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I. Introduction

Model transformations, used for various tasks, such as formal model analysis or code generation are
key elements of model-driven development processes. As the complexity of developed model transfor-
mations grow, ensuring their correctness becomes increasingly difficult. Nonetheless, error detection
is critical as errors can propagate into the target application.

Various analysis methods are being researched for the validation of model transformations, such
as model checking [1] or static analysis [2] based approaches. However, there are further methods
supporting the development and validation of traditional programming languages, and their application
to model transformation programs can raise the maturity of the technology.

Program slicing [3] techniques are used to calculate parts (called slices) of a program that (poten-
tially) affect the values computed at a selected point of the program. The generated slices can be used
in several ways: (1) they can be simply displayed to the developer as a filtered version of the program;
(2) as the slices represent a small, cohesive unit of the program, various types of analysis can be exe-
cuted on them instead of the entire program, resulting in performance and/or precision gain; and (3) as
the dependencies between program statements are explored to generate the slices, this information can
be re-used in different analysis techniques.

The current paper presents a slicing approach for model transformation programs based on depen-
dence graphs. The generated slices are then used to perform def-use analysis to check for uses of
undefined variables and unused variables (approach 3). We demonstrate this approach using the trans-
formation language of the VIATRA2 model transformation framework [4] over a Petri net simulator
transformation, however it is applicable to other languages and transformations as well.

Petri nets are bipartite graphs with two disjoint set of nodes: Places and Transitions. Places can
contain an arbitrary number of Tokens, that represents the state of the net (marking). The simulator
changes this state by a process called firing: from every input Place of a Transition a Token is removed
(if there is none to remove, the Transition must not fire), then to every output Place a Token is added.

II. Overview of the Approach
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Figure 1: Overview of the Approach

Our analysis process is depicted in Figure 1. At first, the transformation program is read, and the de-
pendencies between the program statements are collected into a system dependence graph (SDG) [5].



These graphs are labeled graphs, their nodes represent the program statements, while the edges de-
scribe the various dependency relations between them, such as control, data or call dependencies. The
calculation of these graphs is detailed in Section III.

The SDG can be used to calculate two different kind of slices: forward and backward slices.
The backward slicing problem of a program can be summarized as follows: for a selected program

statement we are looking for the (superset of the) statements the selected statement depends on. Such
slices can be calculated by traversing the SDG: starting from the node of the selected statement every
statement has to be reached, that the selected statement depends on (both directly or indirectly).

Backward slices can be used to detect uses of undefined variables, that are read before having been
defined. If the backward slice of a statement using a variable does not contain a definition (or assign-
ment) for the used variable, it should be reported as error. When the slice consists of multiple execution
paths, every execution path is checked for a definition. A special case of these undefined variables is
the reading of output parameters: a parameter of a called procedure that is supposed to be returned is
undefined before it is set.

Similarly, the forward slicing problem can be summarized as follows: for a selected program state-
ment we are looking for the (superset of the) statements depending on the selected statement. These
slices can also be calculated by the traversal of the SDG: the dependencies have to be traversed in the
other direction then in case of backward slices.

Unused variables can be detected by looking for the forward slices of variable definitions. In case
the slice does not contain at least a single statement reading the variable, the variable is unused. In case
of multiple execution paths we check whether the variable is used in at least a single path. The writing
of input parameters is a special case of unused variables: changes to an input parameter are lost after
rule termination.

III. Calculating Dependence Graphs in Model Transformation Programs

The transformation language of VIATRA2 [4] uses the formalism of graph transformation (GT) to de-
scribe elementary transformation steps between graph models, and uses abstract state machines (ASM)
as control structure to build complex transformation programs. The dependence graphs of the GT and
ASM rules have to be calculated differently, as GT rules offer a declarative description of transforma-
tion steps with loosely defined control flow, while ASM rules define a rich, precisely specified one. In
the following we detail the calculation of such dependence graphs for both parts.

A. The Dependence Graph of ASM Rules
ASM rules provide similar control structure as imperative programming languages, making their de-
pendence graph basically the same as the one described in [5]: the statements of the transformation
program are represented as nodes, while control, data and call dependencies are depicted as arcs be-
tween them.

ASM rules may have directed parameters: incoming parameters are initialized when the rule is
called, while outgoing parameters are expected to be initialized by the rule. These dependencies are
presented in the dependence graph by incoming/outgoing data dependency arcs.

Block rules, such as forall or let rules define local variables that have to be considered as
dependencies as well. As the language permits having the same variable name to be defined in multiple
blocks, the analysis must distinguish between these instances - for this reason the dependence graph
uses different variable instances for these elements.

Example 1 Figure 2 displays an ASM rule of the Petri net simulation program together with its de-
pendence graph. The rule first calls the isTransitionFireable pattern as a condition, then applies the
removeToken GT rule for all places that are results of the inputPlace pattern. Then this is repeated
similarly for the outputPlace pattern and the addToken GT rule.



In the dependence graph solid lines represent call and control dependencies, while jagged lines
represent data dependencies - their labels describe the corresponding variable.

The dependence graph describes how the variables are connected. It is important to note, that
although the Pl variables in the two forall rules have the same name, but describe different variables
- these variables are called Pl1 and Pl2 respectively.

The called patterns and GT rules are omitted from the graph for readability reasons - only the calls
and entry points are displayed. In order to calculate the required slices, these dependence graphs are
also to be calculated.

rule fireTransition(in T) = seq {
// graph pattern call in a condition
if (find isTransitionFireable(T))
seq {
forall Pl
// graph pattern call
with find inputPlace(T, Pl)
// GT rule application
do apply removeToken(T, Pl);
forall Place
// graph pattern call
with find outputPlace(T, Pl)
// GT rule application
do apply addToken(T, Pl);

}
}
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Figure 2: The Dependence Graph of the fireTransition ASM Rule

B. The Dependence Graph of Graph Transformation Rules

Graph transformation provides a high-level, declarative rule and pattern-based manipulation language
for graph models. GT rules can be specified using a precondition graph (pattern) to decide applicability,
and a postcondition graph (pattern) to specify the result model after rule application. To achieve this,
the rule application removes all elements, that are only present in the precondition graph, creates all
elements, that are only present in the postcondition, and leaves every other element unchanged.

Data dependencies are easy to calculate inside graph patterns, as the pattern graph is described
with a series of pattern variable definitions. If such a definition uses another pattern variable, a data
dependency is identified. However, when a pattern is called, its incoming parameters might or might
not be initialized. Initialized pattern variables depend on the pattern call, but are not modified, while
uninitialized parameters are calculated during the pattern matching process. This means, unlike ASM
rules, data dependencies of a graph pattern cannot be evaluated completely without looking at its
callers.

This external information is available when calculating the dependencies of the caller GT rule: pat-
tern variables of the precondition pattern are initialized, if they are incoming parameters of the rule
(explicitely specified in the syntax), while pattern variables of the postcondition pattern are initialized
if they were initialized in the precondition.

Example 2 Figure 3 displays a token manager GT rule of the Petri net simulator with its dependence
graph. Its precondition pattern (called LHS) consists of a single Place, while its postcondition (called
RHS) consists of a Place and a Token connected by a tokens relation.

The LHS pattern does not have any internal dependency, while the tokens relation in the RHS pattern
depends on both variables Pl and To. As the Pl variable is an incoming parameter of the rule, it is an
external dependency of the LHS pattern. Similarly the RHS pattern depends on the Pl variable from
the place pattern, however, the To variable is initialized inside the pattern.
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Figure 3: The Dependence Graph of the addToken GT Rule

In case of graph patterns and GT rules it is possible that their application creates modifications in the
(input) model, that are not directly visible in transformation program variables. Next to the internal
and external data dependencies mentioned before, it is also possible to establish indirect dependencies
between graph patterns and GT rules. As the rules look for a match for their input models, and alter
them, the applicability of other rules might change as well without any explicit connection between the
rules in the transformation program.

A way to detect these dependencies is to consider each model element of the (input) models as a
variable of the transformation program. However, as the models can be complex, abstractions are
needed for this approach to be feasible. The use of type system provides such an abstraction [6]. This
way, each model element can be represented by a type variable, and this type variable could be used to
represent possible dependencies between model elements.

IV. Conclusion

In this paper we presented an approach to create slices of model transformation programs based on
dependence graphs, and used the slices to perform a def-use analysis: detect undefined variables and
unused variable definitions statically.

For the future we plan to find other uses of the generated slices. By displaying the slices to the trans-
formation developer it is possible to get a better understanding of the structure of the transformation
program. Similarly, the slices may be used to calculate the set of statements relevant to some condition
(e.g., expressed as a graph pattern).

In order to produce smaller slices we plan to use a more precise dependency calculation. To achieve
this we will investigate further model abstractions and compare their slice sizes to the one generated
using the type system abstraction. The use of dynamic slicing also promises reduced slice sizes since
next to the program structure it also uses the input variables to filter out impossible dependencies.
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