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Abstract

Nowadays the Model Driven Software Development gains more and more weight
in software development. Its most important concept is the definition of a high
level Platform Independent Model that is transformated into the application using
several Model Transformation (MT) steps. So it becomes crucial that development
tools provide support for writing Model Transformations.

The Viatra2 transformation framework developed at the Department of Mea-
surement and Information Systems is such a supporting sytem, and is used in
various research projects. The framework uses a high level language combining
elements of model transformations and abstract state machines (ASM). For the ele-
mentary transformation steps of graph models graph transformation rules are used,
while using ASM contructs these steps can be built into a complex transformation
program.

This thesis introduces a static source code analyser system usable for graph
transformation languages. The static source code analysers identify potential faults
without running the program using only the source code structure and the syntactics
and semantics of the language, thus speeding up development.

The analysis is traced back to solving Constraint Satisfaction Problems (CSP).
The CSP solver systems use a declarative approach of solving combinatoric prob-
lems. They use a set of variables by narrowing their possible domain by applying
constraints. If the domain of a variable becomes the empty set, the problems is
not solvable. The main advantage of using CSP solvers is that they are capable of
propagating the effects of the new constraints forwards and backwards so previous
statements can be reevaluated.

After the general analysis the thesis describes a type safety checker for the
transformation language of the Viatra2 framework, and displays its result in
Eclipse-based graphical user interface of the framework.

The thesis concludes with a case study based evaluation of the type checker,
and the lists the conceptional and practical limitations.



Kivonat

Manapság a szoftverfejlesztés területén egyre többen sorakoznak fel az OMG
Modellvezérelt Architektúra (MDA) kezdeményezése mellé, amelynek alapja, hogy
egy magasszintű platform specifikus modellből kiindulva transzformációs lépések
sorozatán keresztül ér el futatható alkalmazásig. A modellvezérelt fejlesztés sikerének
egyik létfontosságú eleme a modelltranszformációk fejlesztésének (MT) hatékony
támogatása.

A modelltranszformációk támogatására készült a Méréstechnika és Információs
Rendszerek tanszéken fejlesztett és több kutatási projektben használt Viatra2
keretrendszer. A keretrendszer a gráftranszformáció és az absztrakt állapotgépek
magasszintű nyelveit ötvözi egy egységes formális specifikációs nyelvbe. A nyelvben
a gráf alapú modellek elemi transzformációját gráftranszformációs szabályok végzik,
mı́g az elemi lépésekből egy komplex transzformációs programot az absztrakt
állapotgépek seǵıtségével éṕıthetünk fel.

A dolgozat egy modelltranszformációs rendszerekhez használható statikus kód-
ellenőrző rendszer mutat be. A statikus forráskód elemzők célja, hogy a lehetséges
hibákat a program futtatása nélkül, kizárólag a kód struktúrájából, illetve a nyelv
szintaktikájából és szemantikájából felismerjék, gy gyorśıtva a fejlesztés folyamatát.

Az ellenőrzést kényszerkieléǵıtési probléma (Constraint Satisfaction Problem,
CSP) megoldására vezeti vissza. A kényszer megoldó rendszerek deklarat́ıv meg-
közeĺıtést adnak kombinatorikus problémák megoldására. Változók egy halmazán
működnek, ezek lehetséges értékkészletét a kényszerek egymás után történő al-
kalmazásával próbálják folyamatosan szűḱıteni. Ha valamelyik változónak az
értékkészlete az üres halmazra csökken, akkor a problémának nincs megoldása. A
CSP megoldó használatának legfontosabb előnye, hogy a kényszerek hatásait képes
visszafele is terjeszteni és ı́gy korábbi megállaṕıtásokat is befolyásolni.

A dolgozat a Viatra2 keretrendszer transzformációs nyelvéhez mutat be egy
t́ıpushelyesség ellenőrzésére alkalmas eszközt, amely az előbb léırt alapokon működik,
és az ellenőrzés eredményét a keretrendszer Eclipse alapú környezetébe integráltan
jeleńıti meg.

A dolgozat esettanulmánnyal igazolja a módszer gyakorlati alkalmazhatóságát
és megállaṕıtja a koncepcionális és gyakorlati korlátokat.



Contents

1 Introduction 9

1.1 System Modeling Overview . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Verification of Model Transformations . . . . . . . . . . . . . . . . . 10

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Overview of the Approach . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 The Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 13

2 Background technologies 15

2.1 Models and Transformations . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Metamodeling . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Graph Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Graph Transformation Rules . . . . . . . . . . . . . . . . . . 20

2.1.4 ASM Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Static analysis and type inference . . . . . . . . . . . . . . . . . . . 25

2.3 Constraint Satisfaction Problems . . . . . . . . . . . . . . . . . . . 26

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Static Analysis of Transformation Programs 31

3.1 Static Analysis and the Transformation Program Model . . . . . . . 31

3.2 Creating the TPM graph . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 The Traversal Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Branch Handling . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Fail Node Handling . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Updating the Variable Repository . . . . . . . . . . . . . . . 37

3.3.4 Enhancing the Performance of the Traversal . . . . . . . . . 38

3.4 Constraint Generation . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Fault Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



6 CONTENTS

4 Type Checking of the VTCL Language 41
4.1 Capabilities of the Type Checker . . . . . . . . . . . . . . . . . . . 41
4.2 Integrating the Analyser . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Using a CSP Solver for Type Checking . . . . . . . . . . . . . . . . 42

4.3.1 Representing the Metamodel . . . . . . . . . . . . . . . . . . 42
4.3.2 The Constraint Handler API for the Traversal . . . . . . . . 48
4.3.3 Selecting a CSP Solver Engine . . . . . . . . . . . . . . . . . 49

4.4 Traversing ASM Term Nodes . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Variable and Constant Terms . . . . . . . . . . . . . . . . . 49
4.4.2 Arithmetic Terms . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.3 Conversion Operators . . . . . . . . . . . . . . . . . . . . . . 50
4.4.4 Relational and Logical Operators . . . . . . . . . . . . . . . 51
4.4.5 ASM Functions . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Traversing ASM Rule Nodes . . . . . . . . . . . . . . . . . . . . . . 52
4.5.1 Calling ASM Rules . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.2 Simple ASM Rules . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.3 Variable Definition Rules . . . . . . . . . . . . . . . . . . . . 53
4.5.4 Nested Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.5 Conditional Rule . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.6 Model Manipulation Rules . . . . . . . . . . . . . . . . . . . 55
4.5.7 Collection Iterator Rules . . . . . . . . . . . . . . . . . . . . 56

4.6 Traversing GT Rule Nodes . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.1 Calling Graph Patterns . . . . . . . . . . . . . . . . . . . . . 58
4.6.2 Graph Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.3 Calling Graph Transformation Rules . . . . . . . . . . . . . 60
4.6.4 Graph Transformation Rules . . . . . . . . . . . . . . . . . . 60

4.7 The Detected Type Handling Problems . . . . . . . . . . . . . . . . 61
4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Evaluating the Type Checker 65
5.1 The Used Transformation Programs . . . . . . . . . . . . . . . . . . 65

5.1.1 Petri net Transformation Programs . . . . . . . . . . . . . . 65
5.1.2 The AntWorld Case Study . . . . . . . . . . . . . . . . . . . 66

5.2 Evaluation of the Static Type Checker . . . . . . . . . . . . . . . . 68
5.3 Benchmarking the Static Type Checker . . . . . . . . . . . . . . . . 70

5.3.1 The Measurement Environment . . . . . . . . . . . . . . . . 70
5.3.2 Benchmarking the Simulator Program . . . . . . . . . . . . 71
5.3.3 Benchmarking the Generator Program . . . . . . . . . . . . 72
5.3.4 Benchmarking with the Antworld Program . . . . . . . . . . 73

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



CONTENTS 7

6 Results and future plans 75
6.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 The Limitations of the Technology . . . . . . . . . . . . . . . . . . 76
6.3 Future plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 New Analysis Methods . . . . . . . . . . . . . . . . . . . . . 76
6.3.2 Increasing Performance . . . . . . . . . . . . . . . . . . . . . 77
6.3.3 More Specific Error Detection . . . . . . . . . . . . . . . . . 77

A The Analysed Transformation Programs 79
A.1 The Petri Net Simulator Program . . . . . . . . . . . . . . . . . . . 79
A.2 The Petri Net Generator Program . . . . . . . . . . . . . . . . . . . 81
A.3 The Antworld Benchmark Program . . . . . . . . . . . . . . . . . . 87



List of Figures

1.1 The Model Driven Architecture . . . . . . . . . . . . . . . . . . . . 10
1.2 The Architecture of the Static Checker System . . . . . . . . . . . . 12

2.1 The VPM Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 A Simple Petri net model . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 The graphical representation of the Petri net metamodel . . . . . . 18
2.4 The Transition Fireable Graph Pattern . . . . . . . . . . . . . . . . 19
2.5 Graphical Representation of Graph Transformation Rules . . . . . . 21
2.6 A Simple Graph Visualisation of a Constraint Satisfaction Problem 27

3.1 The TPM based static analysis process . . . . . . . . . . . . . . . . 32
3.2 The TPM representation of the Conditional ASM Rule . . . . . . . 32
3.3 The Execution of the Try Rule . . . . . . . . . . . . . . . . . . . . . 37
3.4 An UML class diagram describing the integration of the CSP solver 39

4.1 The static type checker in the Viatra2 framework . . . . . . . . . 42
4.2 The Gene Assignment for the University Member Hierarchy . . . . 44
4.3 The Gene Assignment for the Petri net Metamodel . . . . . . . . . 45

5.1 The Simplified Metamodel of the AntWorld Case Study . . . . . . . 66
5.2 The Detected Faults in the Problems View . . . . . . . . . . . . . . 69
5.3 The Execution Time of the Analysis of the Firing Program . . . . . 71
5.4 The Effect of State Saving on the Execution Time . . . . . . . . . . 72
5.5 The Execution Times of the Different Branches . . . . . . . . . . . 73



Chapter 1

Introduction

1.1 System Modeling Overview

Model Driven Software Development (MDSD) [33] tries to address the challenges
of the ever changing environments by separating the business and application logic
from the underlying platform technology. With this separation it is possible to
maintain interoperability between different platforms.

One level of the MDSD models is the Platform Independent Model (PIM),
that describes all the business functionality and behaviour, but completely lacks
platform-specific details. The other level, the Platform Specific Model is a lower
level model, it does include results of decisions the platform forced the programmer
to make. And from the PSM the actual software application can be created.

The typical architecture of the MDSD based development cycle can be found in
Figure 1.1. The process starts by creating PIM models - either from scratch or by
reverse engineering an existing, legacy application without an existing model, and
then by using model transformations and platform information we begin to produce
PSM models, and finally the deployable application. To support such development
cycles, a (semi-) automatic transformation methodology is used.

These transformations are basically mathematical operators, but in the special
case of the MDSD process most of these models are graph-based structures so
it is possible to use graph transformations instead of the more general model
transformation formalisms. Informally, a graph transformation (GT) [40, 20] is
a set of rules. These rules perform local manipulations on the graph by finding
a pattern described by their left hand side (LHS), and altering the found part
according to the right hand side (RHS) of the rule. In order to be able to control
the transformation process more precisely, an additional control structure is used,
which allows the description of a complex model transformation task as a series of
simple graph transformation rules.
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Figure 1.1: The Model Driven Architecture

1.2 Verification of Model Transformations

The definition of these complex transformation is similar to high level computer
programs which means that they are also vulnerable to programming mistakes.
As transformations become more complex, early fault detection is becoming a key
question as faults in transformation programs can even propagate into the developed
application.

On the other hand verification methods and tools researched for computer
programs are also applicable for model transformation programs. These methods
include different testing strategies, model checking and static analysis.

In general model transformation programs usually contain dynamic element
creation and deletion that result in infinite state spaces which cannot be handled
easily by model checkers [38]. As for testing transformation programs research
is very lively in the area [29], but early results show that testing or comparing
the outputs of transformation programs (which are usually models) is also time
demanding, and hard to be used in larger scale. On the other hand the use of static
analysis does not guarantee faultless programs, but in practice it highlights typical
programming errors without executing the program itself.

The complexity of the static analysis depends on both the analyzed structure
and the property to check. For example type safety checking is easier in Java (or in
C#) as type information is available during the compilation process. But in case of
dynamic languages, such as Javascript or Prolog a type checker has to infer the
types of the variables and constants. Although this is less accurate than explicitly
stated type information, it is still useful for error detection.
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A relatively common fault (especially in dynamic languages) is the incorrect use
of types that does result in a misleading output rather than a runtime exception
making it hard to trace. The aim of static type analysis is to help the developer by
detecting these faults.

Most static analyser tools are reading the program only once, and calculating
the results on-the-fly. This allows the reduction of the memory footprint, but limits
the capabilities of the analysis: if at a point we obtain some information about
an already processed element, this information might not be propagated to some
dependant elements.

An idea to overcome this challenge is the use of CSP (Constraint Satisfaction
Problem) solvers, that are based on propagation. The conditions represented by
the elements of the language can be represented as constraints in a natural way,
and the solver is capable of handling these distinct constraints as a whole system.

1.3 Research Objectives

The main goal of my research is to design and implement a static analysis framework
based on Constraint Satisfaction Programming capable of identifying different kinds
of faults in transformation programs. To demonstrate the capabilities of this
framework I implement a static type checker tool, and integrate it into the Viatra2
model transformation framework.

Such a static analyser could help model transformation developers to enhance the
quality of their transformation code by detecting faults early when its inexpensive
to repair. By the integration into the model transformation IDE (Integrated
Development Environment) the tool could be used to generate feedback by marking
the erroneous elements directly in the editor.

The feedback should be instantly to allow the transformation developer to
check any newly written code as soon as possible, so the analysis should finish in a
reasonable amount of time.

My detailed objectives are:

• to describe the transformation programs in a general Transformation Program
Model ;

• to design a method of mapping the model built of control and GT rules into
constraint satisfaction problems;

• to define an extensible list of fault patterns, that describe how to identify the
faults;

• to propose a way of describing the properties of the metamodel inside a
Constraint Satisfaction Problem;
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• to integrate the implemented static analyser tool together with a constraint
solver framework into the Viatra2 model transformation framework. This
integration should be connected to both the model space and the user interface
of the framework.

1.4 Overview of the Approach

Figure 1.2 displays the position of the planned system.

CSP

 Solver

Static

Checker

Transformation 

Specification

GUI

Mapping to 

constraints

GT Specification

Writing 

results

Metamodel

Interpreting 
results

Viatra2

(Gecode, 

SICStus)

Figure 1.2: The Architecture of the Static Checker System

The proposed static checking component is positioned between a model trans-
formation framework (in our implementation the Viatra2 framework) and a CSP
solver (after the examination of the Gecode [22] and the clpfd module of SICStus
Prolog [13] solver a third new solver has been implemented specifically for this
analyser).

The process starts with the extraction of the metamodel and the specification,
that forms the basis of a Transformation Program Model. The model is traversed
and gets translated into constraints for the CSP solver. The output of the solver
should be displayed in the user interface of the model transformation framework.

As of most CSP solver frameworks are not capable of determining which con-
straints are responsible for a failure our static checker component should be able to
deduce some information about the source of the error.

Two different constraint solvers were evaluated during the implementation
period: the Gecode/J constraint solver and the clpfd module of SICStus Prolog.
After hitting some performance bottlenecks we implemented a new solver tailored
to the needs of the analysis.
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1.5 The Structure of the Thesis

The following chapters describe this system in details, as detailed below:

• Chapter 2 gives an overview of the concepts used in the thesis. First it
introduces modeling and metamodeling both in general and specific to the
Viatra2 framework, then the subjects of static analysis, type checking and
constraint satisfaction problems are described.

• Chapter 3 describes the Transformation Program Model, a generic model
representing the transformation programs, then describes how to use this
model as the input of a static analysis process. The method described in this
chapter is general: it can be used to check any property of the model.

• Chapter 4 defines a type checker tool based on the generic method from
Chapter 3. To achieve this, first it describes how to represent the properties
of the metamodel in a constraint satisfaction problem, then describe on a
per-node basis how to generate the relevant constraints and how to represent
the control flow during the analysis. Finally the Chapter describes how to
interpret the results of the constraint solver to identify faults.

• Chapter 5 details how the created type checker detects faults on larger
examples, and investigates its performance based on the results of some
simple measurements.

• And finally Chapter 6 concludes the results of my work and presents some
research directions for the future.
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Chapter 2

Background technologies and
concepts

This section briefly introduces the main notions used in this thesis. The first section
introduces the concepts of models, metamodels, and model transformations together
with the Viatra2 transformation framework following the structure of [23], while
the model transformation examples are taken from [9]. Then a brief overview is
given of the static analysis methods and the constraint satisfaction problems.

2.1 Models and Transformations

A possible way to describe complex transformations is to use graph transformation
(GT) [20] rules for local model manipulations and use abstract state machine
(ASM) [11] rules to define control structure. A promising way to define conditions
in GT Rules is the use of graph patterns (GP). This approach is used in Viatra2.

Viatra2 (VIsual and Automated TRAnsformations) [7] is a model transfor-
mation framework developed at the Department of Measurement and Information
Systems. It stores models and transformations in a graph based style, but it is also
capable of parsing the models and transformations from textual files.

To parse models (and metamodels) the Visual Textual Modeling Language is
used. It contains element declarations defining the model space (or a part of the
model space).

The Viatra Textual Command Language (VTCL) is used for defining transforma-
tions. Transformations are represented as ASM Machines, which consists of Graph
Patterns, GT Rules and ASM Rules. The inner representation of transformation
programs in Viatra2 are stored as an EMF [1] model on which the interpreter
works. This inner representation is also available through Viatra2 Core Interfaces.

In this section we give a brief introduction of the VTCL language along with



16 CHAPTER 2. BACKGROUND TECHNOLOGIES

the related concepts while a complete specification of both languages can be found
in [6].

2.1.1 Metamodeling

Metamodeling provides a structural definition (i.e. abstract syntax) of modeling
languages. Such a definition is needed to define the input and output of model
transformations. Currently the most widely used metamodeling languages (e.g.
ECore [1]) are based on the OMG metamodeling standard MOF (Meta Object
Facility)[34].

However as stated in [43] MOF fails to support multi-level metamodeling,
therefore some other approaches are also used: for instance the VPM (Visual
and Precise Metamodeling) makes multi-level metamodeling available by the use
of explicit and generalized instanceOf relation. These relations allow to store a
model and it’s metamodel in the same model space. The VPM concept also has a
mathematically precise notation.

ModelElement
ID : string

Name: string

isFinalType: boolean

Entity
value: string

Relation
multiplicity: enum

isAggregation: boolean

instanceOf supertypeOf

from

to

inversecontainment

Figure 2.1: The VPM Metamodel

The VPM Metamodel which is showed in Figure 2.1 contains two different types
of model elements: the Entity and the Relation.

A VPM Entity represents the basic concepts of the (modeling) domain. An
entity can be considered as a common term for MOF packages, classes and
objects. For each Entity it is possible to hold an application-specific associated
string value.
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A VPM Relation represents a general relationship between the Entities. They
can be considered as MOF associations, basically one-to-many relations.

The built-in relations are the instanceOf and the supertypeOf (and their
inverses, accordingly typeOf and subtypeOf). The instanceOf relation is used to
explicitly describe the connection between the model and the metamodel, while the
supertypeOf relation represents a binary superclass-subclass relation (similar to
the concept of generalisation in UML). The VPM metamodel also describes the
containment relation, which arranges the model elements into a strict containment
hierarchy.

The semantics of these built-in relations include three formal transitivity rules
(which are similar to the rules of UML):

instanceOf(a, b) ∧ subtypeOf(b, c)⇒ instanceOf(a, c)

subtypeOf(a, b) ∧ subtypeOf(b, c)⇒ subtypeOf(a, c)

instanceOf(a, b) ∧ instanceOf(b, c) ; instanceof(a, c)

The concept of instanceOf relation is different from the concept of instance
model. An instance model is a well-formed instance of the metamodel, while the
relation describes the connection between a model element and its corresponding
metamodel element.

The relations’ multiplicity property imposes restrictions on the model space.
These constraints are used by the pattern matcher. The allowed multiplicity values
are one-to-one, one-to-many, many-to-one and many-to-many.

Example metamodel: Petri nets

Figure 2.2: A Simple Petri net model

As an illustration of metamodeling we introduce the metamodel of Petri nets.
Petri nets (a simple net can be seen in Figure 2.2) are a formal description for
modeling concurrent systems. It is widely used because of the easy-to-understand
visual notation and large number of available editor and analysis tools.

Throughout the paper we will use Petri nets as an example domain to illustrate
the technicalities and foundations of our approach.
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The Petri nets are bipartite graphs with two disjoint set of nodes: Places and
Transitions. Places can contain an arbitrary number of Tokens, and the distribution
of these Tokens represent the state of the net (marking). This state can be changed
by a process called firing.

A typical graphical representation of the metamodel is depicted in Figure 2.3.

Figure 2.3: The graphical representation of the Petri net metamodel

2.1.2 Graph Patterns

Graph patterns are the atomic units of graph transformations. They represent a
condition (or possibly constraints) which has to be fulfilled by a part of the model
space. Graph patterns are used in transformation rules as conditions and as a
description of the result pattern.

A model (a part of the model space) matches a pattern, if the pattern can be
matched to a subgraph of the model using a generalised graph pattern matching
technique. Basically this means each occurrence of the pattern is a mapping of the
pattern variables to the model elements in a way to satisfy all conditions of the
pattern - this is a subgraph isomorphism problem.

It is possible to write both positive and negative patterns: the positive pattern
holds if the all conditions hold, while if a negative pattern condition can be satisfied,
the pattern will fail. Both positive and negative patterns can be nested in an
arbitrary depth [37].

Example 1 As an example of graph patterns we describe the pattern of the fireable
transitions over the metamodel defined before. A graphical representation of the
pattern can be seen in Figure 2.4.

The pattern represents, that a Transition is fireable if it is not connected to a
Place by an Outarc, where the Place has no tokens. The pattern is described in the
VTCL language in Listing 2.1. The structure of the two representations are similar.
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Figure 2.4: The Transition Fireable Graph Pattern

Listing 2.1 The Transition Fireable Graph Pattern in the VTCL language

pattern TransitionFireable(Transition) =

{

’PetriNet’.’Transition’(Transition);

neg pattern notFireable(Transition) =

{

’PetriNet’.’Place’(Place);

’PetriNet’.’Transition’(Transition);

’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);

neg pattern placeToken(Place) =

{

’PetriNet’.’Place’(Place);

’PetriNet’.’Place’.’Token’(Token);

’PetriNet’.’Place’.’tokens’(X, Place, Token);

}

}

}



20 CHAPTER 2. BACKGROUND TECHNOLOGIES

The pattern keyword is used to define a pattern (or neg pattern in case of
a negative pattern), and in parentheses are the parameters defined. To express a
type constraint on a variable, the name of the metamodel type is used with the
name of the variable in parentheses (e.g. line 3 of Listing 2.1).

It is possible to add further conditions to the patterns by the use of the check

keyword, which allows the checking of a boolean formula.

To allow the description of more complex patterns, in the VTCL language it is
possible to call other patterns with the find keyword. This also enables reusing
existing patterns. The semantic of the construct is similar to the clauses in Prolog:
the caller pattern is fulfilled if and only if all the called subpatterns are fulfilled.

Alternate patterns are also available in the language: a pattern can have multiple
bodies by connecting them with the or keyword. When several alternative patterns
are defined, the pattern is fulfilled if any of the bodies can be fulfilled. This semantic
is also similar to the Prolog clauses.

Pattern calls and alternate patterns together can be used to define recursive
patterns. Recursion is typically used with two pattern bodies: one which have a
call to itself, while the other defines the condition to stop the recursion.

2.1.3 Graph Transformation Rules

For defining a graph transformations Graph Transformation Rules (GT Rule) are
used. These rules rely on the Graph Patterns as defining the application criteria
for the steps. A GT Rule application transforms a graph by replacing a part of it
with another graph.

In order to describe GT Rules preconditions (also known as the Left Hand Side
graph, LHS) and postconditions (also known as the Right Hand Side graph, RHS)
are defined, where the precondition acts both as application criteria and the part of
the model to change, while the postcondition describes how the match will look like
after the rule application. The required changes can be computed by calculating
the difference between the precondition and postcondition patterns that can be
interpreted as a series of model manipulation steps.

Example 2 Figure 2.5 shows the graphical representation of two transformation
rules related to firing a transition. We describe the meaning of the addToken rule
in details, the removeToken rule can be interpreted similarly.

The LHS graph pattern of the transformation consists of a Transition (called
T) and a Place (called P) connected with an InArc relation while the RHS pattern
adds an unnamed Token element and a tokens relation between the Place and the
new Token. That means, after the execution of the rule a new Token is created an
assigned to a Place.
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Figure 2.5: Graphical Representation of Graph Transformation Rules

In the VTCL language the GT Rules are marked with the gtrule keyword, and
the definition can have parameters. These parameters have to be marked with the
in, out or inout to mark whether they can be changed during the rule execution.

To attach the LHS and RHS patterns to the rule, they have to be entered with
the keywords precondition and postcondition.

Example 3 To illustrate the capabilities of the GT Rules description, in Listing 2.2
we include the code of the addToken rule in VTCL.

Listing 2.2 The addToken GT Rule in the VTCL language

// Adds a token to the place ’Place’.

gtrule addToken(in Place) =

{

precondition find place(Place)

postcondition find placeWithToken(Place, Token)

}

pattern placeWithToken(Place, Token) =

{

’PetriNet’.’Place’(Place);

’PetriNet’.’Place’.’Token’(Token);

’PetriNet’.’Place’.’tokens’(X, Place, Token);

}

pattern place(Place) =

{

’PetriNet’.’Place’(Place);

}

In a common transformation rule the LHS and RHS graphs are nearly the
same (typically only a part of the match changes in a rule application). In order
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to avoid the need for two graphs, there is an alternate notation for describing a
transformation. The FUJABA [32] notation annotates the graph with the keywords
new and delete, where the keywords mean, that during the execution a new element
is added, or a found element is deleted. The LHS and RHS graphs can be created
from this notation: those elements (either entities or relations), which are not
tagged with either of the keywords, are members of both graphs, while elements
tagged with the new keyword, are only elements of the RHS graph, and elements
tagged with the delete keyword, are only part of the LHS side.

A similar construct is also available in the VTCL language: after the precondition
pattern instead of a postcondition pattern a sequence of ASM rules (actions) can
be defined. For ASM rules see Section 2.1.4.

It is important to note, that actions can also entered when using a postcondition
pattern: the typical usages are debugging and code generation.

In the VTCL language actions can be entered using the action keyword inside
a GT rule.

Example 4 The addToken rule can be written using the FUJABA notation as in
Listing 2.3.

Listing 2.3 The addToken GT Rule - FUJABA notation

// Adds a token to the place ’Place’.

gtrule addToken(in Place) = {

precondition find place(Place)

action {

new(’PetriNet’.’Place’.’Token’(NewToken) in Place);

new(’PetriNet’.’Place’.’tokens’(Temp,Place,NewToken));

}

}

pattern place(Place) =

{

’PetriNet’.’Place’(Place);

}

The interpreter of the Viatra2 framework supports these formats simulta-
neously, so developers can choose between the notation that is more suitable for
them.

2.1.4 ASM Rules

To allow the construction of complex model transformations, the assembly of the
elementary GT rules into transformation programs is required. The VTCL language
uses abstract state machine [11] rules to describe the control structure.
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In order to semantically integrate the GT and ASM concepts, GT rules are
treated the same as ASM rules (the apply construct can be used for calling both rule
types) and graph patterns can be used as existentially qualified Boolean formulae
in ASM conditions (by the find construct).

In the VTCL language an ASM Rule is described as a block marked with
the rule keyword, with parameters. The parameters direction has to be marked
similarly as of the GT Rules. An ASM Rule has to be a single ASM language
construct, if multiple elements are needed, some compound rule has to be used.

The basic elements of the ASM programs are:

ASM Rules are alike methods in OO languages, they have input parameters, and
represent a set of operations. In the language there are some built-in rules,
and it is also possible to define new ones.

ASM Variables are similar to the variables (attributes) in OO languages, they
hold values (model element references, constants, etc.).

ASM Functions are special mathematical functions, which store variables in
arrays. Associative arrays in modern programming languages (e.g. in Java
the Map) provide analogous services.

The ASM Rules are used to call GT Rules: the apply rule can be used with
bound parameters, while the choose and forall rules with free parameters (thus
allowing searching for patterns). The choose quantifies the unbound parameters
existentially while the forall universally.

There are also constructs for affecting the control flow: the iterate rule executes
a single rule repeatedly, the conditional rule defines a binary branch in the control
flow (similar to the if-then-else constructs in OOP languages),

The random, the parallel and the sequential rules are used to creating compound
rules. The random rule executes one of it’s nested rules, the parallel executes all
the nested rules simultaneously, while the sequential one by one.

By using a try rule, it is possible to detect failures and take the control. A
failure can be caused by the fail rule or a choose rule which cannot find a match in
the model space.

Example 5 The transformation program in Listing 2.4 executes a number of firings
defined by the input parameters.

The program contains the main and the fireTransition ASM Rules. The
execution starts with the main rule, where the Iterations and the Net input
parameter define the number of firings and the Petri net, respectively. First, the
rule creates and initializes the variable Start to zero, then the iterations and
firings values of the ASM Function counter are also initialized followed by the
saving of the current system to the Start variable.
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Listing 2.4 A Simple ASM Rule Describing the Firing of Transitions

// fires the input transition

// @Transition: the transition to fire (input)

rule fireTransition(in Transition) = seq

{ //deletes the tokens from the input places

forall Place with find sourcePlace(Transition, Place) do

choose Token with find placeWithToken(Place,Token) do delete(Token);

//adds the new tokes to the output places

forall Place with find targetPlace(Transition, Place) do seq

{

new(’PetriNet’.’Place’.’Token’(Token) in Place);

new(’PetriNet’.’Place’.’tokens’(X, Place, Token));

}

}

asmfunction counter/1;

// entry point

// @Net: the container entity of the Petri net model to be simulated

// @Iterations: number of firings to be executed

rule main(in Net, in Iterations) = let Start = 0 in seq

{

update counter("iterations") = 0;

update counter("firings") = 0;

update Start = systime();

iterate seq

{

update counter("iterations") = counter("iterations") + 1;

if (counter("iterations") > Iterations) fail;

choose T with find fireable(Net,T) do call fireTransition(T);

}

println("Simulation ended, fired " + counter("firings") + " transitions in " +

(counter("iterations")-1) + " iterations in " + (systime()-Start)+ " msec.");

}

The iterate structure controls the number of firings as it is invoked as many
times as the if condition becomes false, because a fail construct exits from the
container iterate structure. The update rule increases the iterations value of
the counter ASM function, while the choose rule matches to a fireable T transition
and calls the fireTransition ASM Rule. It is also important to mention that
choose rules can also fail, so the iterate cycle in the program can also be stopped
by an unsuccessful match meaning that there are no fireable transitions in the net.

As for the fireTransition rule, it matches to all source places of the input
Transition parameter with the first forall rule and deletes a Token from each
place, while the second forall rule generates a Token for all target places with the
two new rules.

After the iterate cycle terminates the println rule prints out the number of
firings, iterations and execution time to the output.
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2.2 Static analysis and type inference

It is a known fact in computer programming that the sooner an error is detected,
the cheaper it is to correct - if the error remains undetected during a design phase,
the repair cost might increase with an order of magnitude. Basically there are
three ways of ensuring the correct behaviour of a computer system: either testing
the running system, or proving the correctness of the constructs used to build
the system - without executing the system. This second process is called static
analysis. The third way is the use of model checking: it is used to decide whether
the structure is the model of a logical formula.

Exhaustive testing becomes impossible with the growth of the systems, because
the number of test cases is growing exponentially. The only possible solution is to
choose test inputs in a rational way that would possibly detect the most common
failures [10]. Alltogether testing is very expensive. Even worse, it is easy to omit a
test case by mistake, which makes the process error-prone, and testing only shows
the presence of faults, but cannot prove their absence.

The model checking [16] method requires the traversal of the model space, thus
it is vulnerable to state explosion problem. Another drawback of the method is
that it cannot always decide the neither presence nor their absence of faults, so the
output of the analyser is three kind of answers are possible: the checked property
holds, it does not hold, or it can’t be decided.

The main promise of static analysis is that it is capable of detecting a predefined
set of faults without even starting the application. In practice only some fixed kind
of faults can be found with static analysis, but for this limited fault model a good
analyser may prove that none of these errors are present in the program.

The compilers of the statically bound languages, like Java or C# include some
kind of static analysis: during compilation they determine the types of the variables,
watch for uncatched exceptions, etc. These verifications are performed during the
compile time thus helping the early identification of some common problems.

Something very similar is possible for other structures, e.g. Petri nets. It is
possible to check the P- and T-invariants of the net [31], which might be used to
detect some serious modeling errors - without the expensive calculation of the state
space of the net.

A static analysis is carried out by an abstract interpretation [17] of the program,
and the description of the computation in this abstract universe. The execu-
tion of this abstract computation might offer some information about the actual
computation.

Example 6 A typical example for abstract interpretations is the rule of signs.
In this case we are denoting the (integer) numbers on the abstract universe of
{(+), (−), (±)}. In this example from the calculation −1517 ·17 becomes (−) · (+) =
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(−), and the properties of transformation proves that the actual result will be a
negative number.

On the other hand it is required to understand that this abstract interpretation
loses information: the calculation −1517 + 17 becomes (−) · (+) = (±), which is
very inaccurate.

Even with this inaccuracy the static checking is useful, because the operations
over this abstract universe is much cheaper to calculate, and the most common
mistakes of a programmer can be detected.

A typical abstract interpretation in computer programming is the domain of
the type system. In this case every language element is replaced with its type, and
every operation is translated to represent the type information.

For static type analysis the abstract computation is easily derivable from the
specification of the language: it contains the description for every possible value.

In most languages - including the Viatra2 VTCL language - the type system
can be extended by the user (e.g. in case of Java new classes can be added, while in
Viatra2 a new model element can be added, which is the to element of a typeOf

relation). On the other hand the type analysis needs a fixed set of possible types,
so before a type analysis is executed the current type hierarchy has to be identified.

In statically bound languages where the type information is present at compile
time it is only needed to compare the types at every function/method call. On the
other hand in dynamically bound languages this type information is only available
during runtime, but some of these information could be inferred - which the static
type checker should be capable of.

Most static type checker algorithms try to read the program once, and try to
detect the type information on-the-fly (only using information available before the
current assignment). In our project we apply a CSP solver, because it is capable of
propagating the information both forwards and backwards (thus making possible
to determine the type later, and using that piece of information to infer a type of a
variable used before).

2.3 Constraint Satisfaction Problems

The paradigm of the Constraint Satisfaction Problem (CSP) [8] comes from the field
of artificial intelligence. CSP solvers are used as a high level, declarative solution
for combinatorial optimizations.

The description of a CSP consists of a set of variables, a domain for each
variable, and a set of constraints (conditions for the variables). The set of variables
and their domain is the space of the constraint problem. A solution of the CSP is a
set of variable assignments that fulfills all conditions of the constraints.
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The variables (and the constraints) can have different domains: in most cases
this domain is a finite domain, but the methodology can be used even over different
domains (e.g. in SICStus Prolog there are implementations for boolean variables
and real and rational numbers). Our approach is built on a finite domain CSP
solver.

The CSP can be represented as a (hyper)graph [18], where the nodes are the
variables, and the arcs (and hyperarcs) are constraints for the variable nodes.

X in {1..5}

alldifferent

Y in {1..5}

Z in {1..4}
X != Z + 1

Figure 2.6: A Simple Graph Visualisation of a Constraint Satisfaction Problem

Example 7 A hypergraph visualization of a CSP problem can be seen in Figure 2.6.
The problem stated in the graph uses three variables, X, Y , Z, with the domains

[1; 5], [1; 5] and [1; 4] respectively, and three constraints, which tell us, that X 6= Z+1,
X + Y ≤ 4 and all three variables are different.

When trying to find a solution of the CSP, there are several possibilities. Modern
CSP solver use some combination of backtracking/backjumping and constraint
propagation. This general algorithm of solving CSP problems is the following:

1. Define Variables

2. Set up Constraints

3. Constraint Propagation

4. Labeling

5. Repeating the last two steps until either a solution is reached or violation is
found.
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Constraint propagation modifies the constraint problem to get another problem,
which might be easier to solve. It does some reasoning about the constraints, and in
some cases it can prove the satisfiability (or violation). Usually the reduction of the
domain of one or more constraint variable is determined by the posted constraints
and the possible domains of the other constraint variables.

But there are some cases when constraint propagation is not enough to decide
the satisfiability, in these cases labeling is used: the current state is stored and a
possible value is assigned to a variable with more than one possible value (selected
by the user of the CSP solver). After the assignments the algorithm returns to the
constraint propagation step. In case these assignments cause constraint violation,
backtracking (or backjumping) is used to return to a previously saved state where
a new assignment is chosen.

When defining a CSP, it is not required to assert only the minimal amount of
constraints. Having more constraints can improve the runtime characteristics of
the solution, because they can remove symmetries, or help the solver to choose a
constraint which reduces the domains of the variables more effectively.

Example 8 When entering the constraint system defined on Figure 2.6 into the
SICStus Prolog clpfd module, we get the result showed in Listing 2.5. The output
domains are the result of the constraint propagation process, but caution is needed
when looking at the output: this result does not show what happens with the other
variables domains if one of the variables become fixed (in this case when fixing X,
the value of Y also becomes fixed). When using the backtracking functionality of the
constraint solver, this problem do not appear, because the backtracking algorithm
does not try to find all possible solutions, only a single one.

Listing 2.5 The SICStus Prolog clpfd Representation of the CSP Example

| ?- X in 1..5, Y in 1..5,

Z in 1..4, X#\=Z+1, X+Y#<4,

all_distinct([X,Y,Z]).

X in 1..2,

Y in 1..2,

Z in 3..4 ? ;

no

A logical extension of the finite domain constraint solver is the ability to check
reified constraints. Reified constraints are used to describe more complex constraints
by allowing the use of boolean functions (such as conjunction, disjunction, inversion
or consequence) on constraints. The semantics of these constructs are the following:
for every constraint we assign a boolean variable which represents whether the
constraint holds or not; the compound constraint holds, if the result of the boolean
function with the assigned boolean operands is true.
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Example 9 Using the Prolog clpfd syntax the X#=1 \/ X#=3 constraint is a com-
pound constraint, where the disjunction operator is used. That means, the constraint
holds, if at least one of the operand constraints hold. In our case the the variable X

has either the value of 1 or 3.

It is important to note that the variables of a CSP are naturally single assignment
variables: constraints are globally true on the related variables, while after a change
it might seem natural that some (or all) previous constraints are invalidated.

There are numerous CSP solver implementations available, most of them are
written in C++, Java or Prolog languages. The implementations have different
capabilities, performance and licensing. Some implementations are the ILOG CP
(for C++) [25], the clp modules of SICStus Prolog [13] or the Gecode library (for
C++ and Java) [22], etc.

2.4 Summary

In this section we gave a broad overview of the different concepts used in this paper.
We introduced the basic theory of model transformation and metamodeling, then
we described how was the Viatra2 framework utilizing these concepts.

We also presented the basics of static analysis and type checking, and we
described the basic characteristics of the CSP solver frameworks.
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Chapter 3

Static Analysis of Transformation
Programs

In this chapter I outline a static analyser framework for model transformation
programs: first I introduce a generic model for storing the transformation program
on an abstract domain followed by its traversal. Then, I show how to connect a
CSP solver engine as an underlying evaluator for the analysis.

3.1 Static Analysis and the Transformation Pro-

gram Model

The proposed static analysis solution is based on the construction and traversal
of a Transformation Program Model (TPM). The TPM is a graph model which is
an abstract interpretation of the transformation program: it omits information e.g.
the current values of the variables. The fact that the attached model space is not
tracked allows the analyser to check every possible run path looking for some faults
more efficiently.

The main reason to generate this graph model is that it makes to solution more
flexible by separating the different tasks of the analysis as described in Figure 3.1.
These tasks are the building of the TPM model (see Section 3.2), the traversal of
the TPM model (see Section 3.3), generating and solving a CSP (see Section 3.4),
and gathering the list of found problems (see Section 3.5).

The TPM can be traversed following the visitor design pattern [21] thus allowing
the use of different traversal algorithms for the different analysis criteria.

A very important difference between the TPM and the transformation program
is that the TPM uses single assignment. This means that a variable is initialized
with a value and is bound to it.
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Figure 3.1: The TPM based static analysis process

Conditional  Rule
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Subrule(F)
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Figure 3.2: The TPM representation of the Conditional ASM Rule

By using single assignment the generation of the constraint satisfaction problems
is easier as the generation does not have to handle the lifecycle of the TPM variables.

The transformation program typically has several different run paths. These
paths contain different nodes or in different order. The TPM representation of
them are branches in the graph.

To achieve full coverage in the analysis all these paths should be investigated.
This could be done by creating several representation variables for the constraint
solver but to avoid unnecessary memory consumption it is recommended that each
branch has to be entered separately into the constraint solver.

Example 10 The Conditional ASM Rule depicted in Figure 3.2 introduces different
branches. The rule in the figure contains an ASM Term (called Condition), and
two subrules (called True or False rules). The execution of the Conditional Rule
starts with the evaluation of the condition, and then selecting one of the subrules,
and only executing it.

Together with the TPM a Variable Repository is also used. It’s main respon-
sibility is to store the variables referred in the TPM. The use of this repository
allows the traversal to replace the calculated variables with new variables if needed
when starting the analysis of a new branch by replacing the repository in order to
detect faults that happens only on certain run paths.
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3.2 Creating the TPM graph

The TPM is capable of representing the elements of the Viatra2 VTCL lan-
guage, and after minor adjustments it should be able representing other graph
transformation languages as well.

The traversal is constructed after a traversal similar to the interpreters: it is
initiated in the entry ASM Rule, and from this point it follows the control flow.
The following main node types are detected:

ASM Terms are untyped expressions from ASM constants, variables and functions.
The functions might have parameters of other ASM Terms.

ASM Rules are used as a control structure in the scripts that alter the control
flow.

GT Rules are elementary model transformation steps. They may contain graph
patterns and ASM Rule calls.

Graph Patters are conditions of the model space. A pattern may contain a
pattern graph, calls to other graph patterns and ASM Terms.

In order to be able to understand what a fault described in the TPM means
every node should be associated with it’s source element. As most nodes semantics
is exactly the same as its source element in the transformation program in this
section only the differences are listed.

• For every potential failure a Fail node is explicitly inserted into the TPM. If
the failure is conditional, it should only be inserted the corresponding branch
(or branches). The TPM building process should not care about the failure
handling - it is the responsibility of the traversal to find the next node in case
of a failure.

• For every Term node a variable reference is created in the TPM, and a variable
is created in the associated variable repository. This approach allows us to
describe conditions on the functions without determining the type of the
operands (an operand of a function can be any Term).

These variables in the repository are not the same variables used in the
transformation program: they represent the original values in an abstract
domain by storing just the properties which are meaningful to the analysis.
Similarly to the TPM nodes these variables also associated with their original
value.
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• There are three call constructs in the language: it is possible to invoke an
ASM Rule, a GT Rule and a Graph Pattern, and every call can represent
a recursive call hierarchy. During runtime the program state will act as a
termination condition, but during static analysis this state is not available
(more precisely only an abstract representation is available), so in general it is
possible that a recursive call represents an infinite length of calls (even worse,
the alternative bodies in the Graph Patterns may cause an infinite number of
branches in the TPM model).

Currently this problem is handled by defining a universal k depth limit to
describe to program in a finite TPM graph. During the building of the TPM
the call hierarchy is stored in a stack. When a new call is inserted, the number
of its previous occurrences is checked, and in case of at least k occurrences,
the called element is not extracted to the model, instead a sentinel node
representing no information is inserted.

It is important to note that this depth limiting is only applied to recursive
calls, non-recursive calls are followed into an arbitrary depth (because the
source program is finite, these call hierarchies are also finite). On the other
hand it can detect and handle indirect (the container element is not directly
called but is reached by a series of calls) and circular recursion (two elements
call each other) as well.

Although this limiting reduces the amount of available information before
any analysis could happen (and thus it is possible that some errors might
go unnoticed) it is conservative: by saying after a limit no information is
collected no false negative fault detection can happen.

3.3 The Traversal Algorithm

The TPM is created in order to allow the analysis of the transformation program
on a per-node basis: the analysis works by traversing the TPM and generates
the appropriate constraints for every node. The TPM node objects support the
traversal by supplying the list of nodes to visit before and after the analysis of the
node. The number of branches in the current node, and allow the updating of the
related variables in the Variable Repository and the constraint generation process.

According to the visitor pattern [21] the control of the traversal is handled by an
external traversal control class, the visitor. In order to have the best fault detection
capabilities the visitor should be capable of traversing every node in the TPM,
identifying and handling branches, filling the constraints to the constraint solver,
updating the variables in the connected Variable Repository, identifying faults and
handling fail nodes.
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The traversing of all nodes is required in order to achieve full coverage of the
transformation program. If this condition is fulfilled, the type of traversal does not
matter (in theory): in every node local constraints are created, and the CSP solver
have to be capable of weaving these constraints. However in practice changing the
traversal can help to find an unsatisfiability more efficiently.

Listing 3.1 introduces the used algorithm.

Listing 3.1 The Traversal Algorithm

traversal(){

while (!allBranchTraversed){

selectNextBranch();

traverseNode(rootNode);

evaluateResults();

}

}

traverseNode(TPMNode node){

int branchNumber = calculateActualBranch(node);

for (TPMNode before : node.getBefore(branchNumber))

traverseNode(before);

node.addConstraints(branchNumber);

node.updateVariables(branchNumber);

for (TPMNode after : node.getAfter(branchNumber))

traverseNode(after);

if (FailNodeHit)

jumpToFailHandler();

if (CSPFailure)

stopTraversal();//stops the traversal of the branch

}

}

The the traversal method is used to manage the different branches, and for
each branch start a traversal by calling the traverseNode method. After each
traversal the results are evaluated and the found problems are logged.

The traverseNode method first calculates which branch to choose at the selected
node. The path depends on the previously selected branch, and is required for both
calculating the subnodes and generating the constraints.

After the branch is decided, the concrete traversal begins. The subnodes are
broken into two groups: (i) nodes to visit before generating the constraints and
(ii) nodes to visit after generating the constraints. The algorithm traverses first
the before nodes recursively, then generates the constraints, updates the Variable
Repository, and finally traverses the after constraints.

There are two cases which break that flow:

• If the constraint solver reports failure, the traversal of the current branch is
stopped, and the results are evaluated.

• When a Fail node is hit, the control is given to the last fail handling node,
and the other partially traversed nodes are ignored.
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3.3.1 Branch Handling

A very important part of the traversal control is the branch handling. The traversal
control is responsible to run every possible branch one by one, and start a clear CSP
for every branch. The branch handling is based on a simple backtracking algorithm:
when it reaches a branching point, it saves the current position as decision point,
selects the first untested branch, and the process continues until either an end
point is reached (there are no more nodes to traverse) or the CSP solver reports
unsatisfiability. After evaluating the results from the CSP solver, it starts the
analysis of the next branch. In the new testing it will traverse upward back until
the last branching point (with an untested branch) of the last run, and changes it
to the next available branch.

This algorithm is similar to depth-first search, where the branching points are
represented by the nodes of the graph, and their sequence are represented by the
arcs.

3.3.2 Fail Node Handling

The transformation language includes the fail construct for error detection. Failures
are similar to the exceptions of OOP languages: they represent the fact of failure.
If it happens during the execution, the interpreter jumps to the error handling
routines (or if there is no handler, the execution stops).

This jump is an alternate continuation of the program, so it has to be represented
by a new branch. There are two rules which can fail: (1) the fail rule represents
an automatic failure (because the failure is automatic, only a single branch is used,
which jumps to the failure handler), and (2) the choose rule fails if no match is
found in the model space, so a fail node is inserted to the corresponding run path.

There are two rules, which allow the handling of failures: (1) the try rule looks
for failures in it’s main rule, and executes its else rule if any failure is found, while
(2) the rule iterate finishes iteration if a failure happens.

Example 11 Listing 3.2 describes a single try rule. Figure 3.3 displays the
potential execution paths of the structure

Listing 3.2 A VTCL rule demonstrating the failure handling

try

choose Token with find placeWithToken(Place, Token) do print("token found");

else

print("Else Rule started");

The main rule to test contains a single choose rule, while the failure handling
rule (named Else in the Figure) is not detailed. The solid arrows represent the



3.3. THE TRAVERSAL ALGORITHM 37

Try

Else RuleChoose Rule

1.1

1.2

Condition Fail

1.3

1.4

1.5

Print Rule

(a) No Failure

Try

Else RuleChoose Rule

2.1

2.2

Condition Fail

2.3

2.4

2.5

Print Rule

(b) With Failure

Figure 3.3: The Execution of the Try Rule

control flow, while the jagged arrows connects the nodes not present in the run path
to their container.

The first path (a) displays the following scenario: inside the try rule the choose

rule is executed. This evaluates the condition, a match is found, so the corresponding
print block is called. Then the calls end, and the control is returned to the caller,
so the try block ends.

On the other hand the second path (b) activates the error handler: the choose

rule is executed, but the condition does not hold. The rule fails (Fail node), so the
control gets to the failure handling rule. If the execution of this rule finished, the
control is returned to the caller, the try block ends.

This error handling mechanism is capable of breaking the normal flow of the
traversal. In case of no error handling node is found the traversal ends.

3.3.3 Updating the Variable Repository

When the traversal reaches a node the variables changed by the nodes referred
program element should be updated in the Variable Repository.

As variables of the TPM model are single assignment variables the updated value
must be represented by a new TPM variable, so a program variable is represented
with a series of TPM variables.

The first TPM variable is created when finding the program variable first (e.g.
as a symbolic parameter of a call), then a new one is created when reaching a node
updating it.

The TPM variables are stored in the Variable Repository component, which
allows updating an existing variable and querying the representation of the current
value.

When creating a TPM variable after an update, the unchanged parameters of
the previous TPM variable should be the same in both variables – this can be
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reached by filling constraints into the constraint handler.

3.3.4 Enhancing the Performance of the Traversal

As described before for every branch a new Constraint Satisfaction Problem is
initialized, and as described in Section 3.3.1 the TPM is traversed again to generate
all the constraints. It seems that by avoiding these repeated steps the speed of the
analysis could be improved.

To achieve this at every branching point the state of the analysis should be
saved, and at a later point restored. This state consists of the TPM variables in
the Variable Repository and the state of the constraint solver.

To support this the traversal algorithm has to be modified:

1. When a new branch is started, the traversal should only run through the
nodes already used for the stored state, and the constraint solver and variable
repository should be initialized from the saved state.

2. When a new branching point is detected, a new state save should be created,
and attached to the branching point. This state can be discarded when all
possible branches of the branching point are explored.

The effects of this performance enhancement are investigated in Chapter 5.

3.4 Constraint Generation

In order to the static checker be independent of any concrete CSP solver, an
abstraction layer is implemented on the above the solver using the Bridge design
pattern[21].

Based on the Bridge pattern we defined a general interface for handling the
CSP Solvers: this interface allows filling some predefined type of constraints and
checking the status of the solver (both by querying the domains of the variables and
looking whether it is possible for all constraints to hold). The list of constraints
needed depends on the property to check – the interface should be revisited each
time a new property is added to the analysis.

The class diagram in Figure 3.4 describes the classes used for integration the
CSP Solver to our architecture.

The constraints filled to the Constraint Handler are parametrized with the
TPM variables - the Constraint Handler has to read the needed properties of these
variables and match them to CSP variables. This matching is bidirectional thus
enables the Handler to return the TPM variable as a cause of failure.
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Figure 3.4: An UML class diagram describing the integration of the CSP solver

When a TPM node is reached during the traversal, the node generates its con-
straints using TPM variables queried from the Variable Repository. The constraints
then are filled to the Constraint Handler.

This way the constraints are incrementally imported to and checked for incon-
sistencies in the constraint solver. If contradictory constraints are found before
reaching the end of the transformation program, the solver reports the error and
stops further traversal. This method gives a hint where the problem has happened
- the Constraint Handler is not capable of detecting every fault where it happened.

3.5 Fault Identification

The static analyser system use three mechanisms to detect failures:

Constraint Failures It is recommended to try to identify faults during the traver-
sal as during the traversal extra context information is available which can
be used for more efficient detection of the cause of the fault. This context
information is available naturally if the Constraint Handler reports failure,
that happens only if the fault is related to a single CSP (and thus a TPM
variable).

Inconsistencies It is possible that the fault manifests as inconsistent results
on multiple variables (e.g., the TPM representation variables of a program
variable do not share a common property), or different branches return
different properties of the same variable, that cannot be detected easily. The
current approach is to check such properties after a branch is traversed, and
the results are saved for future branches.
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Traversal Faults A third kind of fault to identified is directly related to the
traversal: if a traversal cannot successfully finished, it also indicates an error.
Such error can happen by finding a failure node without a fail handling node,
which terminates the analysis.

It is also important to differentiate between faults by severity. Our model
uses two severity categories: error and warning. Error means a serious fault, e.g.
contradictory constraints over a property of a TPM variable. This severity is used to
describe faults which cause failures during execution. On the other hand, warnings
are used to indicate potential problems that may or may not cause errors on the
output, e.g. the halt during an unhandled fail node may be the expected outcome,
but it is not recommended to use it that way.

3.6 Related Work

There are several static analysers used for different languages with a different set of
capabilities based on different approaches. We now introduce one of them that has
conceptual similarities with our approach.

The FindBugs [24] is a static analysis solution for Java. It is based on the
concept of bug patterns which are possibly incorrect usage of the language. By
detecting such patterns it is possible to catch a few common errors while keeping the
number of warnings relatively low[41]. To increase the error detecting capabilities
of the system new patterns have to be defined. This bug pattern concept can be
used for describing the various inconsistencies between the parameters of multiple
TPM variables.

3.7 Summary

In this chapter we introduced a general static analysis solution for model transfor-
mation programs. The solution is based on a generic graph model of transformation
programs, the TPM.

We described in general how to build such a model, and then how to use this
model to analyse the transformation programs. In the next chapters we will describe
how to build a static type checker based on this concept, and then evaluate the
runtime characteristics of the implementation.



Chapter 4

Type Checking of the VTCL
Language

In Chapter 3 a generic method for static analyis of model transformation programs
was introduced. To demonstrate the capabilities of the proposed solution we describe
a static type checker system for the Viatra2 framework based on this generic
method.

In this chapter we introduce first the capabilities of the implemented type checker
tool, then describe its integration of the analyser into the Viatra2 framework,
then the use of the CSP Solver for type checking, and in the end of the chapter the
type constraints and element-specific traversal information is described for every
element of the VTCL language.

4.1 Capabilities of the Type Checker

The Viatra2 framework uses the VTCL language for defining model transforma-
tions. Some elements of the language, such as the graph patterns contain type
information implicitly, while the main, ASM-rule based control structures use
untyped variables.

The goal of the type checker is twofold: first it has to determine the types of
the variables regardless if it is available in the transformation program or has to be
inferred, and second, it should detect the incorrect use of types, e.g. the use of a
model element instead of a boolean variable.

The execution time and memory consumption of the analysis is an important
concern during the implementation, because the main goal of the tool is to help
the developer of the transformation program to identify the potential problems
in the code as early as possible. This requires the analysis to complete within a
reasonable amount of time on an average developer computer.
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It is important to note that it is not the goal of the type checker to detect
problems related to undefined (undef) values. If some variable has an undefined
value, it means it is either not initialized or already deleted.

This should be mentioned here, because the undefined value is special: the
undef value can represent any model element types, but nonetheless it is still a
value of a variable which is irrelevant during type analysis.

To have such capabilities to the analyser, another traversal of the TPM model is
suggested with the goal of finding such (and maybe other value-related) problems.

4.2 Integrating the Analyser

The Viatra2 framework is a set of Eclipse [2] plugins. This plugin-based architec-
ture enables extending the framework in a well defined way.

Figure 4.1 shows the main components that the static type checker is connected.

Core interfaces

Viatra2 Fram
ew

ork
Static
Type

Checker

CSP 
Solver

Transformation
Model

XForm
Code
Parser

Model
Parser

VIATRA2 
ModelSpace

Model Importer and 
Program Loader Interface 

Figure 4.1: The static type checker in the Viatra2 framework

It is important to note that the new static checker component is not parsing
the various textual and graphical languages defining the model space and the
VTCL language, instead it relies on the framework parsers. The analyser only
communicates through the core interfaces with the model space and the program
model store.

4.3 Using a CSP Solver for Type Checking

4.3.1 Representing the Metamodel as Constraints

The finite domain CSP solvers are not capable of handling neither the TPM variables
nor the metamodel. In order to use a CSP solver for type checking the metamodel
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has to be mapped as finite domain variables and related constraints.
In this section we are presenting a solution for two problems: first we create a

representation of the hierarchy, and then we discuss how to use this representation
in constraints to be evaluated by the CSP solver.

Representing Hierarchies with Integer Variables

There are some well-known ways to represent hierarchies with integer variables for
hierarchies only allowing single inheritance, like the concept of nested sets [28], that
is used to represent the tree hierarchy in a relational database.

The basic idea is to associate two numbers to each node in the hierarchy: an
entry number, which is smaller, than all the entry numbers of its descendants, and
an exit number, which is larger, than all the exit numbers of it’s descendants. A
node’s exit number has to be larger than its entry number. It is easy to generate
these numbers during a preorder tree traversal.

Provided that these numbers are set, deciding, whether an object is a descendant
of the other only requires evaluating two simple relations: the potential descendant
has (1) a larger entry number and (2) a smaller exit number than the potential
ancestor. The subtypeOf relationship holds if and only if both relations hold.

But for multiple inheritance hierarchies this representation does not work. We
have chosen another algorithm described by Yves Caseau in [14], that represents
the position of a node in the hierarchy with a set of integers.

The algorithm refers to the set of numbers assigned to the nodes as genes, because
they operate similar to the genes in biology: in the algorithm the descendant node
inherits all genes of all of its ancestors. This construction guarantees that a node
is descendant of another node if and only if the set of the “descendant” node is a
superset of the set of the “ancestor” node.

Example 12 As the Petri net metamodel does not contain inheritence first another
gene assignment is used to describe these capabilities. In Figure 4.2 (the example is
taken from the article describing the algorithm).

The hierarchy describes members of a university. Every member is a person,
and they can be students or employees. UnderGraduates and Graduate Students
are students, Assistant Professors and Temporary Professors are employees, while
Teaching Assistants and Foreign Visitor Students are both employees and students.

To illustrate the usage of the gene sets we interpret the results on some model
element pairs:

• The gene set associated to the element student is 1, to FVS is 1, 2, 6. 1, 2, 6
is a superset of 1, so FVS is a descendant of student.

• The gene set associated to the element GS is 1, 4, to AP is 2, 3. None of the sets
are superset of the other, so the elements are not in an inheritance relation.
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person

student employee

UG GS TA APFVS TP

(a) The Hierarchy

person

student employee
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Join Node
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(b) The Gene Assignment

Figure 4.2: The Gene Assignment for the University Member Hierarchy

The gene assignment algorithm consists of two phases:

1. first it transforms the original hierarchy to an algebraic lattice structure,

2. then assigns genes to the elements of this structure.

A lattice structure requires for every member a greatest lower bound and a
lowest upper bound to exist - these conditions can be fulfilled by adding join nodes
at well chosen places (informally nodes with multiple parents are altered: their
parents are substituted with a join node as their single parent).

The gene assignment is carried out in the following way:

1. every node inherits all the genes of all their parents,

2. and every simple node (it has only a single parent) adds a new gene to the
set.

3. The new gene is selected by looking the nodes with the same parent, and
selecting a gene which is not used to describe those nodes.

With this simple algorithm it is possible to create conflicts in the gene assign-
ments, because it is possible to add a join node between branches which have
conflicting genes. Such a conflict should be considered harmful, because it interferes
with our goal of identifying the position of the node in the hierarchy by looking at
the gene set. In order to be able to use an incremental assignment algorithm, such
conflicts have to be detected and resolved by changing one of the genes for another,
a safe one (even for the parent nodes).

These conflicts could be avoided also by using globally unique genes, but the
original algorithm did not choose this path, because one of the main goals of the
algorithm was to use a minimal amount of genes. This allows to use the algorithm
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even for large hierarchies. In our case it is also required to use as few genes as
possible: smaller gene sets help to reduce the memory consumption (details later,
in Section 4.3.1).

Example 13 When running this algorithm on the metamodel hierarchy of the Petri
nets defined in Section 2.1.1, the algorithm assigned genes between the numbers of
1 and 14. The resulting gene sets are present in Figure 4.3.

TopLevelNode

TopLevelRelation

Transition
Token

Place

Arc_Weight

InArc.Weight

InArc

OutArc.Weight

tokens

OutArc

{2,10}

{1,11}

{2,7}

{2,9}

{2,8}

{2}

{1,3}

{1,5}

{1,4}

{1,6}

{}

TopLevelEntity

{1}

Figure 4.3: The Gene Assignment for the Petri net Metamodel

The algorithm creates three special nodes (these added nodes are omitted
from Figure 4.2) that are not present in the original meta-model hierarchy: the
TopLevelNode, the TopLevelEntity and the TopLevelRelation nodes. They
specify respectively an abstract model element and relation node acting as an
ancestor of all model elements and all relations. They can be used in some constraints
to express the fact that the result is a model element, or more specifically a relation,
but without restricting the type of the model element.

The metamodel of the Petri nets does not contain any inheritance at all, but
these newly created nodes explicitly mark some inferred relationships that were
only implicitly presented in the metamodel: everything is the descendant of the
TopLevelNode, every entity is descendant of TopLevelEntity and every relation
is descendant of TopLevelRelation.

It should be noted that the gene algorithm does require only a single special
node for a correct gene assignment: it acts as the greatest lower bound of every
type from the hierarchy in lattice representation (this is the TopLevelNode), but
the algorithm does not require the Entity and Relation hierarchy to be explicit.

On the other hand there are some constraints (e.g. related to the ASM Term
function target, detailed in Section 4.4) that refer (directly) to the Relation or



46 CHAPTER 4. TYPE CHECKING OF THE VTCL LANGUAGE

Entity supertype (locally we cannot decide the actual Entity/Relation type). This
supertype is marked with the corresponding node.

Creating Constraints based on the Metamodel

By the description of the metamodel the main goal is to represent the type hierarchy,
and the to, from and inverse parameters of the relations of the metamodel. To
achieve this every TPM variable has to be mapped to CSP variable (or variables)
describing it’s type.

The fact that the TPM variables are single assignment variables allows each CSP
variable to represent a property of a single TPM variable, thus a static mapping
between CSP and TPM variables is enough.

The type of a VTCL variable (and thus a TPM variable) can be one of the
built-in types (Integer, Double, Boolean, String, Multiplicity), or a model
element (in this case the type is a metamodel element). The type information is not
present compile-time, only during runtime, and the type of a variable can change
runtime (dynamic binding).

To represent the type hierarchy, I defined two relations, the type equality and
the substitutability relations.

The type equality relation is defined on two model elements (or metamodel
elements). It is a symmetric relation, and it describes that the type of the two
model elements is exactly the same. The typical usage of the relation is to precisely
describe the type of a TPM variable - the second parameter should be a well-defined
type from the metamodel. When using gene sets the type equality relation can be
expressed by stating that the gene sets representing the two model elements are
equal.

The substitutability relation is a directed relation between two model elements
(or metamodel elements): it describes that the type of an element is either the same
as the type an other element, or it is a descendant of the other element’s type. It
can be used as a representation for variable assignments: the type of the assigned
value has to be the same as the variable’s, or it can be a descendant of it. When
using gene sets the substitutability relation can be expressed by stating that the
gene set of the ancestor element is the subset of the set of the descendant element.

The substitutability relation is more general than the type equality, but for
those types, which do not have any descendants, the two relations are the same.
In the same way for the built-in types the two relations equal as well (because
there is no descendant of e.g. an Integer number). This can be used as a kind of
optimization, when choosing the constraints.

The type of a TPM variable is represented by two different CSP variables: one
integer variable describing which built-in type is the type, and one integer set
representing the gene set of metamodel element. This integer set is only created
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when the TPM variable is a model element - this decreases the memory consumption
of the type checking process.

It might be possible to store the built-in types in the same inheritance hierarchy
as the metamodel: the type hierarchy might contain at the same time every possible
type. It might be simpler to handle to variables this way, and there is no need
to synchronize the two types of inner variables. But the main drawback of this
approach would be the slightly higher memory consumption (and an increased
runtime is also possible): the domain of the set variables is the powerset that is
exponentially large.

The described inheritance hierarchy does not help to describe the required
relation properties, because those properties are independent from the hierarchy.
On the other hand these properties are easier to describe because knowing the
relation determines the types of it’s parameters.

To allow the constraint solver to propagate over the constraints, I propose to
describe these properties by a set of conditional constraints. The constraints are all
of the following scheme:

(Relation is “relationtype′′)⇒ (Parameter is “parametertype′′)

In these constriants Relation is the variable representing the relation, “relationtype”
is a constant relation type, while Parameter is the variable representing the searched
parameter, and “parametertype” is a constant model element type. When filling
such a constraint for every “relationtype” (the “parametertype” is then fixed), it
will allow the constraint engine a two-way propagation process (either determining
the type of the parameter or in some cases the relation variable’s type).

Example 14 Over the domain of Petri nets (the metamodel is depicted in Fig-
ure 2.3) to express that the variable R is a relation, and the variable F is the “from”
parameter of R, the following constraints are needed:

• (R is InArc)⇒ (F is Entity)

• (R is InArc.Weight)⇒ (F is InArc)

• (R is OutArc)⇒ (F is P lace)

• (R is OutArc.Weight)⇒ (F is OutArc)

• (R is tokens)⇒ (F is P lace)
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4.3.2 The Constraint Handler API for the Traversal

As described in Section 3.4 it is required to define some generic constraint types,
and wrote an implementor (as described in the Bridge pattern), which can handle
these constraints. Our list of constraints is the following for the type checker:

Type Equals Constraint represents the type equality of two elements. This
constraint represents a substitutable relation (as defined in Section 4.3.1).
The inverse of the constraint states that two types are different.

Type List Constraint states that the type of an element is one of a set of types.
This constraint is similar to a disjunction of several type equals constraints, but
there is a huge difference: the type list defined in this constraint should consist
of a set of predefined type while the type equals constraint can handle two
variables as parameters. This constraint can be more efficiently implemented
in the CSP solver framework as a disjunction of several type equals constraints.
The inverse of the constraint states that the type of an element is not in a set
of types.

Conditional Constraint is a compound constraint of two subconstraints: it rep-
resents a logical consequence relation between a condition and a consequence
constraint. This constraint does not require the condition to hold.

Conjunctive Constraint is a compound constraint with an arbitrary number of
subconstraints: it represents a logical conjunction between the subconstraints.
Basically this means, the constraint holds only if every subconstraint hold.

Disjunctive Constraint is a compound constraint with an arbitrary number of
subconstraints: it represents a logical disjunction between the subconstraints.
Basically this means, the constraint holds if at least one subconstraint holds.

Inverse Constraint is a compound constraint with a single subconstraint: it
represent a logical inverse of the subconstraint. Basically this means, the
constraint holds if and only if the subconstraints does not.

It is deliberate to have both the Inverse Constraint and the possibility to define
the inverse of the simple constraints (not compound, more specifically the type
equals and the type list constraints). The Inverse Constraint can be implemented
using constraint reification (which introduces a new boolean constraint variable)
while the simple constraint may be inverted more efficiently.

These constraints are defined over the variables of the TPM, and the implementor
class has to be map these into CSP variables.
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4.3.3 Selecting a CSP Solver Engine

The analysis uses integer and integer set variables and some very simple constraints.
That allows us to investigate several available CSP solver implementations and
choose the one which suites the needs best.

During the development the Gecode/J library [22] and the clpfd module of
SICStus Prolog was evaluated, but these implementations did not meet our needs
exactly.

Generally supporting sets in constraint solvers needs compromises, because
the domain of possible sets is the powerset of the set elements which contains
exponentially many elements. The solvers that support sets use some kind of
optimalisation to overcome this aspect.

The Gecode library had a set representation, but it did not work well with our
specialised sets; on the other hand the SICStus module did not support neither sets
nor incremental problem building.

These problems led to create our own solver implementation. This implementa-
tion uses a simple object-oriented propagation algorithm: every constraint variable
notifies the related constraints of it’s changes, and the constraints try to propagate
that information further. This approach handles the investigated type checking
problem spaces quite well, more detailed performance assessment is in Chapter 5.

4.4 Traversing ASM Term Nodes

As described in Section 3.2 for every ASM Term Node there is an assigned TPM
variable, which represents the result of the the value of the current term.

To traverse an ASM Term node, all the operand nodes have to be traversed as
well, if there are any (variable and constant term does not have any operands).

4.4.1 Variable and Constant Terms

At the end of a Term branch we will always find a Term without operands. These
Terms represent variables and constants. These terms can be handled the same
way with two differences: in case of a constant element (1) the type of the element
is always available, and (2) this type cannot change.

The handling of these nodes is simple: the variable shall be put on the constraint
space as described in Section 4.3.1, and the type information has to be filled (if
available) using the type equality relation.



50 CHAPTER 4. TYPE CHECKING OF THE VTCL LANGUAGE

4.4.2 Arithmetic Terms

The VTCL language includes the basic arithmetic functions: addition, subtraction,
multiplication, division, remainder and arithmetic inverse calculation are available.
All these terms can be handled similarly, so we will cover only the addition in
details (which is usually the most complex of these operations).

The addition function has two operands (similarly to the mathematical operator),
both operands and the result are either String, Double or Integer. There are
further constraints on the possible types are listed in Table 4.1.

Operand1 Operand2 Return Value

{String} {Integer, Double, String} {String}
{Integer, Double, String} {String} {String}

{Double} {Integer, Double} {Double}
{Integer, Double} {Double} {Double}
{Integer} {Integer} {Integer}

Table 4.1: The Type Constraints of the Arithmetic Addition Operator

To understand the used notation, we describe the first line in plain English: it
means, that if the first operand is a String, the second is one of the types Integer,
Double or String, than the return value is a String. It is important to notice,
that at least one of these constraints will always hold, if all the variables are of the
allowed types, and all the constraints in the list have a single type on the right side.
These facts mean, that there is a deterministic connection between the types of the
operands and the type of the return value, so there is no need to create branches
for the different output types.

The other arithmetic operators can be treated similarly, with the following
differences: (1) neither of them allow the String type as operand or return value,
(2) the remainder operation also disallows Double variables, (3) and the arithmetic
inverse function has only a single operand.

4.4.3 Conversion Operators

Conversion operators are used to transform it’s operand to another type. There are
conversion operators available for the built-in types but none for ModelElement

types.
The conversion operators do not work on every possible operand type (e.g. an

Integer cannot be converted from a Modelelement).
The detailed type constraint are listed in Table 4.2.
The conversion operations are also deterministic, they return only a single value

type.
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Operation Operand Return value

toString {any possible type} {String}

toInteger
{String, Integer, Boolean,
Double} {Integer}

toDouble
{String, Integer, Boolean,
Double} {Double}

toBoolean {any possible type} {Boolean}
toMultiplicity {String} {Multiplicity}

Table 4.2: The Type Constraints of the Conversion Operators

4.4.4 Relational and Logical Operators

The VTCL language supports the usual arithmetic comparisons: less than, less than
or equals, equals, more than or equals, more than and not equals. They perform a
comparison on their operands. Their type constraints are listed in Table 4.3. These
operations do not need branches.

Operation Operand Return value

Less {String, Integer, Double} {Boolean}
Less or Equals {String, Integer, Double} {Boolean}
Equals {any possible type} {Boolean}
More or Equals {String, Integer, Double} {Boolean}
More {String, Integer, Double} {Boolean}
Not Equals {any possible type} {Boolean}

Table 4.3: The Type Constraints of the Arithmetic Comparisons

The commonly used logical operators are also supported: not, or, and, and xor.
The not operator has a single operand which shall be of Boolean type, and it’s
result is a Boolean.

The other logical operators have two Boolean parameters, and their return
values are Boolean values. None of the logical operators needs branching.

Model Element Query Operations

The Model Element Queries are built-in functions that let ASM Terms utilize some
element properties in the VPM model space (and with the help of these terms also
in ASM Rules). The names of the query functions are representing the names from
the VPM metamodel.

Table 4.4 displays all functions with their type constraints. There are two
types which have not been used before: Model Element represents any possible
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model element (descendant of the root of the model element type hierarchy), while
Relation similarly represents any possible relation (descendant of the root relation
in the model element type hierarchy).

Operation Operand Return value

isAggregate {Relation} {Boolean}
value {Model Element} {String}
ref {String} {Model Element}
fqn {Model Element} {String}
name {Model Element} {String}
inverse {Relation} {Relation}
multiplicity {Model Element} {Multiplicity}
source {Relation} {Model Element}
target {Relation} {Model Element}

Table 4.4: The Type Constraints of the Model Element Query Operators

Relation parameter constraint sets (as described in Section 4.3.1) are used at
the inverse, source and target queries to increase precision.

4.4.5 ASM Functions

ASM Functions are similar constructs as HashMaps in Java, or associative arrays
in some dynamic languages; it is possible to put items into and retrieve items from
them by assigning a Term as a key.

To handle these functions the following algorithm is used: at the initialization
of the type checking process the types of the stored values are gathered (during
startup the functions stores values set in the transformation program directly), and
the possible outputs of an ASM Function call are these values. If there are multiple
types, branching is needed.

The updating of ASM Functions has to be treated similarly to the update of
variables: using the Variable Repository a copy of the function has to be created,
and this copy can be modified, and later this modified copy can be constrained.

4.5 Traversing ASM Rule Nodes

Most ASM Rules does not generate constraints directly (a notable exception is the
Conditional rule, detailed later), they are used to describe the possible paths in the
TPM.
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The ASM Rules are discussed in the following groups: Simple ASM Rules,
Variable Definition Rules, Nested Rules, Conditional Rule, Model Manipulation
Rules and GT Rule Invocations after the discussion of the ASM Rule Calls.

4.5.1 Calling ASM Rules

In the VTCL language the call rule is used for the invocation of other ASM rules.
As of these call can also be recursive, the depth limit introduced in Section 3.2 is
applied for the called rules, and in case of the depth limit is reached, an empty
ASM Rule is present in the TPM.

The call rule’s responsibility is to match the called rules symbolic parameters
with the actual parameters given in the call node. This parameter matching must
happen both before and after the call takes place, because only this way is it
possible to handle the changes of the variables inside the called rules.

4.5.2 Simple ASM Rules

The Simple ASM rules are such rules that do not contain other ASM rules. These
rules are the following:

• The skip rule is an empty instruction - it needs no special handling.

• The fail rule is used to cause failures - when it is hit, a failure handling
should start.

• The update rule is used for modification of existing variables. As the execution
changes the VTCL variable, a new TPM variable should be created during
the traversal of this node in the Variable Repository, and it shall contain the
new value (defined by an ASM Term parameter). From this point everybody
referencing the variable shall use the new value.

4.5.3 Variable Definition Rules

The Variable Definition rule (for short the Let rule) defines variables. The rule
consists of an arbitrary number of variable definitions and a body ASM rule. A
variable definition consist of a variable and an ASM Term, while the body ASM
rule defines the context in that the defined variables are available.

It is possible to extract a constraint for the variable assignments: every variable
has to have the same type as the corresponding ASM Term. The execution continues
with the body ASM rule.
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Rule Subnodes Constraints Branches

Sequential
Arbitrary number
of subrules

No additional con-
straints

One

Parallel
Arbitrary number
of subrules

No additional con-
straints

One

Random
Arbitrary number
of subrules

No additional con-
straints

One for every sub-
rule

Table 4.5: The Analysis of Nested Rules

4.5.4 Nested Rules

The Nested Rules (sequential, parallel and random) are used to handle an
arbitrary number of subrules in a single construct.

The sequential rule runs every subrule one by one, which can be mapped to
type constraints as every type constraint of every subrule must hold.

The parallel rule also runs every subrule, but at the same time. The mapping
is done similar to the sequential rules. This approach has its limitations:
it cannot find every problem. If there are conflicting rules (several rules
try to change the same model element/variable), the parallel execution may
introduce even race conditions: some orders may be type safe, while others
not. A more refined approach would be the introduction of branchings in
parallel rules: for every possible order a different branch is calculated. The
number of created branches would be n! (where n is the number of subrules),
which means this solution cannot be used for large parallel models.

The random rule runs only a single subrule that is selected randomly. The
mapping creates branches for every subrule, and checks there the constraints
to hold.

Table 4.5 contains a short summary of the handling of the nested rules.

4.5.5 Conditional Rule

A Conditional rule consists of condition term and two subrules that represent the
true and false cases.

The condition term of the node has to be of Boolean type: this constraint has
to be filled directly from the rule, because on the level of the Term this information
is unavailable.
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Because only one of the two subrules will run, this rule is the start of two
different branches: one in that the subrule representing the true case will run, and
one in the other.

4.5.6 Model Manipulation Rules

The transformation control language has constructs for manipulating the model
space. There are constructs for creation, change and deletion of model elements.
These constructs have parameters: we know some basic things about these param-
eters (mostly they have to be a model element reference), this knowledge can be
filled into the CSP solver.

The Create rule creates a new model element in the model space. The parameters
of this construct are a variable and one or more ASM Terms. The variable
will store the created value, while the Terms describe the type of the model
element, and some additional parameters. The created model element (and
thus the variable) will have the type given as parameter. Some further type
constraints related to this node are the following: (1) the type parameter have
to be a model element type (either entity or relation); (2) a variable is used to
store the new element, it will have the same type as the type parameter; (3)
if filling in a relation, the from and to parameters have to be model element
references, and the relation parameter constraint sets are also filled.

The Delete rule has an ASM Term parameter: the element to delete from the
model space. In this case the element reference has to be invalidated for
future use - it does not refer to any elements from the model space any more.
The parameter has to be a model element type.

The Copy rule is similar to the create: it creates a new item by creating a copy
from an existing one. The constructs parameters are: the source element,
the target, and a variable. The source element and the target are model
elements, while the variable is a term variable (similar to the create rules
variable parameter).

The Move and the Update rules change existing model elements. Their pa-
rameters select an existing model element, and define what to change. These
information can be mapped in a similar way as the parameters of the other
model manipulation constructs. There are several kinds of update rules, they
are a bit different in the parameters handling, but all of them contains two
ASM Term parameters. Without further explanation the possible types of
the update rules are the following:

• rename(Model Element, String)
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Rule Subnodes Constraints Branches

Create (entity) variable, type
variable is a type
entity

One

Create (relation)
variable, type, two
model elements

variable is a type
relation, the last
parameters are
model elements,
relation parameter
constraints

One

Delete Model element
Parameter is a mo-
del element

One

Copy
Source element,
variable

The type of variable
and source equals
to the type of the
source element,
both are model
elements

One

Move
Source element, tar-
get container

Both elements are
model elements

One

Update Two ASM Terms Varies One

Table 4.6: The Constraint Mapping of Model Manipulation Rules

• setValue(Entity, String)

• setFrom(Relation, Model Element)

• setTo(Relation, Model Element)

• setMultiplicity(Relation, Multiplicity)

• setAggregation(Relation, Boolean)

• setInverse(Relation, Relation)

In case of the setFrom, setTo, setInverse rules, relation parameter con-
straint sets are also inserted.

Table 4.6 contains a short summary of the handling of model manipulation
rules.

4.5.7 Collection Iterator Rules

The forall and the choose rules execute rules for all elements (or a single element),
that have (or has) a specific property. For both rules the parameters are the same:



4.5. TRAVERSING ASM RULE NODES 57

a list of variables, the property description, which can be either an ASM Term or a
GT Rule call, and an optional ASM rule to execute.

If the properties are described by a Term, than the Term has to be traversed as
described in Section 4.4, while in case of GT Rules Section 4.6.2 has to be followed.
If an ASM Rule is present, it has to be traversed as well.

The difference between the two rules are represented by the possible runtime
paths: if the forall rule finds no element fulfilling the parameter property, it does
not run the ASM Rule at all, but continues execution, while the choose rule fails
when no elements are present, failure handling will follow the unsuccessful matching.
A further difference is, that the ASM Rule of the choose rule at most once, while
in case of the forall rule it can rule (depending on the model space) an arbitrary
number of times - but it is not needed to check the run of the ASM Rule several
times for type checking, because running a single ASM Rule several times does not
change the types (if the rule is not deterministic than inside the rule are branches
created).

Taking these properties in consideration, the choose rule needs two branches:
one, where a match is found, and the ASM Rule is executed, and another where no
match is found, and a failure handling process is initialized. In this case the ASM
Rule is not executed.

Example 15 To illustrate the handling of the choose rule, let’s consider the rule
presented in Listing 3.2:

Listing 4.1 A Simple choose Rule

choose Token with find placeWithToken(Place, Token) do print("token found");

First of all the static checker has to evaluate the pattern call (the placeWith-

Token call), the examination is detailed in Section 4.6.2. A successful matching
(first branch) binds the Place and Token parameters to be able to use it later. In
case of unsuccessful matching (second branch) a fail is emitted.

For type checking the forall rule also two branches are needed: in the first one
the ASM Rule is not executed, in the second one it is executed once.

It is an interesting point that after the run of a forall rule there should be
no model element fulfilling the condition of the rule (except when the step creates
such nodes, or there are conflicting applications). It needs further research whether
these observations could be mapped into constraint in order to extend the number
of detected faults types.

Table 4.7 contains the handling of the collection iterator nodes.
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Rule Subnodes Constraints Branches

Choose

Arbitrary number
of variables, a con-
dition, a rule and a
fail node

The variables are
model elements, the
condition is boolean
term

(1) condition and
fail nodes are tra-
versed; (2) condi-
tion and rule is tra-
versed

Forall

Arbitrary number
of variables, a con-
dition and a rule
node

The variables are
model elements, the
condition is boolean
term

(1) only the con-
dition is traversed
(2) the condition
and the rule is tra-
versed.

Table 4.7: The Analysis of Iteration Rules

4.6 Traversing GT Rule and Pattern Nodes

4.6.1 Calling Graph Patterns

The VTCL language contains Graph Pattern Calls as boolean ASM Terms. This
allows its use both inside Graph Patterns and in ASM Rules as conditions. The
returned value of the call is true, if the pattern matching is successful.

To handle recursive calls, the depth limit (see Section 3.2) is applied to the
bodies of the called graph patterns. This way it is possible to analyse possible
sequences of the alternate bodies of graph patterns.

The pattern call term’s responsibility is to match the called pattern’s symbolic
parameters with the actual parameters given in the call node. Because the pattern
contain a static condition, it is not required to do this pattern matching twice (as
in case of ASM 4.5.1 or GT 4.6.3 Rule calls).

4.6.2 Graph Patterns

A graph pattern is the conjunction of conditions (the negative pattern acts a
logical inverse operator over this conjunction). This basically means it is enough
to translate the single conditions to constraints, and the conjunction of these
constraints will be the constraint of the graph pattern.

A graph pattern has parameter and local variables: the parameter variables
represent a selection of variables which have to be matched, while the local variables
are used as internal variables, they are helpful for describing more complex patterns.
During the processing of graph patterns it is not needed to differentiate between
the two variable types, they can be handled the same way.

It is possible to define alternate bodies for a graph pattern: these bodies define
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disjunctive conditions: the pattern matches if at least one of its bodies matches.
To handle these bodies, a new branch should be created for every body.

Type definition states that a variable is an instance of a metamodel element. It
can be translated into substitutable relation.

Checking of a boolean formula states, the a boolean formula holds. The for-
mula is an ASM Term, it has to be evaluated, and its type should be Boolean.

Pattern Calls are used to define subpatterns. These subpatterns can be handled
as additional conditions and constraints. Together with the alternate body
construct pattern calls are used to write recursive patterns (similar to the
recursive clauses in Prolog).

A pattern call (both inside or outside the pattern) is responsible for parameter
matching: from the call node we are able to extract the variables known to the
caller, and it has to generate constraints stating the type equality of every parameter
of the callee and the variable from the caller.

For this simple parameter matching it is required to copy the subgraph rep-
resenting the pattern to every call. This solution also allows the handling of the
branches of the same way as every other node. If instead of the copying it would
be only referenced, it should be ensured that the different invocations could choose
different branches (the branches are calculated for nodes, if there is only a single
node representing the pattern there will be only a single branching point).

Example 16 The called pattern of Listing 4.1 is described in Listing 4.2.

Listing 4.2 A Simple Graph Pattern

pattern placeWithToken(PlaceVar, TokenVar) =

{

’PetriNet’.’Place’(PlaceVar);

’PetriNet’.’Place’.’Token’(TokenVar);

’PetriNet’.’Place’.’tokens’(X, PlaceVar, TokenVar);

}

The pattern describes a relation between two elements, called PlaceVar and
TokenVar. The lines of the pattern describe in order, that (1) PlaceVar is an
element of Place (from the metamodel), (2) TokenVar is an element of Token,
and (3) there is a variable called X, which represents a tokens relation between
PlaceVar and TokenVar.

Although the type of the variable X is not used outside the pattern the static
checker calculates it, the node-based constraint extraction process is not capable of
detecting these redundancies.

Table 4.8 summarizes the handling of the elements of the GT Patterns.
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Element Subnodes Constraints Branches

GT Pattern
Arbitrary number
of bodies

No additional con-
straints

One for every body

Pattern Body

Arbitrary number
of called patterns,
Arbitrary num-
ber of Pattern
Elements

Type Equals Con-
straint for every pat-
tern element

One

Table 4.8: The Elements of GT Patterns

4.6.3 Calling Graph Transformation Rules

The GT Rule Invocation rule is used to call Graph Transformation Rules in the
VTCL language. These calls can be recursive, because Graph Transformation rules
may contain ASM rules, so the depth limit (see Section 3.2) should be applied to
the called rules.

The GT Rule Invocation rule’s responsibility is to match the called rules
symbolic parameters with the actual parameters given in the call node. This
parameter matching must happen both before and after the call takes place, because
only this way is it possible to handle the changes of the variables inside the called
rules. These parameter matching should consider the parameters direction (in, out,
inout) to update only those variables that can be changed.

4.6.4 Graph Transformation Rules

A GT Rule describes a single graph transformation step. The description include the
graph patterns: a pattern describing the LHS graph (precondition) and another
for the RHS graph (postcondition). The rule may also have directed (in, out,
inout) parameters.

It is also possible that the GT Rule contains an optional ASM Rule action

which is applied to the matched precondition pattern.
Both the graph patterns and the action have to be traversed, because the

parameters (and thus the type of the parameters) of the graph transformation are
constrained by the patterns. The analyser first traverses the patterns and only then
the action as the graph patterns provide full type information that is useful during
the analysis of the action.

Example 17 Listing 4.3 displays the addToken GT Rule introduced in Section 4.6.4
with a slight alteration: both the postcondition and action part has been defined in
order to demonstrate the traversal.
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Listing 4.3 The addToken GT Rule

// Adds a token to the place ’Place’.

gtrule addToken(in Place) =

{

precondition find place(Place)

postcondition find placeWithToken(Place, Token)

action{

print(Place);

print(Token);

}

}

Rule Subnodes Constraints Branches

GT Rule (with RHS)
Precondition pat-
tern, Postcondition
pattern

No additional con-
straints

One

GT Rule (with action)
Precondition pat-
tern, Action

No additional con-
straints

One

GT Rule (with both)
Precondition pat-
tern, Postcondition
pattern, Action

No additional con-
straints

One

Table 4.9: The Analysis of GT Rules

When investigating this GT Rule node, first the precondition, then the postcondi-
tion pattern is traversed as described in Section 4.6.2, then the rule is also executed
as described in Section 4.5.

Table 4.9 displays the parameters of the GT Rule nodes.

4.7 The Detected Type Handling Problems

By using the terminology introduced in Section3.5 the analyser is capable of
detecting three kind of (possibly) invalid type handling:

1. In case of constraint failures one of the CSP variables has an empty domain,
that means the type constraints connected to that variable are inconsistent.
This can translated to inconsistent type handling in the VTCL code. The
severity of this problem is error.

2. If there are no constraint failures, the analyser looks forinconsistencies: for
every VTCL variable to representing TPM variables are assembled, and their
calculated types are compared. If there is a change of types between the
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types, a warning is issued, because in most cases it is not recommended to
use a variable with multiple types during it’s lifecycle.

3. A common traversal fault is an unhandled failure node. When finding one,
a warning is issued, as it is considered as a bad practice to leave unhandled
possible failures in the code.

4.8 Related Work

While there is already a large set of static type checking concepts in the literature,
below we focus on providing a brief overview with two different application areas
that show conceptual similarities with our approach.

There are similar problems involving XML [12] and XSLT [15]. XML is a
hierarchical data structure, which can be though of as a data structure, while XSLT
is a transformation language, with rules given to apply to various XML values.
A type specification of an XML document is written in a DTD (Document Type
Definition) (or XSD (XML Schema)), and can express types such as a node of type
HTML contains a head followed by a body. The question is: Given a DTD for an
output document, and an XSLT transformation, what is the DTD for the input
document? The advantage of this knowledge is that a document can be checked to
meet an output DTD without the cost of transformation first, and the errors can be
determined in the input (or source) document, which the user wrote not a document
generated by a transformation. One of the most widely known answer [42] treats
this as a question of backward type inference. A type is synthesized as a finite tree
automaton, and is deduced compositionally. We adopted the tree based structural
traversal from the approach that works on our models.

As for the functional language community, type systems have played significant
roles in guaranteeing better software safety. Most notably the well known Hindley-
Milner [39] algorithm for lambda calculus that reduces the typing problem to a
unification problem of equations. It serves as the underlying algorithm [35, 30]
for many approaches developed for Haskell [5] and Erlang [3], todays most widely
used functional programming languages. Our approach was influenced by the
work started in [36], which translates the typing problem to a set of constraints.
As Hindley-Milner is designed to lambda calculus which is not conform to the
Viatra2 transformation language, we designed a different mapping and evaluation
approach that fitted better with the graph based data structures and multi-level
metamodeling.
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4.9 Summary

In this chapter we have discussed the possibility how to use our proposed static
analysis method to implement and integrate a type checker component into the
Viatra2 model transformation framework. The created framework is capable of
checking the type safety of the Viatra2 VTCL language by inferring the type
information not present and checking for contradictions.

To create this type checker, we used a gene algorithm by Yves Caseau to map
the multiple inheritance hierarchy into integer sets, thus making it representable in
a finite domain CSP solver.

Then we described, how to handle the node types during the traversal, and
finally gave an overview of the problem types analysed by the method.
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Chapter 5

Evaluating the Type Checker

In this chapter we demonstrate the fault detection capabilities of the static analyser
tool on a larger example, and then we measure the execution time and memory
usage.

As examples we use two transformation programs over the domain of Petri
nets and the implementation of the AntWorld case study. In this chapter we give
an introduction to these transformation programs, then test the failure detection
capabilities of our type checker, finally the performance of the tool is evaluated.

5.1 The Used Transformation Programs

5.1.1 Petri net Transformation Programs

These transformation programs are defined in [9] over the domain of Petri nets,
they work well as examples because the control structure of the program contains a
lot of elements of the language. The programs are:

The Simulator program alters existing Petri net models by enabling firing steps
that move existing tokens between the places of the net. The firing is managed
by two steps: (i) by the usage of the pattern isTransitionFireable a fireable
transition is selected non-deterministically then (ii) the GT Rules addToken

and removeToken calls are used to manage the changes of Tokens in the
model.

During the firing process the structure of the model (the Place and Transition

entities, and the Inarc and Outarc relations) remains unchanged.

The source code of the transformation program is described in Appendix A.1.

The Generator program creates new Petri net models. The creation starts from
a small, living Petri net, then the inverse of six reduction operations [31]
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Figure 5.1: The Simplified Metamodel of the AntWorld Case Study

that preserve the liveliness and safety properties of the net together with
a weighted random operation selection. The generation is parametrized to
produce approximately equal number of places and transitions.

The output is available in PNML format [26]. The source code of the trans-
formation is described in Appendix A.2.

5.1.2 The AntWorld Case Study

To demonstrate the analysis capabilities together with the Petri net examples a
larger transformation program with a more complex metamodel is also evaluated.
The AntWorld case study [44] is a model transformation benchmark featured at
GraBaTs 2008 [4]. AntWorld, probably inspired by Ant Colony Optimalization [19],
simulates the life of a simple ant colony searching and collecting food to spawn
more ants on a dinamically growing rectangular world. The ant collective forms
a swarm intelligence, as ants discovering food sources leave a pheromone trail on
their way back so that the food will be found again by other ants.

Figure 5.1 contains the metamodel of the AntWorld case study. The Field
element represents a field of AntWorld (grid node in the original specification, but
is renamed in the implementation to avoid confusion), they are connected by Paths,
and a set of field created in a single step are connected via circlePath relations.

Fields may associated with an Integer number of Pheromone and Food. Finally
they may contain two types of ants: searcherAnts that do not carry food, instead
are looking for a food bundle and carrierAnts that carry food back to the anthill.

Listing 5.1 describes how a round is managed in the simulation. A round consists
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Listing 5.1 A Round in the AntWorld case study

236 rule doRound() = let Hill = antHill() in seq {

237 //Ant actions

238 iterate choose Ant, LocationEdge, Food, Field with find canGrab(Ant, LocationEdge,

Food, Field) do call grab(Ant,LocationEdge,Food,Field);

239 forall Ant, LocationEdge with find hasCarrierAnt(LocationEdge, Hill, Ant) do call

deposit(Hill,Ant,LocationEdge);

240 forall Ant, FromField, HA1 with find hasCarrierAnt(HA1, FromField, Ant) do

241 choose NewField with find alongReturnPath(FromField, NewField) do seq {

242 call moveAnt(HA1, NewField);

243 call leavePheromone(FromField);

244 }

245 forall Ant with find searcher(Ant) do call search(Ant); // two kinds of search

246 // only searchers can breach the boundary!

247

248 //Field action

249 forall Pheromone with find pheromone(Pheromone) do call evaporate(Pheromone);

250

251 iterate

252 if(toInteger(value(Hill)) > 0)

253 call consume(Hill);

254 else

255 fail;

256 if (find boundaryBreachedBySearcher()) call growGrid();

257

258 }

of seven phases, four for the ant simulation and three for managing the world. All
phases are captured as a series of forall and choose rules guarded by graph
patterns. The phases are the following:

Grab phase for every searcher ant standing on a food bundle the grab rule is
called that collects as many food from that source as the ant can carry, also
managing the size of the food bundle. If the food bundles size becomes
negative, it is deleted from the model. The ant becomes a carrier ant.

Deposit phase for every carrier ant standing in the anthill the deposit rule is
called that increases the food reserves of the hill by the food carried by the
ant, and the ant becomes a searcher ant. This rule is the inverse of the Grab
phase.

Return phase for every carrier ant not in the anthill the returnPath relation is
used to determine the next location while going back to the hill. The moveAnt
rule is called that moves the ant to the new location after the leavePheromone
call is used to increase the pheromone level of the current position.

Search phase for every searcher ant the search rule is called. That rule selects
a next location; if there is high Pheromone level on a neighboring field, it
becomes the new target, else a random location is selected.
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Evaporate Pheromon phase for every field with pheromone the evaporate rule
is called that reduces the amount of pheromone available on the field. If the
amount of pheromone becomes negative, it is removed from the model.

Create Ants phase as long as the hill contains food (its integer value is greater
than zero), the consume rule is called that reduces the value by one, and
creates a new searcher ant to the hill.

Boundary Breached phase if the boundaryBreachedBySearcher pattern matches,
the growGrid rule is called that creates new fields. A circular based traversal
of the boundary fields is used the generate the new fields using the circlePath
relations. Along the new fields also new food bundles are created on every
tenth created field.

The full source code of the transformation program is available in Appendix A.3.

5.2 Evaluation of the Static Type Checker

To evaluate the fault detection capabilities of the static type checker, some errors
are injected into the Simulator and Generator programs. The source listings in
these section show only the modified code segments, the entire fault-free source
code can be found in Appendix A.1 and Appendix A.2 accordingly.

It is important to note that the parser of the Viatra2 framework contains a
built-in static analyser. That analyser is capable of detecting faults not limited to
the type safety, but only a small subset of the typical faults: all the transformation
programs described in this section pass the analysis of the parser. All together the
goal of our analysis solution is not to replace error checking of the parser but to
increase the fault coverage when using both.

Listing 5.2 shows a small modified block from the Simulator program - the only
difference is that in line 94 the iterate rule is missing before the seq rule, so there
is no failure handling rule for the elements in the block.

When analysing this example three messages are filled into the Problems View
of the IDE, as can be seen in Figure 5.2. These messages state, that the (potential)
failures in the fail rule in line 96, the choose rule in line 97, and another choose
rule inside the fireTransition call are not handled.

By restoring the deleted iterate rule as seen in the second part of Listing 5.2,
these messages are removed.

Our second example also comes from the Simulator program. The second
creation rule of the addToken rule (see Listing 5.3) has been altered to create a
variable with the same name as the first one.
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Listing 5.2 A Missing Fail Handler Rule

The Context of the Fault:

94 let PN = ref(NetFQN) in seq {

95 update counter("iterations") = counter("iterations") + 1;

96 if (counter("iterations") > Iterations) fail;

97 choose T with find fireable(PN,T) do seq {

98 call fireTransition(T);

99 }

100 }

The Fix of the Problem:

94 let PN = ref(NetFQN) in iterate seq {

Figure 5.2: The Detected Faults in the Problems View

The analyser detects this kind of misuse, because the calculated type of the
variable Token changes from the Entity Token to the Relation tokens. The correct
create rule is described in the second part of Listing 5.3.

The last example comes from real development experience: during the devel-
opment of the generator program once an invalid pattern call was used: at line
313 a petriPlace pattern is called instead of the petriTransition as described
in Listing 5.4.

When running the type checker on the program it reported an error related to
the variable P, because in the pattern call petriPlace it must have been a Place,
while in the rule call inverseSerialTransitionRedaction a Transition. These
conditions cannot hold both. A more careful examination showed that the pattern
call has to be replaced as described in the second part of Listing 5.4.

We also used the static type checker to analyse the implementation of the
AntWorld case study. We only got the final version of the implementation, and the
analysis did not find type errors.
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Listing 5.3 An Invalid Creation Rule

The Context of the Fault:

70 rule addToken(in Place) = let Token = undef, X = undef in seq {

71 new(’PetriNet’.’Place’.’Token’(Token) in Place);

72 new(’PetriNet’.’Place’.’tokens’(Token, Place, Token));

73 }

The Fixed Problem:

72 new(’PetriNet’.’Place’.’tokens’(Token, Place, Token));

Listing 5.4 An Invalid Pattern Call

The Context of the Fault:

313 choose P below PN with find petriPlace(PN,P) do call inverseSerialTransitionRedaction(P, PN);

The Fixed Problem:

313 choose P below PN with find petriTransition(PN, P) do call inverseSerialTransitionRedaction(P, PN);

5.3 Benchmarking the Static Type Checker

5.3.1 The Measurement Environment

The runtime performance of the type checker is approximated by the execution time
of the traversal: the omission of the TPM building process is intentional, because
its execution is much faster then the several traversal iterations. The execution
time of running each branch and the total time is measured several times, and the
result are averaged.

The memory consumption of the analysis process is also measured. This is
done by watching the heap size of the Java Virtual Machine (JVM); the heap also
contains the Viatra2 framework, so before the benchmark the heap size should be
remembered, and they have to be deducted from the measured value.

It is important to note that the SICStus Prolog engine uses a different Virtual
Machine so its memory usage is not measured by the JVM heap size. In this
benchmark the memory usage of the Prolog VM is not collected.

The measurements have been carried out by on a MacBook notebook computer
with a 2 GHz Intel Core 2 Duo processor and 3 GB of system RAM available,
running Mac OSX 10.5 version 1.5.0 16 of the 32 bit Java SE runtime (for the
Viatra2 framework), and version 4.0.4 of the SICStus Prolog, and version 2.2 of
the Gecode/J engine is used in the corresponding measurements.

Execution times were measured with millisecond precision as allowed by the
related system calls; the memory consumption is measured with megabyte precision.
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5.3.2 Benchmarking the Simulator Program

The Petri net Firing transformation program is very simple: in total 4 branches are
needed during traversal, and at most 61 variables are identified in a branch. That
was represented in the memory consumption of the analysis: in every iteration it
consumed 1–2 MB RAM (the relative error of the measurement can be very high,
no conclusion should be taken from these values), except the Gecode-based solver
that used about 15–16 MB.

The execution times of the Petri net firing program has been measured for all
three solvers. The results are shown in a chart in Figure 5.3. It is important to
note that the scale of the X axis is logarithmic in order to display the results of the
solvers side by side.
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Figure 5.3: The Execution Time of the Analysis of the Firing Program

It may come as surprise that the SICStus solver is slower by an order of
magnitude, but there are several differences which may explain it: the SICStus
solver does not run in the JVM, and it does not support the iterative building of
the constraint satisfaction problem - both of these factors might cause performance
issues.

The Gecode engine performed between the other solvers, but used much more
memory. The engine supports iterative building, but the used set implementation
is very naive thus uses an enormous amount of memory.
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5.3.3 Benchmarking the Generator Program

The generator program is larger than the firing program: it is described by 39
branches with at most 221 variables.

When benchmarking the SICStus solver with this program it was not capable
of evaluating the first branch in half an hour, so it is excluded from this test.

The Gecode solver was also uncapable of analysing this generator program:
although 18 branches were evaluated in an average of 60 s, then it was not able to
allocate enough memory, and failed. The analyser used about 700 MB RAM at
this point.

Our solver implementation needed less than two seconds (about 47 ms per
branch) for the complete evaluation, and about 14 MB of RAM during execution.

The generator program seems large enough to also test the performance of the
state saving and restore enhancement introduced in Section 3.3.4. This enhanced
method needs about 35 MB memory, but surprisingly takes more time as the simple
traversal: more than 5600 ms (about 144 ms per branch, almost three times as
much time).

To illustrate the runtime characteristics, 6 groups were created from the branches
based on the time the analyser spent on them. The boundaries of the groups were
choosen in a way to cover the values of the runtimes evenly. Figure 5.4 shows how
many branches belong to each group for both traversal methods.
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Figure 5.4: The Effect of State Saving on the Execution Time

As the chart displays, that there are only 4 branches using the naive method
needing more than 90 ms to execute, while there are 12 using state saving that need
more than 200 ms. By looking the groups of smaller runtimes, the result is similar.
A basic interpretation of the phenomenon is that the cloning of the constraint space
is a more expensive operation that building another one from scratch.
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Figure 5.5: The Execution Times of the Different Branches

5.3.4 Benchmarking with the Antworld Program

The Antworld program is the largest example: 24270 branches with an average of
531 variables (with a maximum of 670) are needed to traverse every possible path.

As this example is that large, only the our solver implementation was tested
without the state saving. The analyser used about 15 MB memory during the
analysis.

The entire analysis needed about 24 minutes, a branch was evaluated in about
60 ms. A more detailed analysis of the time needed for running the branches is
depicted in Figure 5.5.

This chart displays a similar branch grouping as described at the benchmark of
the generator program.

When comparing the results of the two programs, it is interesting, that the
memory usage of the two program analysis is about the same. We believe this is
caused by the fact that more CSP problems can be stored in this amount of memory,
and after the execution of a branch the related problem can be garbage collected,
but that happens only when the heap is about to get full. We could not verify this
theory by a further reduction of the heap size, because the Viatra2 framework
needs a similar amount of memory the load the transformation programs, so the
heap space is already reserved at the start of the analysis.

On the other hand, a small increase in the analysis time is observable (from
47 ms to 60 ms per branch); this increase is similar in size to the increase of number
of constraints, but much smaller than the increase of variables.

The overall runtime of the Antworld program is much higher as it contains 600
times as many branches that has to be evaluated. The conclusion of this result is
that the number of branches can become a performance bottleneck, so a way to
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reduce the number of branches in large programs is an important research task.

5.4 Summary

In this chapter we evaluated the capabilities and performance of the implemented
static type checker component, and demonstrated its fault handling capabilities on
the example of two transformation programs.

As we noted during our research the different parts of the transformation
language acts differently with regards of the type handling as type information is
present in the GT rules and patterns while the control structure used in Viatra2
is untyped. As the testing of the component showed the type information coming
from the GT part could ease the type inference in the control structure.

The performance evaluation shows that the main bottleneck could be the number
of branches to check: the checking of a branch can happen in a reasonably short
time, but in case of a large number of branches needed, this solution would be
incapable of finishing the analysis fast enough for a wide usage. This means a way
has to be found to reduce the number of branches to check.



Chapter 6

Results and future plans

6.1 Main Results

I designed and developed a static analysis technique using Constraint Satisfaction
Programming to provide type checking for the (partially) untyped transformation
language of the Viatra2 framework.

• I specified a method for mapping ASM-driven model transformation control
languages (both the GT Rules and the ASM Control Structure) into constraint
satisfaction problems. This mapping can be easily adapted to other languages,
and is able to manage the potential changes in the language specification.

• I used the defined mapping as a basis of a general static analysis method for
transformation programs.

• I adapted the gene algorithm of Yves Caseau to the multi-level metamodeling
hierarchy to represent the type system. The result of the algorithm is a
representation of the metamodel elements as integer sets. This allowed the
description of the hierarchy for the finite domain CSP solver.

• I implemented a simple finite domain CSP solver capable of handling integer
and integer set variables and the constraints needed for the analysis.

• I defined and implemented a static type checker component based on the
static analysis method for the Viatra2 framework. The component is able
to detect some faults that can be hard to detect by reading the source code.

For the implementation parts a total of 10000 lines of Java code has been
written.
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6.2 The Limitations of the Technology

The usage of the CSP technology brings forth some limitations which must be taken
care of.

One of such limitation is the lack of error cause detection. The problem is very
hard to solve over the general domain, because any possible subset of the entered
constraints can be the root cause of the failure. But using knowledge about the
transformation programs it is possible to do more specific detection.

It is also important to understand that CSP solvers stop execution when the
first error is found, because they assume no solution might be found from this
point. This is a sound assumption, as the constraints are monotonic: there are no
constraints that increase the allowed domain of a constraint variable. This means
for the static analysis process that it is not guaranteed to find every fault in the
program in a single run. On the other hand, when fixing the faults one by one,
the analysis can be re-run to check for other faults; and it is possible that multiple
errors are detected, if the detected error does not cause the solver to fail (e.g. the
results of multiple CSP variables is inconsistent).

The use of finite domain sets can also be problematic: in order to reduce memory
consumption, the implementations might use some optimization’s - which may or
may not be sufficient. If the implementation is not accurate enough for the model
(which was the case with the Gecode solver), a naive replacement implementations
may require an enormous amount of memory. This was the main reason for
implementing my own CSP solver.

6.3 Future plans

This master thesis shows a proof-of-concept solution for building a static analyser
for ASM-driven MT system based on a CSP solver. As the first implementation
version I built a type checker using this technology. The method can be further
enhanced several ways, some are listed below.

6.3.1 New Analysis Methods

Reachability Analysis As of now the traversal algorithm always start from the
root of the TPM, and the direction of the traversal always points to the
direction of leaves in the order as the TPM nodes suggest them (according
to the run paths). The semantics of traversing in the opposite direction is a
search for conditions of reaching the current node. This semantic could be
used for the detection of a dead path (if the conditions are contradictory the
node cannot be reached) to support dead path elimination.
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Invariant Matching There can be some invariants detected during the traversal,
e.g. after a successful execution of a single choose in an iterate rule the
condition of the rule must not hold for any element in the model space. These
invariants can be used as constraints. These extra constraints could improve
both the accuracy of the analysis and performance of the tool.

6.3.2 Increasing Performance

Partial Evaluation In order to avoid a much higher memory consumption, we
used a branching strategy. To reduce the number of branches, some kind
of partial evaluation can be used at several cases. One of these cases are
disjunctive graph patterns. If we could determine that the constraints of a
branch always hold, it is unnecessary to traverse the other branches as well.
Another usage scenario of partial evaluation is the mapping of parallel rules:
by detecting the conflicting subrules the number of needed branches can be
reduced.

Modularizing the Traversal The traversal could be splitted by the call nodes,
evaluating the called subtree, and replacing it with some kind of contract
that contains all the aggregated constraints from the called subtree which are
relevant to the caller. This enhancement could increase the performance of the
analysis, because the same subtrees do not need to be traversed several times,
and the number of branches might decrease. On the other hand replacing a
subtree with a contract could decrease the fault-detecting capabilities of the
static analyser by reducing the amount of available information.

6.3.3 More Specific Error Detection

Reimport Constraints in case of Failure In order to allow the better identi-
fication of the cause of an already detected fault, it might be possible to
reimport some already imported constraints (into a new problem space). The
analysis of some specific subsets could help to identify a set of related con-
straints that are unsatisfiable. This concept needs further research, especially
the selection of the constraints to reimport.

Explanation Calculation It is also possible to locate the cause of a fault by
calculating explanations [27] in the constraint solver. The explanations are a
set of contradictory constraints. The calculated explanation can be showed
to the transformation developer (after interpreting it in the problem domain)
to help him/her to find the fault.
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Appendix A

The Analysed Transformation
Programs

A.1 The Petri Net Simulator Program

1 namespace DSM.machines.PetriNet;

2

3 import DSM.metamodel.PetriNet.PetriNetEditor;

4

5 @incremental

6 machine ’PetriNetSimulator’ {

7 // ’Transition’ is a transition of the petri net ’PN’.

8 pattern petriTransition(PN, Transition) = {

9 ’PetriNet’(PN);

10 ’PetriNet’.’Transition’(Transition);

11 ’PetriNet’.’transitions’(X, PN, Transition);

12 }

13

14 // ’Place’ is a source place for transition ’Transition’.

15 pattern sourcePlace(Transition, Place) = {

16 ’PetriNet’(PN);

17 ’PetriNet’.’Transition’(Transition);

18 ’PetriNet’.’transitions’(X1, PN, Transition);

19 ’PetriNet’.’Place’(Place);

20 ’PetriNet’.’places’(X2, PN, Place);

21 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);

22 }

23

24 // ’Place’ is a target place for transition ’Transition’.

25 pattern targetPlace(Transition, Place) = {

26 ’PetriNet’(PN);

27 ’PetriNet’.’Transition’(Transition);

28 ’PetriNet’.’transitions’(X1, PN, Transition);

29 ’PetriNet’.’Place’(Place);

30 ’PetriNet’.’places’(X2, PN, Place);

31 ’PetriNet’.’Transition’.’InArc’(InArc, Transition, Place);

32 }

33

34 // ’Place’ contains a token ’Token’ linked to it

35 pattern placeWithToken(Place, Token) = {
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36 ’PetriNet’.’Place’(Place);

37 ’PetriNet’.’Place’.’Token’(Token) in Place;

38 ’PetriNet’.’Place’.’tokens’(X, Place, Token);

39 }

40

41 // Transition is fireable

42 pattern isTransitionFireable_flattened(Transition) = {

43 ’PetriNet’.’Transition’(Transition);

44 neg pattern notFireable_flattened(Transition) = {

45 ’PetriNet’.’Place’(Place);

46 ’PetriNet’.’Transition’(Transition);

47 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);

48 neg pattern placeToken(Place) = {

49 ’PetriNet’.’Place’(Place);

50 ’PetriNet’.’Place’.’Token’(Token);

51 ’PetriNet’.’Place’.’tokens’(X, Place, Token);

52 }

53 } or {

54 ’PetriNet’.’Place’(Place);

55 ’PetriNet’.’Transition’(Transition);

56 ’PetriNet’.’Place’.’InhibitorArc’(OutArc, Place, Transition);

57 ’PetriNet’.’Place’.’Token’(Token);

58 ’PetriNet’.’Place’.’tokens’(X, Place, Token);

59 }

60 }

61

62 // Transition is fireable in PetriNet

63 pattern fireable(PetriNet, Transition) = {

64 find petriTransition(PetriNet, Transition);

65 find isTransitionFireable_flattened(Transition);

66 ’PetriNet’(PetriNet);

67 ’PetriNet’.’Transition’(Transition);

68 }

69

70 rule addToken(in Place) = let Token = undef, X = undef in seq {

71 new(’PetriNet’.’Place’.’Token’(Token) in Place);

72 new(’PetriNet’.’Place’.’tokens’(X, Place, Token));

73 }

74

75

76 rule fireTransition(in Transition) = seq {

77 forall Place with find sourcePlace(Transition, Place) do

78 choose Token with find placeWithToken(Place,Token) do delete(Token);

79 forall Place with find targetPlace(Transition, Place) do

80 call addToken(Place);

81 update counter("firings") = counter("firings") + 1;

82 }

83

84 asmfunction counter/1;

85

86 // entry point

87 rule main(

88 in NetFQN, // fully qualified name of the entity representing the Petri-net model

89 in Iterations // number of firings to be executed

90 ) = let Start = 0 in seq {

91 update counter("iterations") = 0;

92 update counter("firings") = 0;

93 update Start = systime();

94 let PN = ref(NetFQN) in iterate seq {

95 update counter("iterations") = counter("iterations") + 1;

96 if (counter("iterations") > Iterations) fail;

97 choose T with find fireable(PN,T) do seq {
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98 call fireTransition(T);

99 }

100 }

101 println("Simulation ended, fired " +

102 counter("firings") + " transitions in " +

103 (counter("iterations")-1) + " iterations in "+

104 (systime()-Start)+ " msec.");

105 }

106

107 }

A.2 The Petri Net Generator Program

1 namespace DSM.machine.PetriNet;

2

3 import DSM.metamodel.PetriNet.PetriNetEditor;

4

5 @incremental

6 // All transformation for Petri Net simulation

7 machine ’PetriNetGenerator’

8 {

9 // ’Transition’ is a transition of the petri net ’PN’.

10 pattern petriTransition(PN, Transition) = {

11 ’PetriNet’(PN);

12 ’PetriNet’.’Transition’(Transition);

13 ’PetriNet’.’transitions’(X, PN, Transition);

14 }

15

16 @Random

17 pattern petriPlace(PN,Place) = {

18 ’PetriNet’(PN);

19 ’PetriNet’.’Place’(Place);

20 ’PetriNet’.’places’(X2, PN, Place);

21 }

22

23 // ’Place’ is a source place for transition ’Transition’.

24 pattern sourcePlace(Transition, Place, OutArc) = {

25 ’PetriNet’(PN);

26 ’PetriNet’.’Transition’(Transition);

27 ’PetriNet’.’transitions’(X1, PN, Transition);

28 ’PetriNet’.’Place’(Place);

29 ’PetriNet’.’places’(X2, PN, Place);

30 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);

31 }

32

33 // ’Place’ is a target place for transition ’Transition’.

34 @Random

35 pattern targetPlace(Transition, Place, InArc) = {

36 ’PetriNet’(PN);

37 ’PetriNet’.’Transition’(Transition);

38 ’PetriNet’.’transitions’(X1, PN, Transition);

39 ’PetriNet’.’Place’(Place);

40 ’PetriNet’.’places’(X2, PN, Place);

41 ’PetriNet’.’Transition’.’InArc’(InArc, Transition, Place);

42 }

43

44 // ’Place’ contains a token ’Token’ linked to it

45 pattern placeWithToken(Place, Token) = {

46 ’PetriNet’.’Place’(Place);

47 ’PetriNet’.’Place’.’Token’(Token) in Place;



82 APPENDIX A. THE ANALYSED TRANSFORMATION PROGRAMS

48 ’PetriNet’.’Place’.’tokens’(X, Place, Token);

49 }

50

51 pattern token(Token) = {

52 ’PetriNet’.’Place’.’Token’(Token);

53 }

54

55 pattern placeWithToken2(Place) = {

56 ’PetriNet’.’Place’(Place);

57 ’PetriNet’.’Place’.’Token’(Token) in Place;

58 ’PetriNet’.’Place’.’tokens’(X, Place, Token);

59 }

60

61 asmfunction counter/1;

62

63 rule generatePlaceRestriction(in PN) = let Temp = undef in seq {

64 forall Place below PN with find petriPlace(PN,Place) do

65 let NewPlace = undef, NewToken = undef in seq {

66 new(’PetriNet’.’Place’(NewPlace) in PN);

67 new(’PetriNet’.’places’(Temp, PN, NewPlace));

68 new(’PetriNet’.’Place’.’Token’(NewToken) in NewPlace);

69 new(’PetriNet’.’Place’.’tokens’(Temp,NewPlace,NewToken));

70 forall Transition below PN, OutArc below PN with find sourcePlace(Transition,

Place, OutArc) do seq {

71 new(’PetriNet’.’Transition’.’InArc’(Temp,Transition,NewPlace));

72 }

73 forall Transition below PN, InArc below PN with find targetPlace(Transition,

Place, InArc) do seq {

74 new(’PetriNet’.’Place’.’OutArc’(Temp,NewPlace,Transition));

75 }

76 }

77 }

78

79 rule inverseSelfPlaceLoop_rule(in Transition, in PN) =

80 let NewPlace = undef, NewOutArc= undef, NewInArc= undef,

81 Temp = undef, NewToken = undef in seq{

82 new(’PetriNet’.’Place’(NewPlace) in PN);

83 new(’PetriNet’.’Transition’.’InArc’(NewInArc,Transition,NewPlace));

84 new(’PetriNet’.’Place’.’OutArc’(NewOutArc,NewPlace,Transition));

85 new(’PetriNet’.’places’(Temp, PN, NewPlace));

86 new(’PetriNet’.’Place’.’Token’(NewToken) in NewPlace);

87 new(’PetriNet’.’Place’.’tokens’(Temp,NewPlace,NewToken));

88 }

89

90

91 gtrule inverseSelfPlaceLoop(out Transition, in PN) = {

92 precondition find petriTransition(PN, Transition)

93 action{

94 let NewPlace = undef, NewOutArc= undef, NewInArc= undef,

95 Temp = undef, NewToken = undef in seq{

96 new(’PetriNet’.’Place’(NewPlace) in PN);

97 new(’PetriNet’.’Transition’.’InArc’(NewInArc,Transition,NewPlace));

98 new(’PetriNet’.’Place’.’OutArc’(NewOutArc,NewPlace,Transition));

99 new(’PetriNet’.’places’(Temp, PN, NewPlace));

100 new(’PetriNet’.’Place’.’Token’(NewToken) in NewPlace);

101 new(’PetriNet’.’Place’.’tokens’(Temp,NewPlace,NewToken));

102 }

103 }

104 }

105

106 rule inverseSelfTransitionLoop_rule(in Place, in PN) =

107 let NewTransition = undef, NewOutArc= undef, NewInArc= undef, Temp = undef in seq{
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108 new(’PetriNet’.’Transition’(NewTransition) in Place);

109 new(’PetriNet’.’Place’.’OutArc’(NewOutArc,Place,NewTransition));

110 new(’PetriNet’.’Transition’.’InArc’(NewInArc,NewTransition,Place));

111 new(’PetriNet’.’transitions’(Temp, PN, NewTransition));

112 }

113

114

115 gtrule inverseSelfTransitionLoop(out Place, in PN) = {

116 precondition find petriPlace(PN, Place)

117 action{

118 let NewTransition = undef, NewOutArc= undef, NewInArc= undef, Temp = undef in

seq{

119 new(’PetriNet’.’Transition’(NewTransition) in Place);

120 new(’PetriNet’.’Place’.’OutArc’(NewOutArc,Place,NewTransition));

121 new(’PetriNet’.’Transition’.’InArc’(NewInArc,NewTransition,Place));

122 new(’PetriNet’.’transitions’(Temp, PN, NewTransition));

123 }

124 }

125 }

126

127 rule inverseParallelTransitionRedaction_rule(in Place, in PN, in NextPlace) =

128 let NewTransition = undef, NewOutArc= undef, NewInArc= undef, X1 = undef in seq{

129 new(’PetriNet’.’Transition’(NewTransition) in Place);

130 new(’PetriNet’.’Place’.’OutArc’(NewOutArc,Place,NewTransition));

131 new(’PetriNet’.’Transition’.’InArc’(NewInArc,NewTransition,NextPlace));

132 new(’PetriNet’.’transitions’(X1, PN, NewTransition));

133 }

134

135 pattern getPlace(Place, NextPlace, PN) = {

136 ’PetriNet’(PN);

137 ’PetriNet’.’Transition’(Transition);

138 ’PetriNet’.’transitions’(X1, PN, Transition);

139 ’PetriNet’.’Place’(Place);

140 ’PetriNet’.’places’(X2, PN, Place);

141 ’PetriNet’.’Place’(NextPlace);

142 ’PetriNet’.’places’(X3, PN, NextPlace);

143 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);

144 ’PetriNet’.’Transition’.’InArc’(InArc, Transition, NextPlace);

145 }

146

147 gtrule inverseParallelTransitionRedaction(out Place) = {

148 precondition pattern getPlace(Place, NextPlace, PN) = {

149 ’PetriNet’(PN);

150 ’PetriNet’.’Transition’(Transition);

151 ’PetriNet’.’transitions’(X1, PN, Transition);

152 ’PetriNet’.’Place’(Place);

153 ’PetriNet’.’places’(X2, PN, Place);

154 ’PetriNet’.’Place’(NextPlace);

155 ’PetriNet’.’places’(X3, PN, NextPlace);

156 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, Transition);

157 ’PetriNet’.’Transition’.’InArc’(InArc, Transition, NextPlace);

158 }

159 action{

160 let NewTransition = undef, NewOutArc= undef, NewInArc= undef, X1 = undef in

seq{

161 new(’PetriNet’.’Transition’(NewTransition) in Place);

162 new(’PetriNet’.’Place’.’OutArc’(NewOutArc,Place,NewTransition));

163 new(’PetriNet’.’Transition’.’InArc’(NewInArc,NewTransition,NextPlace))

;

164 new(’PetriNet’.’transitions’(X1, PN, NewTransition));

165 }

166 }
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167 }

168

169 rule inverseParallelPlaceRedaction_rule(in Transition, in PN, in NextTransition) =

170 let NewPlace = undef, NewOutArc= undef, NewInArc= undef, X1 = undef in seq{

171 new(’PetriNet’.’Place’(NewPlace) in PN);

172 new(’PetriNet’.’Transition’.’InArc’(NewInArc,Transition,NewPlace));

173 new(’PetriNet’.’Place’.’OutArc’(NewOutArc,NewPlace,NextTransition));

174 new(’PetriNet’.’places’(X1, PN, NewPlace));

175 }

176

177 @Random

178 pattern getTransition(Transition, NextTransition, PN) = {

179 ’PetriNet’(PN);

180 ’PetriNet’.’Transition’(Transition);

181 ’PetriNet’.’transitions’(X1, PN, Transition);

182 ’PetriNet’.’Transition’(NextTransition);

183 ’PetriNet’.’transitions’(X2, PN, NextTransition);

184 ’PetriNet’.’Place’(Place);

185 ’PetriNet’.’places’(X3, PN, Place);

186 ’PetriNet’.’Transition’.’InArc’(InArc, Transition, Place);

187 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, NextTransition);

188 }

189

190 gtrule inverseParallelPlaceRedaction(out Transition) = {

191 precondition pattern getTransition(Transition, NextTransition, PN) = {

192 ’PetriNet’(PN);

193 ’PetriNet’.’Transition’(Transition);

194 ’PetriNet’.’transitions’(X1, PN, Transition);

195 ’PetriNet’.’Transition’(NextTransition);

196 ’PetriNet’.’transitions’(X2, PN, NextTransition);

197 ’PetriNet’.’Place’(Place);

198 ’PetriNet’.’places’(X3, PN, Place);

199 ’PetriNet’.’Transition’.’InArc’(InArc, Transition, Place);

200 ’PetriNet’.’Place’.’OutArc’(OutArc, Place, NextTransition);

201 }

202 action{

203 let NewPlace = undef, NewOutArc= undef, NewInArc= undef, X1 = undef in seq{

204 new(’PetriNet’.’Place’(NewPlace) in PN);

205 new(’PetriNet’.’Transition’.’InArc’(NewInArc,Transition,NewPlace));

206 new(’PetriNet’.’Place’.’OutArc’(NewOutArc,NewPlace,NextTransition));

207 new(’PetriNet’.’places’(X1, PN, NewPlace));

208 }

209 }

210 }

211

212 gtrule addToken(out Place, in PN) = {

213 precondition find petriPlace(PN,Place)

214 action {call addToken_Rule(Place);}

215 }

216

217 rule addToken_Rule(in Place) =

218 let NewToken = undef, Temp = undef in seq{

219 new(’PetriNet’.’Place’.’Token’(NewToken) in Place);

220 new(’PetriNet’.’Place’.’tokens’(Temp,Place,NewToken));

221 }

222

223 rule inverseSerialPlaceRedaction(in Place, in PN) =

224 let NewPlace = undef, NewTransition = undef, Temp = undef in seq {

225 update counter("InArcs") = 0;

226 update counter("OutArcs") = 0;

227 new(’PetriNet’.’Place’(NewPlace) in PN);

228 new(’PetriNet’.’places’(Temp,PN,NewPlace));
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229 //sets all target ARCs to the newNode

230 forall Tr, OutArc with find sourcePlace(Tr, Place, OutArc) do seq{

231 setFrom(OutArc,NewPlace);

232 }

233 //sets all odd source ARCs to the new Place

234 forall Tr, InArc with find targetPlace(Tr, Place, InArc) do seq{

235 update counter("InArcs") = counter("InArcs")+1;

236 if(toInteger(counter("InArcs")) % 2 == 0 ) seq{

237 setTo(InArc,NewPlace);

238 }

239 }

240 //creates the additional transition

241 new(’PetriNet’.’Transition’(NewTransition) in NewPlace);

242 new(’PetriNet’.’transitions’(Temp, PN, NewTransition));

243 new(’PetriNet’.’Place’.’OutArc’(Temp,Place,NewTransition));

244 new(’PetriNet’.’Transition’.’InArc’(Temp,NewTransition,NewPlace));

245 }

246

247 rule inverseSerialTransitionRedaction(in Transition, in PN) =

248 let NewPlace = undef, NewTransition = undef, Temp = undef in seq{

249 update counter("InArcs") = 0;

250 new(’PetriNet’.’Transition’(NewTransition) in PN);

251 new(’PetriNet’.’transitions’(Temp,PN,NewTransition));

252 forall Place, InArc with find targetPlace(Transition, Place, InArc) do seq{

253 update counter("InArcs") = counter("InArcs")+1;

254 if( toInteger(counter("InArcs")) % 2 == 1 ) seq{

255 setFrom(InArc,NewTransition);

256 }

257 }

258 //creates the additional transition

259 new(’PetriNet’.’Place’(NewPlace) in PN);

260 new(’PetriNet’.’places’(Temp, PN, NewPlace));

261 new(’PetriNet’.’Transition’.’InArc’(Temp,Transition,NewPlace));

262 new(’PetriNet’.’Place’.’OutArc’(Temp,NewPlace,NewTransition));

263 }

264

265 //Its input parameter is the root container of the newly generated Petri-net

266 rule main(in Where) =

267 let PN = undef, P1= undef, P2 = undef, T1 = undef, T2= undef,

268 Temp = undef , Tk1= undef, Tk2 = undef in seq { //creates the 2 place 2 transition

petri net

269 new(’PetriNet’(PN) in ref(Where));

270 new(’PetriNet’.’Place’(P1) in PN); rename(P1,"P1");

271 new(’PetriNet’.’Place’(P2) in PN); rename(P2,"P2");

272 new(’PetriNet’.’places’(Temp,PN,P1));

273 new(’PetriNet’.’places’(Temp,PN,P2));

274 //transition

275 new(’PetriNet’.’Transition’(T1) in P1); rename(T1,"T1");

276 new(’PetriNet’.’transitions’(Temp, PN, T1));

277 new(’PetriNet’.’Transition’(T2) in P2); rename(T2,"T2");

278 new(’PetriNet’.’transitions’(Temp, PN, T2));

279 //Arcs

280 new(’PetriNet’.’Place’.’OutArc’(Temp,P1,T1));

281 new(’PetriNet’.’Transition’.’InArc’(Temp,T1,P2));

282 new(’PetriNet’.’Place’.’OutArc’(Temp,P2,T2));

283 new(’PetriNet’.’Transition’.’InArc’(Temp,T2,P1));

284 //tokens

285 new(’PetriNet’.’Place’.’Token’(Tk1) in P1);

286 new(’PetriNet’.’Place’.’tokens’(Temp,P1,Tk1));

287 new(’PetriNet’.’Place’.’Token’(Tk2) in P2);

288 new(’PetriNet’.’Place’.’tokens’(Temp,P2,Tk2));

289 //initializes the counters
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290 update counter("ParPlace") = 0;

291 update counter("ParTrans") = 0;

292 update counter("SerPlace") = 0;

293 update counter("SerTrans") = 0;

294 update counter("LoopPlace") = 0;

295 update counter("LoopTrans") = 0;

296 update counter("Random") = 0;

297 update counter("Token") = 0;

298 update counter("Places") = 0;

299 update counter("Transitions") = 0;

300

301 //random generation

302 //name of the PetriNet itself

303 rename(PN,"Sparse_5000");

304 iterate seq{

305 update counter("Random") = counter("Random") + 1;

306 if (counter("Random") > 5000) fail; //****The number of iteration

307 random {

308 choose Place below PN, NextPlace below PN with find getPlace(

Place, NextPlace, PN)

309 do call inverseParallelTransitionRedaction_rule(Place,PN,

NextPlace);

310 choose P below PN with find petriPlace(PN,P) do call

inverseSerialPlaceRedaction(P, PN);

311 choose NextTransition below PN, Transition below PN with find

getTransition(Transition, NextTransition, PN)

312 do call inverseParallelPlaceRedaction_rule(Transition,PN,

NextTransition);

313 choose T below PN with find petriTransition(PN,T) do call

inverseSerialTransitionRedaction(T, PN);

314 choose P below PN with find petriPlace(PN,P) do call

inverseSelfTransitionLoop_rule(P,PN);

315 }

316 }

317 //Token

318 iterate seq {

319 update counter("Token") = counter("Token") + 1;

320 if (counter("Token") > 8) fail; //The number of Tokens generated into

the Petri-net

321 choose P with find petriPlace(PN, P) do seq { call addToken_Rule(P);

println("Token added to: "+ fqn(P)); }

322 }

323

324 //Counts the size of the generated Petri-net

325 update counter("Tokens") = 0;

326 forall Tok below PN with find token(Tok) do update counter("Tokens") =

counter("Tokens")+1;

327 forall P below PN with find petriPlace(PN,P) do update counter("Places") =

counter("Places")+1;

328 forall T below PN with find petriTransition(PN,T) do update counter("

Transitions") = counter("Transitions")+1;

329 println("\nNumber of iterations: "+(counter("Random")-1));

330 println("*** The generated Petri net contains "+ counter("Places")+" places

and "+ counter("Transitions")+" Transitions and " +counter("Tokens")+"

Tokens");

331 }

332 }
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A.3 The Antworld Benchmark Program

1 import ants.metamodel;

2

3 @incremental(’parallel’=’1’)

4 machine antMachine_sleek_prehybrid{

5

6 // cache

7 asmfunction model/0;

8 asmfunction antHill/0;

9

10 // statistics

11 asmfunction pheromones/0;

12 asmfunction foodCounter/0;

13 asmfunction foodTotal/0;

14 asmfunction circlesTotal/0;

15 asmfunction antsTotal/0;

16 asmfunction roundCounter/0;

17

18 //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

19 // GRID GROWING

20 //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

21 pattern boundary3(BoundaryField, BoundaryEdge, Hill) = {

22 antHill(Hill);

23 field(BoundaryField);

24 antHill.boundary(BoundaryEdge, Hill, BoundaryField);

25 }

26

27 pattern boundaryBreachedBySearcher() = {

28 field(Field);

29 searcherAnt.location(HasAnt, Ant, Field);

30 searcherAnt(Ant);

31 find boundary3(Field, BoundaryEdge, Hill);

32 }

33

34 pattern alongReturnPath(OuterNeighbor, InnerNeighbor) = {

35 field(InnerNeighbor);

36 field(OuterNeighbor);

37 field.returnPath(RP, OuterNeighbor, InnerNeighbor);

38 }

39 pattern circled(Field1, Field2) = {

40 field(Field1);

41 field(Field2);

42 field.circlePath(CP, Field1, Field2);

43 }

44 pattern nextBoundaryField(BoundaryField, NextBoundaryField, NextBoundaryEdge) = {

45 find circled(BoundaryField, NextBoundaryField);

46 find boundary3(NextBoundaryField, NextBoundaryEdge, Hill);

47 }

48 pattern corner(CornerField) = {

49 cornerField(CornerField);

50 }

51

52 rule expandBoundary(in BoundaryField, out Back, out Front, in OldBoundaryEdge, in Hill) =

53 let BRP = undef, Model = model() in seq {

54 new(field(Back) in Model);

55 new(field.returnPath(BRP, Back, BoundaryField));

56 setTo(OldBoundaryEdge, Back);

57 call newField(Back, Hill);

58 if (find corner(BoundaryField)) let BE1=undef, BE2=undef, CRP=undef, FRP=

undef, CP1=undef, CP2=undef, ExpandedCorner = undef in
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59 seq {

60 new(cornerField(ExpandedCorner) in Model);

61 new (antHill.boundary(BE1, Hill, ExpandedCorner));

62 new(field.returnPath(CRP, ExpandedCorner, BoundaryField));

63 new(field.circlePath(CP1, Back, ExpandedCorner));

64 call newField(ExpandedCorner, Hill);

65

66 new(field(Front) in Model);

67 new(antHill.boundary(BE2, Hill, Front));

68 new(field.returnPath(FRP, Front, BoundaryField));

69 new(field.circlePath(CP2, ExpandedCorner, Front));

70 call newField(Front, Hill);

71 }

72 else update Front = Back;

73

74 }

75 rule newField(in Field, in Hill) = seq {

76 if (foodCounter() < 9) update foodCounter() = foodCounter() + 1;

77 else let Food = undef, HF=undef in seq {

78 update foodCounter() = 0;

79 update foodTotal() = foodTotal() + 1;

80 new (food(Food) in Field);

81 new (field.hasFood(HF, Field, Food));

82 setValue(Food, 100);

83 }

84 }

85

86 rule growGrid() = let Hill=antHill(), CP=undef, FirstExpanded = undef, PreviousExpanded =

undef, PreviousBoundaryField = undef in

87 choose FirstBoundaryField, FirstBoundaryEdge with find boundary3(FirstBoundaryField,

FirstBoundaryEdge, Hill) do seq {

88 update PreviousBoundaryField = FirstBoundaryField;

89 call expandBoundary(FirstBoundaryField, FirstExpanded, PreviousExpanded,

FirstBoundaryEdge, Hill);

90 iterate choose NextBoundaryField, NextBoundaryEdge with find

nextBoundaryField(PreviousBoundaryField, NextBoundaryField,

NextBoundaryEdge) do

91 let BackExpanded = undef, FrontExpanded = undef in seq {

92 update PreviousBoundaryField = NextBoundaryField;

93 call expandBoundary(NextBoundaryField, BackExpanded, FrontExpanded,

NextBoundaryEdge, Hill);

94 new(field.circlePath(CP, PreviousExpanded, BackExpanded));

95 update PreviousExpanded = FrontExpanded;

96 }

97 new(field.circlePath(CP, PreviousExpanded, FirstExpanded));

98 update circlesTotal() = circlesTotal() + 1;

99 }

100

101

102

103 //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

104 // ANT ACTIONS

105 //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

106 pattern carrier(Ant) = {

107 carrierAnt(Ant);

108 }

109 pattern searcher(Ant) = {

110 searcherAnt(Ant);

111 }

112 pattern hasSearcherAnt(LocationEdge, Field, Ant) = {

113 searcherAnt(Ant);

114 searcherAnt.location(LocationEdge, Ant, Field);
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115 field(Field);

116 }

117 pattern hasCarrierAnt(LocationEdge, Field, Ant) = {

118 carrierAnt(Ant);

119 carrierAnt.location(LocationEdge, Ant, Field);

120 field(Field);

121 }

122 pattern foodAvailable(Field, Food) = {

123 field(Field);

124 field.hasFood(HF, Field, Food);

125 food(Food);

126 }

127

128 pattern canGrab(Ant, LocationEdge, Food, Field) = {

129 find searcher(Ant);

130 find hasSearcherAnt(LocationEdge, Field, Ant);

131 find foodAvailable(Field, Food);

132 }

133

134 rule grab(in Ant, in LocationEdge, in Food, in Field) =

135 let Rest = toInteger(value(Food)) -1 in seq{

136 if (Rest > 0) setValue(Food, Rest);

137 else delete(Food);

138 delete(instanceOf(Ant,ants.metamodel.searcherAnt));

139 delete(instanceOf(LocationEdge,ants.metamodel.searcherAnt.location));

140 new(instanceOf(Ant,ants.metamodel.carrierAnt));

141 new(instanceOf(LocationEdge,ants.metamodel.carrierAnt.location));

142 }

143

144 rule deposit(in Hill, inout Ant, in LocationEdge) = seq{//raises the number of elements

145 setValue(Hill, toString( toInteger(value(Hill)) + 1));

146

147 delete(instanceOf(Ant,ants.metamodel.carrierAnt));

148 delete(instanceOf(LocationEdge,ants.metamodel.carrierAnt.location));

149 new(instanceOf(Ant,ants.metamodel.searcherAnt));

150 new(instanceOf(LocationEdge,ants.metamodel.searcherAnt.location));

151

152 }

153

154 rule moveAnt(in OldHasAnt, in NewField) = setTo(OldHasAnt, NewField);

155

156

157 pattern hasPheromone(Field, Pheromone) = {

158 field(Field);

159 field.hasPheromone(HF, Field, Pheromone);

160 pheromone(Pheromone);

161 }

162 rule leavePheromone(in Field) =

163 try choose Pheromone with find hasPheromone(Field, Pheromone) do

164 setValue(Pheromone, 1024 + toInteger(value(Pheromone)));

165 else let Pheromone = undef, HF = undef in seq {

166 new (pheromone(Pheromone) in Field);

167 new (field.hasPheromone(HF, Field, Pheromone));

168 setValue (Pheromone, 1024);

169 update pheromones() = pheromones()+1;

170 }

171

172

173 pattern attractingField(Field) = {

174 find hasPheromone(Field, Pheromone);

175 check(toInteger(value(Pheromone)) > 9);

176 }
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177

178 @Random

179 pattern attractingOuterNeighbor(Field1, Field2) = {

180 find alongReturnPath(Field2, Field1);

181 find attractingField(Field2);

182 }

183

184 pattern home(Field) = {

185 antHill(Field);

186 }

187

188 @Random

189 pattern anyNeighborButHome(Field1, Field2) = {

190 field(Field1);

191 field(Field2);

192 field.path(P, Field1, Field2);

193 neg find home(Field2);

194 } or {

195 field(Field1);

196 field(Field2);

197 field.path(P, Field2, Field1); // reverse direction

198 neg find home(Field2);

199 }

200

201 rule search(in Ant) =

202 choose Field1, HA1 with find hasSearcherAnt(HA1, Field1, Ant) do

203 try choose /*random*/ Field2 with find attractingOuterNeighbor(Field1, Field2) do

call moveAnt(HA1, Field2); // WEIRD

204 else choose /*random*/ Field2 with find anyNeighborButHome(Field1, Field2) do call

moveAnt(HA1, Field2); // WEIRD

205

206 //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

207 // WORLD MANAGEMENT

208 //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

209 pattern pheromone(P) = {

210 pheromone(P);

211 }

212 rule evaporate(in Pheromone) =

213 let Rest = (19*toInteger(value(Pheromone)))/20 in

214 if (Rest > 0) setValue(Pheromone, Rest); else seq {

215 delete(Pheromone);

216 update pheromones() = pheromones() - 1;

217 }

218

219 pattern delivered(Hill) = {

220 antHill(Hill);

221 check(toInteger(value(Hill)) > 0);

222 }

223

224 rule consume(in Hill) =

225 let Ant = undef, HA = undef in seq{

226 setValue(Hill,toString(toInteger(value(Hill))-1));

227 new(searcherAnt(Ant) in Hill);

228 new(searcherAnt.location(HA, Ant, Hill));

229 update antsTotal() = antsTotal() + 1;

230 }

231

232

233 //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

234 // MAIN

235 //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

236 rule doRound() = let Hill = antHill() in seq {
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237 //Ant actions

238 iterate choose Ant, LocationEdge, Food, Field with find canGrab(Ant, LocationEdge,

Food, Field) do call grab(Ant,LocationEdge,Food,Field);

239 forall Ant, LocationEdge with find hasCarrierAnt(LocationEdge, Hill, Ant) do call

deposit(Hill,Ant,LocationEdge);

240 forall Ant, FromField, HA1 with find hasCarrierAnt(HA1, FromField, Ant) do

241 choose NewField with find alongReturnPath(FromField, NewField) do seq {

242 call moveAnt(HA1, NewField);

243 call leavePheromone(FromField);

244 }

245 forall Ant with find searcher(Ant) do call search(Ant); // two kinds of search

246 // only searchers can breach the boundary!

247

248 //Field action

249 forall Pheromone with find pheromone(Pheromone) do call evaporate(Pheromone);

250

251 iterate

252 if(toInteger(value(Hill)) > 0)

253 call consume(Hill);

254 else

255 fail;

256 if (find boundaryBreachedBySearcher()) call growGrid();

257

258 }

259

260 rule printStatistics(in Buf, in MemTelemetry, in RoundCounter, in Rounds, in BlockSize, in

AntAccumulator, in StartTime, inout LastTime) =

261 let CurrentTime = systime() in seq

262 {

263 println(Buf, "\t<round-block finished=\"" + RoundCounter + "\" goal=\"" +

Rounds + "\" block-size=\"" + BlockSize+ "\">");

264 println(Buf, "\t\t<elapsed-time>");

265 println(Buf, "\t\t\t<per-block> " + (CurrentTime-LastTime) + " </per-block>")

;

266 println(Buf, "\t\t\t<per-round> " + (CurrentTime-LastTime)/BlockSize + " </

per-round>");

267 println(Buf, "\t\t\t<per-round-per-1000ants> " + 1000*(CurrentTime-LastTime)

/ AntAccumulator + " </per-round-per-1000ants>");

268 println(Buf, "\t\t\t<total> " + (CurrentTime-StartTime) + " </total>");

269 println(Buf, "\t\t</elapsed-time>");

270 println(Buf, "\t\t<circles> " + circlesTotal() + " </circles>");

271 println(Buf, "\t\t<grid-fields> " + circlesTotal() * circlesTotal() * 4 + "

</grid-fields><!-- excluding the anthill -->");

272 println(Buf, "\t\t<food-bundles-created> " + foodTotal() + " </food-bundles-

created>");

273 println(Buf, "\t\t<pheromone-traces> " + pheromones() + " </pheromone-traces>

");

274 println(Buf, "\t\t<ants> " + antsTotal() + " </ants>");

275 if (MemTelemetry == 1)

276 println(Buf, "\t\t<memory> " + measureMemoryFootprint(6) + " </memory>

");

277 else

278 println(Buf, "\t\t<memory> NA </memory>");

279 println(Buf, "\t</round-block>");

280 update LastTime = CurrentTime;

281 }

282

283 rule main(in Rounds, in Variant, in MemTelemetry) = let StartTime = systime(), BlockSize =

25,

284 Buf = getBuffer("file://output/"+Variant+".out.xml")

285 in seq {

286 update model() = ref("ants.model");
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287 update antHill() = ref("ants.model.hill");

288

289 update foodCounter() = toInteger(value(ref("ants.statistics.foodCounter")));

290 update foodTotal() = toInteger(value(ref("ants.statistics.foodTotal")));

291 update circlesTotal() = toInteger(value(ref("ants.statistics.circlesTotal")));

292 update antsTotal() = toInteger(value(ref("ants.statistics.antsTotal")));

293 update pheromones() = toInteger(value(ref("ants.statistics.pheromones")));

294 update roundCounter() = toInteger(value(ref("ants.statistics.roundCounter")));

295 println(Buf, "<anthill-simulation rounds=\"" + Rounds + "\" up-to=\"" + (Rounds +

roundCounter()) + "\">");

296 let BlockCounter = 0, AntAccumulator = 0, RoundMax = Rounds + roundCounter(),

LastTime=StartTime in iterate seq {

297 if (roundCounter() >= RoundMax) fail;

298 update roundCounter() = roundCounter() + 1;

299 call doRound();

300 update BlockCounter = BlockCounter + 1;

301 update AntAccumulator = AntAccumulator + antsTotal();

302 if (BlockCounter >= BlockSize) seq {

303 call printStatistics(Buf, MemTelemetry, roundCounter(), RoundMax,

BlockSize, AntAccumulator, StartTime, LastTime);

304 update BlockCounter = 0;

305 update AntAccumulator = 0;

306 }

307 }

308 println(Buf, "\t<final-statistics>");

309 println(Buf, "\t\t<total-elapsed-time> " + (systime()-StartTime) + " </total-elapsed

-time>");

310 println(Buf, "\t\t<circles> " + circlesTotal() + " </circles>");

311 println(Buf, "\t\t<grid-fields> " + circlesTotal() * circlesTotal() * 4 + " </grid-

fields><!-- excluding the anthill -->");

312 println(Buf, "\t\t<food-bundles-created> " + foodTotal() + " </food-bundles-created>

");

313 println(Buf, "\t\t<pheromone-traces> " + pheromones() + " </pheromone-traces>");

314 println(Buf, "\t\t<ants> " + antsTotal() + " </ants>");

315 println(Buf, "\t</final-statistics>");

316 println(Buf, "</anthill-simulation>");

317 setValue(ref("ants.statistics.foodCounter"), foodCounter());

318 setValue(ref("ants.statistics.foodTotal"), foodTotal());

319 setValue(ref("ants.statistics.circlesTotal"), circlesTotal());

320 setValue(ref("ants.statistics.antsTotal"), antsTotal());

321 setValue(ref("ants.statistics.pheromones"), pheromones());

322 setValue(ref("ants.statistics.roundCounter"), roundCounter());

323 }

324 }
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[26] Jüngel, M., Kindler, E., and Weber, M. The petri net markup lan-
guage. In 7. Workshop Algorithmen und Werkzeuge fr Petrinetze, pages 4752,
Universitt Koblenz-Landau (2000), p. http://www.informati.

[27] Jussien, N. e-constraints: explanation-based constraint programming. In
CP01 Workshop on User-Interaction in Constraint Satisfaction (Paphos,
Cyprus, 1 Dec. 2001).

[28] Kamfonas, M. J. Recursive hierarchies: The relational taboo! The Relational
Journal (October/November 1992).

[29] Lin, Y., Zhang, J., and Gray, J. Model comparison: A key challenge for
transformation testing and version control in model driven software develop-
ment. In Workshop on Best Practices for Model-Driven Software Development,
held at OOPSLA ’04 (2004).

[30] Lindahl, T., and Sagonas, K. Practical type inference based on success
typings. In PPDP ’06: Proceedings of the 8th ACM SIGPLAN international
conference on Principles and practice of declarative programming (2006), ACM.

[31] Murata, T. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE 77, 4 (Apr. 1989), 541–580.

[32] Nickel, U., Niere, J., and Zündorf, A. Tool demonstration: The
FUJABA environment. In The 22nd International Conference on Software
Engineering (ICSE) (Limerick, Ireland, 2000), ACM Press.

[33] Object Management Group. Model Driven Architecture — A Technical
Perspective, September 2001. http://www.omg.org.

[34] Object Management Group. Meta Object Facility Version 2.0, 2003.
http://www.omg.org.

[35] Pointon, R., Trinder, P., and Loidl, H.-W. The design and implemen-
tation of glasgow distributed Haskell. In IFL’00, Implementation of Functional
Languages (September 2000).

[36] Pottier, F. A modern eye on ml type inference, 2005. In Proc. of the
International Summer School On Applied Semantics (APPSEM ’05).

[37] Rensink, A. Representing first-order logic using graphs. In Proc. 2nd
International Conference on Graph Transformation (ICGT 2004), Rome, Italy
(2004), H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, Eds.,
vol. 3256 of LNCS, Springer, pp. 319–335.

http://www.omg.org
http://www.omg.org
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[43] Varró, D., and Pataricza, A. VPM: A visual, precise and multilevel
metamodeling framework for describing mathematical domains and UML.
Journal of Software and Systems Modeling 2, 3 (October 2003), 187–210.

[44] Zündorf, A. Antworld benchmark specification, GraBaTs 2008, 2008.
Available from http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/

cases/grabats2008performancecase.pdf.

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2008performancecase.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2008performancecase.pdf

	Introduction
	System Modeling Overview
	Verification of Model Transformations
	Research Objectives
	Overview of the Approach
	The Structure of the Thesis

	Background technologies
	Models and Transformations
	Metamodeling
	Graph Patterns
	Graph Transformation Rules
	ASM Rules

	Static analysis and type inference
	Constraint Satisfaction Problems
	Summary

	Static Analysis of Transformation Programs
	Static Analysis and the Transformation Program Model
	Creating the TPM graph
	The Traversal Algorithm
	Branch Handling
	Fail Node Handling
	Updating the Variable Repository
	Enhancing the Performance of the Traversal

	Constraint Generation
	Fault Identification
	Related Work
	Summary

	Type Checking of the VTCL Language
	Capabilities of the Type Checker
	Integrating the Analyser
	Using a CSP Solver for Type Checking
	Representing the Metamodel
	The Constraint Handler API for the Traversal
	Selecting a CSP Solver Engine

	Traversing ASM Term Nodes
	Variable and Constant Terms
	Arithmetic Terms
	Conversion Operators
	Relational and Logical Operators
	ASM Functions

	Traversing ASM Rule Nodes
	Calling ASM Rules
	Simple ASM Rules
	Variable Definition Rules
	Nested Rules
	Conditional Rule
	Model Manipulation Rules
	Collection Iterator Rules

	Traversing GT Rule Nodes
	Calling Graph Patterns
	Graph Patterns
	Calling Graph Transformation Rules
	Graph Transformation Rules

	The Detected Type Handling Problems
	Related Work
	Summary

	Evaluating the Type Checker
	The Used Transformation Programs
	Petri net Transformation Programs
	The AntWorld Case Study

	Evaluation of the Static Type Checker
	Benchmarking the Static Type Checker
	The Measurement Environment
	Benchmarking the Simulator Program
	Benchmarking the Generator Program
	Benchmarking with the Antworld Program

	Summary

	Results and future plans
	Main Results
	The Limitations of the Technology
	Future plans
	New Analysis Methods
	Increasing Performance
	More Specific Error Detection


	The Analysed Transformation Programs
	The Petri Net Simulator Program
	The Petri Net Generator Program
	The Antworld Benchmark Program


