
Integrating Efficient Model Queries in
State-of-the-art EMF Tools?

Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán Ujhelyi
and Dániel Varró

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar tudósok krt. 2
{bergmann,hegedusa,ahorvath,rath,ujhelyiz,varro}@mit.bme.hu

Abstract. Model-driven development tools built on industry standard
platforms, such as the Eclipse Modeling Framework (EMF), heavily use
model queries in various use cases, such as model transformation, well-
formedness constraint validation and domain-specific model execution.
As these queries are executed rather frequently in interactive modeling
applications, they have a significant impact on the runtime performance
of the tool, and also on the end user experience. However, due to their
complexity, they can also be time consuming to implement and optimize
on a case-by-case basis. The aim of the EMF-IncQuery framework is
to address these shortcomings by using declarative queries over EMF
models and executing them effectively using a caching mechanism.
In the current paper, we present the new and significantly extended ver-
sion of the EMF-IncQuery Framework, with new features and runtime
extensions that speed up the development and testing of new queries by
both IDE and API improvements.
We demonstrate how our high performance queries can be easily inte-
grated with other EMF tools using an entirely new case study in which
EMF-IncQuery is deeply integrated into the EMF modeling infrastruc-
ture to facilitate the incremental evaluation of derived EAttributes and
EReferences.

1 Introduction

As model management platforms are gaining more and more industrial atten-
tion, the importance of automated model querying techniques is also increasing.
Queries form the underpinning of various technologies such as model transforma-
tion, code generation, domain-specific behaviour simulation and well-formedness
validation that are all essential in state-of-the-art modeling tools and toolchains.

The leading industrial modeling ecosystem, the Eclipse Modeling Framework
(EMF [1]), provides different ways for querying the contents of models. These
? This work was partially supported by the SecureChange (ICT-FET-231101) Eu-
ropean Research Project, the Certimot (ERC_HU-09-01-2010-0003) Project, the
grant TÁMOP (4.2.2.B-10/1–2010-0009) and the János Bolyai Scholarship.



approaches range from manually coded model traversal to high-level declarative
constraint languages such as Eclipse-OCL [2]. However, industrial experience [3]
shows strong evidence of scalability problems in complex query evaluation over
large EMF models, taken from the various modeling domains; and manual query
optimization is time consuming to implement on a case-by-case basis.

In order to overcome this limitation, the EMF-IncQuery1 framework [3]
proposes to use declaratively specified queries over EMF models, executing them
efficiently without manual coding using incremental graph pattern matching tech-
niques [4]. The benefits of EMF-IncQuery with respect to the state-of-the-art
of querying EMF models [2,5] include: (i) high performance querying of models in
the range of millions of elements, (ii) efficient addressing of instance enumeration
and backward navigation (which are both frequently encountered shortcomings
of the EMF API); and (iii) a user friendly yet powerful declarative graph pattern
based formalism.

In the current tool demonstration paper, we present the next evolutionary
step of the EMF-IncQuery framework, focusing on novel query and execution
features. As a complex case study, we illustrate how EMF-IncQuery can be
deeply integrated into the EMF modeling layer to facilitate the efficient evalua-
tion of derived features (virtual attributes and references that represent indirectly
calculated structural information).

The paper is structured as follows: first, Section 2 gives a brief architectural
and feature-oriented overview of EMF-IncQuery, with a focus on novel con-
tributions. Section 3 shows how incremental queries can be integrated into the
EMF modeling layer for the evaluation of derived features. Section 4 gives an
overview of related work, and Section 5 concludes the paper.

2 Overview of EMF-IncQuery

2.1 Model queries by graph patterns

Graph patterns [6] are an expressive formalism that can be used for various pur-
poses in model-driven development, such as defining declarative model transfor-
mation rules, capturing general-purpose model queries including model valida-
tion constraints, or defining the behavioral semantics of dynamic domain-specific
languages [7]. A graph pattern (GP) represents conditions (or constraints) that
have to be fulfilled by a part of the instance model. A basic graph pattern con-
sists of structural constraints prescribing the existence of nodes and edges of
a given type, as well as expressions to define attribute constraints. A negative
application condition (NAC) defines cases when the original pattern is not valid
(even if all other constraints are met), in the form of a negative sub-pattern. A
match of a graph pattern is a group of model elements that have the exact same
configuration as the pattern, satisfying all the constraints (except for NACs,
which must not be satisfied). The specification for the complete query language
of the EMF-IncQuery framework was described in [6], the current tool paper
presents its implementation.
1 http://viatra.inf.mit.bme.hu/incquery/new

http://viatra.inf.mit.bme.hu/incquery/new


Example. We illustrate our approach on a simple demonstration domain of
Schools (encoded in EMF’s ECore language as illustrated in Figure 1) that man-
age Courses involving Teachers, and enroll their students assigned to Years and
SchoolClasses. Aside from simple EAttributes and EReferences, it also features
derived features that are marked as volatile and transient, i.e. not stored explic-
itly in instance models but rather calculated on-demand by hand-written code.
Such attributes or references usually represent a (simple) computed view the
model and are frequently supported by ad-hoc Java implementations integrated
into the EMF model representation.

Fig. 1. The domain metamodel of the case study

In this paper, we show how graph patterns and EMF-IncQuery as the un-
derlying execution engine can be used to ease the specification and automate
the efficient evaluation of such features. The graph pattern teachersWithMost-
Courses(S,T) (Figure 2) is used to express the semantics of the teachersWith-
MostCourses derived EReference (connecting School and Teacher in Figure 1,
highlighted with an ellipse), that is to identify those teachers who have the
maximum number of Course instances assigned (through the Teachers.courses
reference).

This graph pattern defines the target set of teachers by combining a negative
application condition (NAC) and cardinality constraints. It expresses that a
teacher T belongs to this set iff there is no other teacher T2 whose number of
courses M (the actual cardinality, i.e. number of elements connected through
the courses reference) would be larger than the number of courses N assigned
to T .

2.2 Execution of incremental queries

The overall development workflow of the EMF-IncQuery framework focuses
on the language tooling for specifying queries and then automatically generat-



1 pattern teachersWithMostCourses(S, T)=
2 {
3 School.teachers(S,T);
4 neg pattern moreCourses(S,T) = {
5 Teacher.courses(T,C) # N;
6 School.teachers(S,T2);
7 Teacher.courses(T2 ,C2) # M;
8 check(M > N);
9 }

10 }

Fig. 2. Graph pattern example in graphical and textual syntax

ing integration code that plugs into any existing EMF-based application. As a
novelty targeted towards simplification, EMF-IncQuery now also features an
interpretative query execution facility that allows the developer to specify ad-
hoc queries directly from Java code, without involving the tooling and the code
generator.

Fig. 3. Overview of the novel EMF-IncQuery architecture

The overall architecture of and EMF-based application built in EMF-IncQuery
is overviewed in Figure 3. Based on the query specification (supported by an
Xtext 2-based [8] editor, featuring syntax highlighting, code completion and
well-formedness validation), pattern matcher plugins are generated that can be
easily integrated to an existing Eclipse-based application. These plugins access
the core functionality of the system through the EMF-IncQuery API that ex-
poses three key novel services: (1) the Validation Engine provides a wrapper



to the EMF Validation service, to provide EMF-IncQuery-based on-the-fly
well-formedness validators using standard Eclipse Error Markers; (2) the Inter-
pretative pattern matcher provides an access point to quickly execute ad-hoc
queries directly from Java code; (3) the BASE 2 component provides frequently
used low-level incremental queries such as the instant enumeration of all instance
elements belonging to a given EClass, or reverse navigation along unidirectional
EReferences. BASE also provides a novel incremental transitive closure query
algorithm that can be used to incrementally compute reachability regions.

Benefits. At the core, the incremental evaluation and lifecycle management of
queries is facilitated by the RETE engine, originally developed for the Viatra2
model transformation framework [4]. Using this approach, the query results (the
match sets of graph patterns) are cached in memory, and can be instantaneously
retrieved when queries are issued. These caches are automatically and incremen-
tally maintained upon model updates, using automatic notifications provided
by EMF. There is a slight performance overhead on model manipulation, and
a memory cost proportional to the cache size (approx. the size of match sets).
These special performance characteristics make incremental techniques suitable
for application scenarios such as on-the-fly well-formedness checking, live model
transformation and other complex use cases.

3 Integrating incremental queries to the EMF modeling
layer

In this section, we outline how the efficient querying features of the EMF-
IncQuery framework can be integrated to EMF-based applications in a deep
and transparent way, through the incremental evaluation and maintenance of
derived features. The overall architecture of our approach is shown in Figure 4.

Fig. 4. Overview of the integration architecture

Here, the application accesses both the model and the query results through
the standard EMF model access layer (query results are represented as the values
2 http://viatra.inf.mit.bme.hu/incquery/base

http://viatra.inf.mit.bme.hu/incquery/base


of derived attributes or references) – hence, no modification of application source
code is necessary. In the background, Derived feature handlers (novel features of
the EMF-IncQuery API) are attached to the EMF .model plugin that integrate
the generated query components (pattern matchers). This approach follows the
official EMF guidelines of implementing derived features and is identical to how
ad-hoc Java code, or OCL expression evaluators are integrated.

Challenges of using derived features in EMF. In using derived features with
EMF-based applications, developers may encounter two key challenges. First,
depending on the complexity of the semantics of derived features, their evalua-
tion may impose a severe performance impact (since complex calculations and
extensive model traversal may be necessary for execution). Unfortunately, this
scalability issue will affect all other software layers using the .model code, in-
cluding the user interface, model transformations, well-formedness validators etc.
Second, due to the lack of propagating notifications for derived features, model
changes will not trigger e.g. user interface updates.

Our approach provides a solution for both of these challenges. As the per-
formance characteristics of the EMF-IncQuery engine have been shown to be
practically agnostic of query complexity and model size [3], derived features of
complex semantics and inter-dependencies can be used without severe evalua-
tion performance degradation. Additionally, as shown in Figure 4, the update
propagation mechanism of the RETE network (delta monitors) are connected
to the EMF Notification layer so that the application software components are
automatically kept up-to-date about the value changes of derived features.

Implementation details. In our prototype implementation3, we augmented the
architecture outlined above with a code generator that supports the automatic
generation of integration code (derived feature handlers) based on a simple speci-
fication model that encodes the core semantics of backing queries, that can either
be (i) a reference with a multiplicity of one (mapped to a scalar derived refer-
ence value) or ∗ (mapped to an unmodifiable EList as a derived reference value);
(ii) the cardinality (match set size) of the backing query (e.g. to support the
School.numberOfTeachers derived attribute in Figure 1).

The lifecycle of such handler objects is tied to the host EObjects, to enable
their garbage collection together with the instance model itself. Additionally,
they can be parameterized to use the EMF-IncQuery engine in the batch eval-
uation mode, which disables incremental update propagation, but may be more
efficient overall for rarely used queries, or queries whose incremental maintenance
would require too much memory.

4 Related work

EMF-IncQuery is not the first tool to apply graph pattern based techniques
to EMF [9,10], but its incremental pattern matching feature is unique.
3 http://viatra.inf.mit.bme.hu/incquery/examples/derivedfeatures

http://viatra.inf.mit.bme.hu/incquery/examples/derivedfeatures


Model queries over EMF. There are several technologies for providing declarative
model queries over EMF. Here we give a brief summary of the mainstream
techniques, none of which support incremental behavior.

EMF Model Query 2 [5] provides query primitives for selecting model el-
ements that satisfy a set of conditions; these conditions range from type and
attribute checks to enforcing similar condition checks on model elements reach-
able through references. Unfortunately, the expressive power of Model Query 2
is weaker than first order logic (and thus that of OCL and EMF-IncQuery).
For example, more complex patterns involving circles of references or attribute
comparisons between nodes cannot be detected.

EMF Search [11] is a framework for searching over EMF resources, with con-
trollable scope, several extension facilities, and GUI integration. Unfortunately,
only simple textual search (for model element name/label) is available by de-
fault; advanced search engines can be provided manually in a metamodel-specific
way.

OCL evaluation approaches. OCL [12] is a standardized navigation-based query
language, applicable over a range of modeling formalisms. Taking advantage of
the expressive features and wide-spread adoption of OCL, the project Eclipse
OCL provides a powerful query interface that evaluates OCL expressions over
EMF models. However, backwards navigation along references can still have low
performance, and there is no support for incrementality.

Cabot et al. [13] present an advanced three-step optimization algorithm for
incremental runtime validation of OCL constraints that ensures that constraints
are reevaluated only if changes may induce their violation and only on elements
that caused this violation. The approach uses promising optimizations, however,
it works only on boolean constraints, and as such it is less expressive than our
technique.

An interesting model validator over UML models is presented in [14], which
incrementally re-evaluates constraint instances whenever they are affected by
changes. During evaluation of the constraint instance, each model access is
recorded, triggering a re-evaluation when the recorded parts are changed. This
is also an important weakness: the approach is only applicable in environments
where read-only access to the model can be easily recorded, unlike EMF. Ad-
ditionally, the approach is tailored for model validation, and only permits con-
straints that have a single free variable; therefore, general-purpose model query-
ing is not viable.

5 Conclusions

Previously [3] we presented EMF-IncQuery as prototype framework for effi-
ciently executing complex queries over EMF models, which adapts incremental
technologies [4] for graph pattern matching. In the current paper, we present
an evolved tool that includes two key improvements compared to previous ver-
sions: (i) an Xtext2-based tooling that fully implements the extended graph



pattern language [6] and (ii) a new runtime architecture that features several
novel services including the on-the-fly validation engine and the interpretative
ad-hoc query evaluator, built on a rewritten core that provides core queries and
efficient transitive closures.

The secondary focus of this paper was a novel feature whereby queries can be
deeply and transparently integrated into EMF-based applications to facilitate the
efficient evaluation of derived features. The two key advantages of this approach
are: (i) complexity-agnostic performance characteristics that allow developers
to easily integrate derived references and attributes with complex semantics,
without a severe scalability impact, even over very large instance models; (ii)
transparent and automatic notification propagation that simplifies the integra-
tion to already existing user interfaces, model transformations and any other
code that uses EMF models.

References

1. The Eclipse Project: Eclipse Modeling Framework. http://www.eclipse.org/emf.
2. The Eclipse Project: MDT OCL. http://www.eclipse.org/modeling/mdt/

?project=ocl.
3. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös, A.:

Incremental Evaluation of Model Queries over EMF Models. In: Model Driven En-
gineering Languages and Systems, MODELS’10. Volume 6395 of LNCS., Springer
(2010)

4. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern
matching in the VIATRA model transformation system. In Karsai, G., Taentzer,
G., eds.: Graph and Model Transformation (GraMoT 2008), ACM (2008)

5. The Eclipse Project: EMF Model Query 2. http://wiki.eclipse.org/EMF/
Query2.

6. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A Graph Query Language for EMF
models. In: Proc. of ICMT’11, 3rd Intl. Conference on Model Transformation,
Springer (2011)

7. Syriani, E., Vangheluwe, H.: Programmed graph rewriting with DEVS. Applica-
tions of Graph Transformations with Industrial Relevance (2008) 136–151

8. The Eclipse Project: Xtext. http://www.eclipse.org/xtext.
9. Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Trans-

formations by Graph Transformation. In: MoDELS ’08, Springer (2008)
10. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-

preting story diagrams. In: Proceedings of GT-VMT 2009. Volume 18., ECEASST
(2009)

11. The Eclipse Project: EMFT Search. http://www.eclipse.org/modeling/emft/
?project=search.

12. The Object Management Group: Object Constraint Language, v2.0. (May 2006)
http://www.omg.org/spec/OCL/2.0/.

13. Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9) (2009) 1459–1478

14. Groher, I., Reder, A., Egyed, A.: Incremental consistency checking of dynamic
constraints. In: FASE 2009. Volume 6013 of LNCS., Springer (2010)

http://www.eclipse.org/emf
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://wiki.eclipse.org/EMF/Query2
http://wiki.eclipse.org/EMF/Query2
http://www.eclipse.org/xtext
http://www.eclipse.org/modeling/emft/?project=search
http://www.eclipse.org/modeling/emft/?project=search
http://www.omg.org/spec/OCL/2.0/

	Integrating Efficient Model Queries in State-of-the-art EMF Tools 

