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ABSTRACT
Design space exploration (DSE) aims to find optimal design
candidates of a domain with respect to different objectives
where design candidates are constrained by complex struc-
tural and numerical restrictions. Rule-based DSE [10, 14, 18]
aims to find such candidates that are reachable from an ini-
tial model by applying a sequence of exploration rules. Solv-
ing a rule-based DSE problem is a difficult challenge due to
the inherently dynamic nature of the problem.
In the current paper, we propose to integrate multi-object-

ive optimization techniques by using Non-dominated Sorting
Genetic Algorithms (NSGA) to drive rule-based design space
exploration. For this purpose, finite populations of the most
promising design candidates are maintained wrt. different
optimization criteria. In our context, individuals of a gener-
ation are defined as a sequence of rule applications leading
from an initial model to a candidate model. Populations
evolve by mutation and crossover operations which manip-
ulate (change, extend or combine) rule execution sequences
to yield new individuals.
Our multi-objective optimization approach for rule-based

DSE is domain independent and it is automated by tooling
built on the Eclipse framework. The main added value is to
seamlessly lift multi-objective optimization techniques to the
exploration process preserving both domain independence
and a high-level of abstraction. Design candidates will still
be represented as models and the evolution of these models
as rule execution sequences. Constraints are captured by
model queries while objectives can be derived both from
models or rule applications.
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1. INTRODUCTION
As a challenging branch of search based software engi-

neering (SBSE), design space exploration (DSE) aims at
searching through different design candidates to fulfill a set
of constraints and then proposing optimal designs with re-
spect to certain objectives. It frequently supports activ-
ities like configuration design of avionics and automotive
systems. Many of such traditional static DSE problems can
be solved by using advanced search and optimization al-
gorithms or constraint satisfaction programming techniques
[5, 10, 15, 18, 29].

In model-driven engineering (MDE), rule-based DSE [10,
14, 18] aims to find instance models of a domain that are
(i) reachable from an initial model by applying a sequence
of exploration rules, while (ii) constraints simultaneously in-
clude complex structural and numerical restrictions. Model
driven techniques offer expressive modeling languages and
advanced tools to capture the DSE problem of different do-
mains independently on a high level of abstraction close to
the domain itself. However, solving a rule-based DSE prob-
lem is a difficult challenge due to the inherently dynamic na-
ture of the problem. Such dynamic DSE problems may arise
in complex reconfiguration challenges of supervising cyber-
physical systems (CPS) or IT infrastructure [18] or quick fix
generation in domain-specific modeling environments [17].

As a practical observation, the solution space of a rule-
based DSE problem is dense in principle, but one cannot
put an a priori upper bound on the number of model ele-



ments used in a design candidate (i.e. model elements may
be created and deleted during exploration). Unfortunately,
this makes the exhaustive exploration of the design space
intractable. Furthermore, many practical problems necessi-
tate to continue the exploration of the design space incre-
mentally from a previous solution (instead of starting the
search from scratch each time). Such incremental solving
is rarely handled by state-of-the-art constraint solvers (as
demonstrated in [20]).
Rule-based model-driven DSE problems have additional

challenges also from an optimization perspective. First, some
objectives are not values of simple cost attributes but com-
plex model metrics calculated by model queries. Further-
more, certain cost calculations may depend on the sequence
of exploration rules applied on the design model. Finally,
we may not find a single combined objective function but
multiple objectives may need to be incorporated to identify
the best design candidates.
Existing rule-based DSE solutions exploit (1) model check-

ing with powerful graph-based symmetry reduction [14], (2)
dependency analysis and hints by formal abstractions [18] or
(3) different search strategies (e.g. hill climbing, simulated
annealing) [10]. As a commonality in these approaches, the
core exploration procedure follows a local-search based ap-
proach, i.e. it gradually extends the search towards promis-
ing candidates by priorities defined by local heuristics.
Global search techniques (like genetic algorithms or multi-

objective optimization) have already proved to be successful
in various MDE scenarios for finding constraints [16], model
transformations [25] or solving static DSE problems [35]
where an exhaustive search algorithm becomes infeasible.
Moreover, they provide graceful degradation for problems
where no solutions exist which meet all the objectives and
constraints by relaxing hard constraints to soft constraints.
In the current paper, we propose to integrate multi-object-

ive optimization techniques by using the Non-dominated
Sorting Genetic Algorithm (NSGA-II) [9] to drive rule-based
design space exploration. For this purpose, finite popula-
tions of the most promising design candidates are main-
tained wrt. different optimization criteria. In our context,
individuals of a generation are defined as a sequence of rule
applications leading from an initial model to a candidate
model. Populations evolve by mutation and crossover opera-
tions which manipulate (change, extend or combine) rule ex-
ecution sequences to yield new individuals. However, a key
technical challenge that we face in genetic rule-based DSE
is to preserve the feasibility of candidate solutions which
are generated using genetic operators. Indeed, in rule-based
DSE, crossing two feasible solutions, and/or randomly mu-
tating a feasible solution, may yield infeasible candidates if
the corresponding rule execution sequence is infeasible. In
our approach, candidate solutions generated using genetic
operators are automatically corrected to preserve their fea-
sibility.
The main added value of our multi-objective optimiza-

tion approach for rule-based DSE is to seamlessly lift multi-
objective optimization techniques to a domain-independent
model-level exploration process while preserving a high-level
of abstraction. Design candidates will still be represented
as models and the evolution of these models as rule execu-
tion sequences. Constraints are captured by model queries
while objectives can be derived both from models or rule ap-
plications. On the theoretical level, models are formalized

as graphs, model queries as graph patterns and exploration
rules as graph transformation rules, thus our work can be
considered as a multi-objective exploration of graph trans-
formation system. Our approach is supported fully auto-
mated tooling built on advanced components of the Eclipse
framework.

2. BACKGROUND

2.1 Motivating example
As a motivating example of the paper, we consider mod-

eling the configuration of a smart building which offers of-
fices to rent with highly configurable services such as fire
alarm, air conditioning and security monitoring (see Fig. 1).
A smart building is frequently considered as a cyber-physical
system (CPS) where services need to be deployed on both
embedded (sensors, controllers, etc.) and virtual (e.g. servers,
cloud) computational units, which significantly complicates
the design and maintenance of service configurations over a
changing infrastructure.

(a) Architecture

(b) Services and Requests
Figure 1: Configuration model of a smart building

In our smart building example, companies are offered to
rent offices with multiple rooms each of which can be con-
figured according to four service packages (see Fig. 1b):



● Basic: This package runs the compulsory fire alarm
service which requires one smoke sensor for each room.

● Comfort: This package also offers air conditioning by
measuring temperature by three sensors (per room)
and setting the required temperature. Measuring the
temperature also offers a backup solution for fire alarm
should the sensors fail.

● Secure: This package extends the Comfort package
to offer security surveillance by a video camera con-
tinuously recording events in the room and a motion
check application which highlight critical events auto-
matically.

● Max: This package enhances the Secure package by
providing a heat map of the room which can be used
for fire alarm as well as for surveillance purposes.

Two sample company requests are also listed in Fig. 1b
which summarizes the selected packages for a certain num-
ber of rooms together with the application instances to be
deployed and hardware devices to be installed. For instance,
the first request consists of 2 rooms with comfort pack-
age and 1 room with basic package, and it necessitates to
run smoke detector (SD) service (for 3 rooms, 1 device per
room), the measure temperature (MT) service (for 2 rooms,
3 devices per room) and the set temperature application (for
2 rooms, jointly installed on a compute server).

Domain metamodel. The main concepts of configuration
design for this smart building are generalized in the meta-
model of Fig. 2. Renting companies will issue Requests for
implying a set of Requirements each of which identifies a
required service (called application type, shortly ApplType)
and the number of redundant instantiations for running this
application (count attribute). Sensors and computation units
are uniformly called HostTypes. Each application type may
claim several host types and sufficient amount of resources
(e.g. memory, storage) for its execution as defined by a re-
source requirement (shortly, ResReq). For instance, calculat-
ing a heat map requires 5 GB memory and 3 GB permanent
storage as defined by the labels of dashed arrows in Fig. 1a.

Figure 2: Metamodel for smart building configuration

In the running system, multiple application instances, Ap-
plInst shortly, of an application type may exist each of which
is deployed on a host instance (shortly, HostInst) correspond-
ing to a specific host type. Such deployment consumes a

certain amount of resources in the host instance (up to its
total memory and storage) as specified by the correspond-
ing resource requirement. Application instances need to
be started after they are allocated to a host instance, and
stopped when they are no longer needed, which fact is rep-
resented by the state attribute.

2.2 A rule-based DSE problem
Configuring the smart building (i.e. installing devices, al-

locating and running applications) can be considered as a
design space exploration problem. However, this configura-
tion is not a static problem as (1) requests may change over
time (new requests arrive, existing ones are canceled) and
(2) certain faulty devices may no longer function. This way,
we are interested in an incremental approach for calculating
a new configuration which starts from the last configuration
and incorporates the changes in the context and require-
ments of the system. Furthermore, there are multiple con-
straints and objectives which needs to be incorporated for a
good candidate configuration.

Figure 3: Constraints for smart building configuration

Constraints.
Constraints capture valid or invalid configurations. They

are frequently formalized by graph patterns as well or ill-
formedness criteria which capture the violations of the cor-
responding constraint. In our example (see Fig. 3),

● satisfiedReq(E) identifies a requirement E of a re-
quest R which is instantiated into a sufficient number
of application instances (i.e. the number of instances
is equal to the required redundancy);

● allocatedAppl(AI) identifies an application instance
AI which is allocated to a host instance HI to fulfill
the resource requirement between the corresponding
application type AT and host type HT ;

● appInstRun(AI) identifies an application instance of
a configuration which is running;

● extraHost(H) identifies a host instanceH which does
not host any application instances.

The first three constraints capture desired situations, while
the fourth constraint captures an undesired case. All these
constraints are captured by means of graph patterns [6]
which denote structural conditions that the underlying graph
model needs to respect. Given a constraint c and an instance
model M , m ∶ c↦M denotes a graph morphism identifying
a violating fragment of M .

Objectives.
In order to obtain a good configuration, we need to address

various objectives:

● Ideally, all configuration constraints need to be satis-
fied, thus this is a top-level objective.



Figure 4: Exploration rules of the smart building example

● The smart building operators aim at maximizing the
utilization of compute servers. Here, the best utiliza-
tion of memory or storage is incorporated for each
server, and the average of utilization is taken as a re-
source objective.

● Installing new host instances and other configuration
operations imply certain cost. Minimizing such costs
is another objective of configuration design.

In our context, we distinguish between model objectives
which are calculated from design candidates (e.g. by query-
ing the underlying model) and trajectory objectives which
are calculated along trajectories of applied exploration rules.

Exploration rules.
In rule-based DSE, design candidates are allowed to evolve

by executing exploration rules. In the paper, such explo-
ration rules are captured by graph transformation rules r =
(L,R) where L denotes the left-hand side graph pattern pre-
scribing the precondition of rule application, while R declar-
atively describes the effects of the rule. Rules may have (i)
input and output parameters to pass contextual objects to
other rules, and (ii) costs incurring when a rule is applied.
A rule r is applied on a model M by (1) finding a match m
of graph pattern L in M (denoted as m ∶ L ↦ M and also
called an activation of rule r), (2) then removing elements
from M which have an image in L∖R and finally (3) creat-
ing new elements in M for elements in R∖L. As a result of
rule application, we obtain a new model M1 which step is

denoted as M
r,mÐ→M1. The exploration rules of our example

are depicted (in a combined notation like in GROOVE [14])
in Fig. 4.

● Rule newHostInst installs a new host instance HI of
a host type HT and sets the available resource param-
eters to that of the host type.

● Rule newApplInst creates a new application instance
AI in accordance with the count attribute of require-
ment E (by reusing the condition defined by graph
pattern unsatisfiedReq(E)).

● Rule start initializes a stopped application instance
AI which is already allocated to a host device while
rule stop stops a running instance.

● Rule allocate aims to allocate (an unallocated and
stopped) application instance AI to a host instance
HI in accordance with the resource requirement RR
provided that sufficient memory and storage space is
still available at HI.

● Rule delete removes an existing allocation of a stopped
application instance AI from a host instance HI, and
frees the related memory and storage resources of HI.

● Rule move combines the allocate and delete rule into
one, and changes the allocation of an application in-
stance AI from host instance HI to HN , and adjusts
the resource usage accordingly.

A cost is associated to the application of each exploration
rule. The cost of rule newHostInst is specific to the matched
host type element HT as defined by the black circles in
Fig. 1a, while the cost of all other rules are defined in gray
circles in Fig. 4.

3. APPROACH
In this section, we describe our approach to integrate

multi-objective optimization techniques by using the Non-
dominated Sorting Genetic Algorithm (NSGA-II) [9] to drive
rule-based design space exploration. In the following, we
describe the basic principles of the used multi-objective op-
timization technique, then we present an overview of our
approach and its implementation details.



Figure 5: Overview on NSGA-II process

3.1 Optimization algorithm principles
Fig. 5 shows an overview on the NSGA-II. The aim of

NSGA-II is to find a set of Pareto optimal solutions in a sin-
gle run. As a genetic algorithm, NSGA-II performs a global
exploration of the search space by making and evolving fi-
nite populations of candidate solutions using selection and
genetic operators. The output of the algorithm is a set of the
fittest solutions (i.e., the Pareto front) produced along all
generations. The decision maker can select one of the fittest
solutions according to his/her preference (e.g., the solution
which satisfies all the requirements).
When searching for solutions to a problem using Pareto

optimality (i.e., multi-objective), the search yields a set of
solutions that are not-dominated [37]. If all objective func-
tions are for maximization, we say that a feasible solution
s1 dominates another feasible solution s2 (s1 ≻O s2), if and
only if, s1 is better than s2 for at least one objective, while
s2 is not better than s1 regarding all the objectives in O [9]:

∃oj ∈ O ∶ oj(s1) > oj(s2) ∧ ∄oi ∈ O ∶ oi(s2) > oi(s1) (1)

NSGA-II sorts solutions in ordered fronts, from best to worst,
according to their non-domination level.
However, from a practical MDE viewpoint, constrained

multi-objective optimization is important in the context of
DSE. This is due to the fact that the primary objective of
a DSE approach is to find valid solutions that satisfy all the
requirements of the underlying problem. Other objectives,
such as reducing the cost of obtained solutions, could not
add an effective value to the optimization results unless the
obtained solutions are valid. Hence, we adapt the constraint-
handling strategy with NSGA-II that was proposed in [9, 22].
In the presence of constraints (i.e., requirements), a solu-

tion can be either valid (i.e., it satisfies all the constraints)
or invalid (i.e., it does not satisfy all the constraints, totally
or partially). Considering the top-level preference of con-
straints’ satisfaction over other objectives that we described
in Sec. 2.2, the domination function in Equation (1) is mod-
ified as follows:

Definition. A solution s1 is said to constrained-dominate
a solution s2, if one of the following conditions is true:

1. s1 is valid and s2 is not.

2. Both solutions, s1 and s2, are invalid, but s1 has a
smaller overall constraint violation.

3. s1 and s2 are valid and s1 dominates s2 with the usual
domination function (Equation (1)) .

The idea behind this constrained-domination strategy is
that, on the one hand, any valid solution has a better non-
domination rank than any invalid solution. On the other
hand, valid solutions are ranked into their non-domination
level based on their associated quality as measured by the
values of objective functions. And, invalid solutions are
ranked into their non-domination level in descending order
according to their associated constraint violation.

In the following we present our adaptation of the NSGA-II
to the problem of rule-based DSE by defining our implemen-
tation of the following elements:

● Representation of candidate solutions (individuals).

● Optimization objectives.

● Genetic operators used to explore the search space.

3.2 Approach overview

The optimization inputs and procedure. Fig. 6 shows an
overview of our approach. Given an initial model M0 be-
longing to a domain model DM , a set of requirements to
be satisfied Req, and a set R of exploration rules, our multi-
objective search-based approach for rule-based DSE explores
the design space starting from M0 by maintaining finite pop-
ulations of the most promising design candidates wrt. the
set of requirements Req and other optimization criteria O.
In our approach, each individual of evolving populations is a
map of a candidate model Mn obtained as a sequence of rule
executions, denoted as r⃗n, leading from the initial model M0

to Mn: r⃗n =M0
r1,m1Ð→ M1 . . .

rn,mnÐ→ Mn, where ri ∈ R and mi

is the match of ri in Mi.
The generation of the initial population starting from M0

(step 1 of the optimization process in Fig. 6) is achieved
by applying random (but executable) exploration rules from
R on M0. The second step of the optimization process in
Fig. 6 is based on the NSGA-II as explained in Sec. 3.1 and



Figure 6: Approach Overview

Fig. 5, where populations evolve by applying mutation and
crossover operations which change and/or extend existing
rule execution sequences to yield new individuals. The re-
quirements are defined as soft constraints C that are cap-
tured by model queries (see Fig. 3) while other optimization
objectives can be derived both from models or rule execu-
tion sequences. Each constraint ci in C can be associated
to a specific weight wi describing the relative importance
of this constraint, thus each violation of ci (calculated as a
match of the corresponding graph pattern) will be weighted
accordingly.

Candidate solution representation. The multi-objective
rule-based design space exploration problem can be defined
as: DSE = (M0,C,O,R) whereM0 denotes the initial model,
C denotes the (structural and attribute) constraints char-
acterizing valid design candidates, O is a set of numerical
objectives which needs to be optimized, while R is a set of
exploration rules describing valid evolutions of the design.
A candidate solution of a DSE problem is a pair Scand =
(Mcand, ⃗rcand) where (1) the candidate model Mcand fulfills
all (or some) constraints in C and (2) it is reached from
the initial model M0 by a sequence of rule executions ⃗rcand.
A model objective om is evaluated for a candidate solution
Scand on the candidate model Mcand while a trajectory ob-
jective ot for Scand is evaluated on the sequence of rule ex-
ecutions ⃗rcand leading to Scand. Considering our running
example, reducing the number of constraint violations is a
model objective or increasing utilization, while reducing the
cost associated to the trajectory ⃗rcand is a trajectory objec-
tive.

Definition of Feasible and Valid candidate solutions.
By definition, a candidate solution is called feasible if its rule
execution sequence r⃗ is executable. In a genetic approach
for rule-based DSE, infeasible solutions can occur when ap-
plying genetic operators (e.g., crossover) on existing feasible
solutions. However, in our approach, such infeasible solu-
tions are automatically corrected (or truncated) to guaranty
their feasibility, or omitted if they cannot be corrected.

Consider newHostInst(HI);allocate(AI,HI,RR) which
is a rule execution sequence that aims to create a new host
instance HI and then allocate an application instance AI
to it is not executable if there is no application instance AI
to be allocated. To correct this infeasible sequence, the cre-
ation of a new application instance by rule newAppInst(AI),
should precede the allocate(AI,HI,RR) rule. Otherwise,
the sequence must be truncated so that it includes only the
rule execution newHostInst(CS1).

A feasible solution S = (M, r⃗) is defined as a valid solution
if its associated model M fulfills all constraints in C: i.e.,
∀c ∈ C /∃m ∶ c↦M .

The objective of constraints fulfillment. As constraints
are formalized by graph patterns, in order to evaluate the de-
gree of well-formedness constraints are met or ill-formedness
constraints are violated in a candidate model Mn, we use the
weighted sum of the number of matches for the correspond-
ing graph patterns P .

For instance, let us evaluate the constraints of Fig. 3 on a
sample model M of Fig. 7. For this model, our optimization
approach will returns that the graph pattern satisfiedReq
has 1 match and the graph pattern extraHost has 1 match.
In our example, the weight of satisfiedReq is set to w1 = 2
and the weight of extraHost is set to w2 = −1, therefore, the
degree of constraint violations in M is: ConstV iol(M) =
1 ×w1 + 1 ×w2 = 1.

Figure 7: Objective of constraint fulfillment

Formally, letmatches(p,M) return the number of matches
of the graph pattern p ∈ P in the model M , and let wp de-
note the weight associated to the constraint described by p
(where wp is a positive value for well-formedness constraints
and a negative value for ill-formedness constraints). Then
our objective of constraints fulfillment is defined as follows:

Obj.1
ConstFulfillment(M) = ∑

∀p∈P
wp ×matches(p,M)

The primary optimization objective of our approach, as ex-
plained in Sec. 3.1, is to maximize ConstFulfillment(M),
i.e. to maximize the fulfillment of positive constraints and
minimize the degree of negative constraint violations.

Model-specific objectives. Our approach allows to define
domain-specific objectives captured by graph patterns over
the underlying model. Thanks to the incremental query
evaluation approach (see Sec. 3.3), the re-evaluation of such
model objectives is instantaneous upon model changes.

In the context of our motivation example in this paper, we
define the model-specific objective of maximizing the utiliza-
tion of compute servers (CSUtil), so that the best utilization
of memory or storage is incorporated for each server.



Let Util(CSi) return the (normalized) resource utilization
for the computer server CSi while the system-level utiliza-
tion of computer servers CSUtil for a solution S = (M, r⃗)
is defined as the mean of the utilization of each individual
computer server element in M :

Obj.2

CSUtil(S) = 1

n
∗

j=n

∑
j=1

Util(CSj)

In the above equation, n is the number of computer server
instances in the underlying model M .

Rule sequence objectives. Two valid solutions can be ach-
ieved via two different feasible sequence of rule executions.
Therefore, we may define objectives specific to rule execution
sequences to evaluate the cost incorporated in achieving a
valid solution along a specific path.
For this purpose, we define the cost of a feasible solution

S = (M, r⃗) as the sum of costs of all rule executions in its
sequence of rule executions r⃗:

Obj.3

Cost(S) =∑Cost(Mi−1
ri,miÐ→ Mi) ∀Mi−1

ri,miÐ→ Mi ∈ r⃗
Cost(S) takes its values in the interval [0..∞[. Minimizing
Cost(S) is an objective of our optimization approach. Com-

puting the cost Cost(Mi−1
ri,miÐ→ Mi) of a rule execution in

r⃗ depends on three parameters to be defined by the domain
experts:

● Fixed cost: the fixed cost Cb of the applied rule ri;

formally, Cost(... ri,miÐ→ ...)F = Cb(ri). As defined in
Fig. 4, creating an application instance will always have
the same cost, which is Cb(newApplInst) = 2.
● Match cost: the match cost Cm which is associated to

the match mi in Mi; formally Cost(...
rj ,mjÐ→ ...)M =

Cb(rj) + Cmj (rj), where Cmj (rj) returns the cost of
rj according to its match mj . For instance, the cost
of rule newHostInst is specific to the matched host
type element HT (as defined by the black circles in
Fig. 1a).

● Sequence cost: the sequence cost Cs may depend on

the position of the rule execution ...
ri,miÐ→ ... in r⃗. For

this purpose, we define the cost of such a rule execution
as relative to its position in r⃗ on the same match m:

Cost(...
rk,mkÐ→ ...)S = position(rk,mk) × Cost(...

rk,mkÐ→
...)M , where position(rk,mk) returns the position of
rk application on the same match mk in r⃗.

Genetic operators (mutation and crossover). In this pa-
per, we define and use different types of mutation and cross-
over operators for exploring the design space. In our con-
text, mutating a solution S = (M, r⃗) means to modify the
sequence of rule executions r⃗, which is conceptually different
from most genetic approaches used for DSE purposes. This
can be achieved in different ways:

● Add new rule execution: a new sequence of rule ex-
ecutions r⃗′ is generated by selecting an appropriate
exploration rule r′ from R, that can be applied on M ,

and execute it: r⃗′ = r⃗ + {M r′,mÐ→ M ′}

● Delete a random rule execution: a new sequence of rule
executions r⃗′ is generated by deleting a random rule
execution rei in r⃗: r⃗′ = {re0, . . . , rei−1, rei+1?, . . .?}.
The question marks in the aforementioned sequence
denote the execution rules which will be checked for
executability after delete is performed. Indeed, after
deleting rei, the executability of the new sequence r⃗′ is
checked starting from the rule execution rei+1, so that
if rei+1 is not executable anymore it is then ignored
(removed from the sequence), and so on for each rei+k,
k > 1.
● Swap between two rule executions: a new sequence of
rule executions r⃗′ is generated by selecting a random
rule execution rei in r⃗, then selecting another rule ex-
ecution rej (j > i) in r⃗, that can replace rei and still
executable, then swap between rei and rej so that:
r⃗′ = {re0, . . . , rej , rei+1?, . . . ?, rei?, rej+1?, . . . ?}. Sim-
ilarly to the case of delete a random rule execution
discussed above, the executability of the new sequence
r⃗′ is checked starting from the rule execution rei+1.

The crossover operators apply on two individuals repre-
sented by the sequences of rule executions of two parent
solutions S1 = (M1, r⃗1) and S2 = (M2, r⃗2), and generate
two new offspring individuals (children). Fig. 8 describes
the three crossover operators that our optimization process
uses:

(a) One-point crossover

(b) Cut-and-splice crossover

(c) One-point permutation crossover
Figure 8: Crossover operators

● One-point crossover (Fig. 8a): a single crossover point
on both sequences of rule executions of parents is se-
lected. All rule executions beyond that point in either
sequences of rule executions are swapped between the
two-parent sequences. The resulting sequences of rule
executions are the children.

● Cut-and-splice crossover (Fig. 8b): cut-and-splice cross-
over is a variation of the one-point crossover where the
difference is each parent’s sequences of rule executions
has a separate choice of crossover point. As a result,
the children sequences of rule executions will have dif-
ferent length than that of their parents.



● One-point permutation crossover (Fig. 8c): in this cross-
over operator, every rule execution rei in either se-
quences of rule executions (parents) will have an id.
This id is based on the applied rule ri and the match
element mi of rei. Hence, two rule executions, ri and
rj , can have the same id iff they are applications of
the same rule r on the same match m. Represent-
ing the rule executions by their ids, a sequence of rule
executions will have a permutation representation, as
in Fig. 8c. With the one-point permutation crossover,
one crossover point is selected on both sequences of
rule executions of parents, from the first (second) par-
ent the permutation is copied up to this point, then
the second (first) parent is scanned and if the id of
the rule execution is not yet in the offspring, the rule
execution is added.

For every crossover operation, our approach performs an
automatic executability check of rule executions occurring
after the cut point(s) in children sequences of rule execu-
tions. The correction mechanism is identical to that used in
the delete and swap mutations that we described above.

3.3 Implementation Overview
The proposed framework has been fully automated by im-

plementing it on top of the ViatraDSE framework [18]. In-
put models and design candidates are represented as Eclipse
Modeling Framework (EMF) models. The open source EMF-
IncQuery [36] framework is used for evaluating constraints
and calculating the values of objectives over instance models
incrementally upon model changes. Finally, operations are
captured by graph transformation rules. Additional search
and configuration parameters can be set prior to starting a
multi-objective optimization run.
For each individual in a population, we store the sequence

of rule applications that leads to them from an initial model,
thus individuals get recalculated several times. However,
due to the incremental transformation support by EMF-
IncQuery, this recalculation is very fast. Furthermore, each
individual can be processed in parallel by different threads
to speed up the exploration process.
Implementation challenges included to (1) identify if two

individuals are identical in a population and (2) to efficiently
encode the individuals themselves. Instead of performing
costly graph isomorphism checks to address (1), we rely
upon the vector of numeric objectives: if two individuals
have the same values for all objectives, then one of them
is removed from the population. For (2), we use domain-
specific state encodings to identify and store matches of rules
in order to replay them when deriving a new individual.

4. EXPERIMENTAL EVALUATION
As there are no widely established benchmarks available

for evaluating rule-based DSE approaches, we carried out
experimental evaluation in the context of our case study.
For this purpose, we compare our multi-objective optimiza-
tion (NSGA) approach with (1) random simulation (Ran-
dom) and (2) a fixed priority local search (FPLS) strategy
used as a basis of comparison in [18]. As a consequence, the
DSE problem is identical in both cases, furthermore, the
evaluation of graph patterns and execution of graph trans-
formation rules is carried out by the same implementation.

This way, any difference between the measurement results is
expected to be affiliated to the substantially different search
strategies. Our measurements aim to address which DSE
approach finds better candidates wrt. different objectives.
For this purpose, we test the following hypothesis using two-
tailed Wilcoxon tests:

H0 There is no significant evidence that NSGA outper-
forms FPLS and/or Random.

H1 There is a statistical evidence that NSGA outperforms
other DSE approaches wrt. different objectives.

4.1 Experimental scenario

In our experimental scenario, we generate requests for an
increasing number of rooms (4, 6, 8, 12) with an equal use
of all packages (and respective model sizes of 130, 200, 230
and 330 graph elements). The initial model only contains
the requests with requirements and the application and host
types but no host instances are available. Therefore, it is the
role of the DSE process to (1) create a sufficient number of
application and host instances, (2) allocate application in-
stances to host instances, and then (3) start and stop the ap-
plication instances by applying the appropriate exploration
rules. In the most complex case, the different exploration
techniques had to synthesize a rule sequence consisting of
over 200 steps.

In a preparatory phase, we experimented with different
configurations of our multi-objective DSE approach, and we
decided on the most promising configuration parameters,
such as population size of 15 individuals, iterations between
400 and 1200 steps, crossover by permutation, and high rate
of mutations. Our measurements were run on 8-core desktop
computers with 32 GB of RAM running on Linux operating
system. The used Java version was 1.7.0 55 and the heap
size was 24GB.

Then for the experiments, we set up a timeout of 2 minutes
for test cases (except for the largest example where it was
5 minutes) and run 30 experiments on the different problem
sizes. One experiment was constructed as follows:

● NSGA: We selected population size pop and iteration
number it for a problem size, and run our algorithms.
At the end of each run, we selected only one solution
from the Pareto front produced by NSGA. We selected
the solution which has the best constraints’ fulfillment
value. If several solutions have the best constraints’
fulfillment value, then we select the solution which is
characterized by the minimal cost and/or the maxi-
mum usage of computer servers.

● Random: We executed pop × it random simulation
runs and recorded the best result.

● Fixed priority LS (FPLS): We set up priorities in
a way to guarantee that all application instances will
eventually be allocated to host instances. Our priori-
ties guaranteed that the first three soft constraints will
definitely be guaranteed, but we may generate more
host instances than necessary.



Figure 9: Quality of NSGA solutions produced in 30 runs for
different problem sizes, as measured by the measurements
normalized constraints’ fulfillment, cost and computer server
utilization

4.2 Results analysis
Before comparing the results of our approach NSGA with

those of FPLS and Random, we analysis the quality of NSGA
solutions. Figure 9 shows the distribution of NSGA pro-
duced solutions in 30 runs for considered problem sizes (4,
6, 8 and 12 requested rooms). The figure shows that in all
considered scenarios, NSGA produced solutions have over-
all good quality. Considering all the produced solutions
(30runs × 4scenarios = 120solutions), the minimum fulfill-
ment of constraints is above 80%, and for the major body
of produced solutions, the fulfillment of constraints is above
90%. Analyzing the evolution of the mean value of con-
straints’ fulfillment through different problem sizes, we find
that it takes its minimum value, around 90%, in the prob-
lem size 12 where the incorporated cost in the sequences of
rule executions is relatively small, as compared to the cost of
other solutions in the problem size 12. Indeed, this relative
low fulfillment of constraints is mainly due to the following
fact: the optimization process was stopped before reaching
sequences of rule executions that have enough depth to sat-
isfy all the requirements associated to this problem size. In-
creasing the number of iterations of the optimization process
in this problem size, NSGA was able to find better solutions
in terms of constraints’ fulfillment, as demonstrated by so-
lutions which have high cost. As for smaller problem sizes,
such as in the scenarios of 4 and 6 requested rooms, in al-
most all runs NSGA was able to find fully valid solutions
that satisfy all the constraints.

Table 1: Comparing between the results of our approach
NSGA and FPLS, and between the results of NSGA and
Random, with different problem sizes with regard to the
number of requested rooms: two-tailed Wilcoxon tests with
α = 0.05 and adjusted p.value using the Benjamani and
Hochberg (BH) correction for multiple tests.

∆(NSGA - FPLS) ∆(NSGA - Random)
Pb Const. Solution CS Const. Solution CS
size Ful. Cost Util. Ful. Cost Util.

4 +20** –369** +0.32** +44** –145** +0.19**

6 +27** –559** +0.37** +91** –118** +0.06

8 +20** –746** +0.46** +92** –239** +0.22**

12 +6 –1058** +0.51** +55** –8 +0.18*

Values in bold-face denote that NSGA results outperformed the re-
sults of FPLS and/or Random, with statistical significance. ** and
* denotes results which are statistically significant at α = 0.01 and
α = 0.05, respectively.

To confirm our claim that NSGA produces good results,
we compare NSGA’s solutions to those produced by FPLS
and Random. Table 1 shows clearly that NSGA outper-
forms both FPLS and Random, with statistical evidence, in
almost all cases. Indeed, only in the problem size 12, there
is no significant statistical evidence that NSGA outperforms
FPLS with regard to constraints’ fulfillment. However, in
this case, NSGA significantly outperforms FPLS in reducing
the cost of solutions and increasing the usage of computer
server resources. Hence, NSGA overall significantly outper-
forms FPLS, and the same finding apply for the Random
approach. As a consequence, we reject the null hypothesis
H0 and accept H1.

5. RELATED WORK
Rule based design space exploration frameworks. Mod-
el checking approaches to analyze GT systems are similar to
our approach as they also perform state space exploration.
One can categorize them as compiled approaches such as
[2, 3, 11, 12, 34], which translate graphs and GT rules into
off-the-shelf model checkers to carry out verification, and
interpreted approaches like [1, 26, 30], which store system
states as graphs and directly apply transformation rules to
explore the state space, similarly to our approach.

In [14] the state space explored by the GROOVE frame-
work is stored as a structured graph model that can be
queried using logical expressions. This approach allows the
evaluation of trajectories using cost functions defined after
the exploration and even the combined assessment of multi-
ple solutions.

Common in these approaches that they place emphasis
on exhaustive traversal (e.g. by optimizing the storage of
individual states), while we aim at finding solutions quickly
using genetic algorithms.

In [10] the T-Core framework is used for implementing
typical meta-heuristic exploration strategies, such as hill
climbing and simulated annealing using the transformation
primitives of the framework while the operations are speci-
fied as graph transformation rules. As a distinguishing fea-
ture, our approach supports trajectory based objective def-
inition and mutation operations.

Compared to previous work of the authors, we extend
our model-driven design space exploration framework [18]
by providing support for multi-objective optimization al-
gorithms that complement our guided local-search based
approaches [19]. The application of multi-objective ap-
proaches in a model-driven DSE context provides a unique
combination of expressiveness and thus allows its application
to novel problem domains.

Other design space exploration. The DESERT tool suite
[29] provides model synthesis and constraint-based DSE for
DSMLs with structural semantics, using ordered binary de-
cision diagrams for encoding and pruning the design space.
Saxena and Karsai [32] present a generic DSE framework
extending upon DESERT by supporting arbitrary analysis
tools and includes model transformations for mapping de-
sign problems to intermediate and low-level formats.

The OCTOPUS Toolset [5] uses an intermediate represen-
tation for design problem specification and performs DSE
using integrated analysis tools. It has been successfully ap-
plied to design software-intensive embedded systems [4].



The Gaspard Framework [15] is specifically focused on
the design of massively parallel embedded systems and uses
multilevel modeling where high-level UML models are auto-
matically refined to allow design space exploration to eval-
uate performance characteristics through simulations.
An efficient design space exploration approach was also

presented built on the FORMULA framework in [23]. The
design problem is described using domain-specific languages
and exploration is done with symbolic execution and auto-
matic theorem proving by an SMT solver.
These are all compiled approaches, where the design prob-

lems are specified as models and model transformations are
applied to derive inputs for third party analysis tools (e.g.,
SMT or SAT solvers). These analysis tools then perform
the exploration and propagate the results back to the orig-
inal model. However, as the analysis tools are usually used
as black boxes when exploring the design space, they cannot
be easily extended to support conceptually novel exploration
algorithms (e.g., NSGA-II).
[28] presents a framework for the automatic deployment of

software components to hardware architecture that uses de-
sign space exploration to find deployment alternatives that
offer near-optimal reliability characteristics. The design prob-
lem consists of architecture models annotated with reliability-
relevant properties, while the exploration uses an evolution-
ary algorithm to find possible alternatives. Unlike our ap-
proach, in this work (and also a follow-up paper [27]) global
constraints are set as hard selection criteria to prevent the
exploration (optimization) of invalid solutions.
Schätz et al. [33] developed an interactive, incremental

process using declarative transformation rules for driving
the exploration. The rules are modified interactively (user
guided) to improve the performance of the exploration, while
our approach uses genetic algorithms to guide the mutation
and crossover operations to find solution models.

Multi-objective optimization in model driven engineer-
ing. Multi-objective optimization techniques are widely used
in Model Driven Engineering (MDE) field [13, 16, 31, 35].
Recently, Kessentini et al. [24] proposed an MDE-based
framework for easing the adoption of search-based techniques
(such as genetic algorithms) to MDE problems. In this work,
the authors describe the logic layer of their MDE-based
framework based on previous experiences in using SBSE in
hand-crafted applications. However, the realization of the
framework is only planned as future work. Moreover, it is
not clear how the proposed framework can be adopted for
rule-based DSE. Etimaadi and Chaudron [13] proposed the
AQOSA tool which uses a model-based approach to eval-
uate component-based software architecture quality. Simi-
larly to our work, AQOSA uses multi-objective evolutionary
algorithms to automatically optimize software architecture
design with regard to multiple quality objectives, such as
response time, processor utilization, safety, etc.
Despite the popularity of applying search-based techniques

for MDE problems, to the best of the authors’ knowledge,
there is not existing work in the literature dealing with rule-
based DSE using multi-objective optimization techniques.
Indeed, existing work on Automatic Design Space Explo-
ration (ADSE) using multi-objective optimization techniques
are not rule-based DSE, and they are proposed for specific
domain problems. For example, Calborean et al. [8] pro-
posed recently the FADSE (Framework for ADSE) for DSE

of computer systems using different multi-objective search-
based algorithms. In this paper, the authors compare the re-
sults produced by different genetic algorithms for optimizing
the parameters of the Grid ALU Processor (GAP) microar-
chitecture and the post-link code optimizer GAPtimize. In
their framework, application-specific rules that describe ex-
isting knowledge can be defined and used as constraints to
constrain the DSE process [21]. A similar work is performed
by Bolchini et al. [7]. Bolchini et al. propose a framework
based on the multi-objective genetic algorithm NSGA-II for
DSE of reliable Field Programmable Gate Array devices.

The contribution of our approach over existing multi-objec-
tive optimization for DSE is that our approach is generic
so that it can be extended and applied to other domains.
Moreover, our approach uses exploration rules to guide the
DSE process, while constraints are used to describe the re-
quirements that must be fulfilled. Furthermore, unlike ex-
isting approaches which also used the NSGA-II (e.g., [7,
8, 21, 31]), our approaches adapt the constraint-dominate
strategy of NSGA-II so that constraints’ fulfillment is de-
scribed as a top-level soft optimization objective, rather than
a reward/penalty parameter or as a hard selection criterion.
Hence, our approach can even be applied to optimize an ex-
isting invalid solution with regard to the top-level objective,
which is minimizing constraint violation.

6. CONCLUSIONS
In the paper, we proposed to integrate constrained multi-

objective optimization as a search strategy for rule based
design space exploration frameworks. In contrast to exist-
ing genetic approaches for design space exploration, in our
approach, a genetic population consists of rule execution
sequences from an initial model to design candidate, con-
straints are captured by model queries, objectives are cal-
culated from models or rule sequences, while crossover and
mutation operations are manipulating rule sequences.

A first key challenge in this setup is that traditional en-
coding of populations as fixed width bit vectors is unable
to represent rule sequences of increasing depth, while it is
very difficult or impossible to give a priori upper bounds
for feasibility checks. Moreover, unlike in most application
scenarios of genetic algorithms, crossover and mutation op-
erations may derive non-executable application sequences as
individuals which must not be added to a population. As a
consequence, we had to integrate multi-objective optimiza-
tion techniques to a model-driven rule-based DSE framework
as a mapping from a rule based DSE to a genetic algorithm
proved to be infeasible.

Our initial experiments demonstrated that multi-objective
optimization is an effective strategy for solving rule-based
design exploration problems. However, using a randomly
synthesized initial population appears to be suboptimal choice
in our context. Our future work will aim at investigating
other strategies for this purpose.
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bie Ben Atitallah, Anne Etien, Philippe Marquet, and
Jean-Luc Dekeyser. A model-driven design framework
for massively parallel embedded systems. ACM Trans-
actions on Embedded Computing Systems (TECS),
10(4):39, 2011.

[16] Mark Harman, S. Afshin Mansouri, and Yuanyuan
Zhang. Search-based software engineering: Trends,
techniques and applications. ACM Comput. Surv.,
45(1):11:1–11:61, December 2012.
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