, LNCS, vol. 2031, pp. 328–342. Springer (2001)

5. Ciardo, G., Marmorstein, R., Siminiceanu, R.: The saturation algorithm for sym-
bolic state-space exploration. Int. J. on Softw. Tools for Technology Transfer 8(1),
4–25 (2006)

6. Cimatti, A., Clarke, E., Giunchiglia, E., et al.: NuSMV 2: An opensource tool for
symbolic model checking. In: Computer Aided Verification, LNCS, vol. 2404, pp.
359–364. Springer (2002)

7. Claessen, K., Sorensson, N.: A liveness checking algorithm that counts. In: Formal
Methods in Computer-Aided Design, 2012. pp. 52–59. IEEE (2012)

8. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algo-
rithms for the verification of temporal properties. In: Computer-Aided Verification,
LNCS, vol. 531, pp. 233–242. Springer (1991)

9. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library us-
ing transition-based generalized Büchi automata. In: Proc. of the IEEE Int. Symp.
on Modeling, Analysis, and Simulation of Computer and Telecommunications Sys-
tems. pp. 76–83 (2004)

10. Duret-Lutz, A., Klai, K., Poitrenaud, D., Thierry-Mieg, Y.: Combining explicit and
symbolic approaches for better on-the-fly LTL model checking. arXiv:1106.5700 [cs]
(2011)

11. Haddad, S., Ilié, J.M., Klai, K.: Design and evaluation of a symbolic and
abstraction-based model checker. In: Automated Technology for Verification and
Analysis, LNCS, vol. 3299, pp. 196–210. Springer (2004)

12. Klai, K., Poitrenaud, D.: MC-SOG: An LTL model checker based on symbolic
observation graphs. In: Applications and Theory of Petri Nets, LNCS, vol. 5062,
pp. 288–306. Springer (2008)

13. Sebastiani, R., Tonetta, S., Vardi, M.: Symbolic systems, explicit properties: on
hybrid approaches for LTL symbolic model checking. In: Computer Aided Verifi-
cation, LNCS, vol. 3576, pp. 350–363. Springer (2005)

14. Somenzi, F., Ravi, K., Bloem, R.: Analysis of symbolic SCC hull algorithms. In:
Formal Methods in Computer-Aided Design, LNCS, vol. 2517, pp. 88–105. Springer
(2002)

15. Tarjan, R.: Depth first search and linear graph algorithms. SIAM Journal on Com-
puting 1(2), 146–160 (1972)

16. Wang, C., Bloem, R., Hachtel, G.D., Ravi, K., Somenzi, F.: Compositional SCC
analysis for language emptiness. Form. Method. Syst. Des. 28(1), 5–36 (2006)

17. Zhao, Y., Ciardo, G.: Symbolic CTL model checking of asynchronous systems using
constrained saturation. In: Automated Technology for Verification and Analysis,
LNCS, vol. 5799, pp. 368–381. Springer (2009)

18. Zhao, Y., Ciardo, G.: Symbolic computation of strongly connected components
and fair cycles using saturation. Innov. Syst. Softw. Eng. 7(2), 141–150 (2011)

Acknowledgements. This work was partially supported by the ARTEMIS JU and
the Hungarian Research and Technological Innovation Fund in the frame of the R5-
COP project.

	Saturation-based Incremental LTL Model Checking with Inductive Proofs

