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ABSTRACT
Views are key concepts of domain-specific modeling in or-
der to provide specific focus of the designers by abstracting
from unnecessary details of the underlying abstract model.
Usually, these views are represented as models themselves
(view models), computed from the source model. However,
the efficient maintenance of views when the source model
changes is challenging, as recalculation from scratch has to
be avoided to achieve scalability.

In the paper, we propose an approach to define view mod-
els in a highly automated way, based on declarative model
queries. The views are automatically populated in accor-
dance with the lifecycle of regular model elements - however,
their existence is entirely bound to the underlying abstract
model. This means that view models are automatically and
incrementally maintained. Our contribution can also be in-
terpreted as extending the concepts of derived features to
derived objects, specified and maintained by incremental
queries.
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Modern domain-specific modeling environments offer do-
main engineers graphical or textual editors to alter the de-
sign, as well as multiple views each of which present only a
specific aspect, in order to manage complexity. Views may
capture a taxonomy (e.g. class generalization), a hierar-
chy (e.g. containment), interconnections, etc. of the system
under design, and offer advanced navigation capabilities to
highlight a selected element in different related views.

These views are frequently represented as models them-
selves (called view models), which are populated and main-
tained automatically from an underlying model (called source
model). View models are commonly defined by means of
queries, which identify a subset of elements in the system
model to be included in the view. Such a view definition can
also be considered as a special unidirectional model transfor-
mation from the system model to the view model. However,
similarly to database view maintenance, maintaining views
when the system model changes is a challenging problem,
which necessitates dedicated support in the modeling tools
in order to avoid the recalculation of views from scratch (af-
ter each individual source model change).

Naturally, multiple view models can be defined for the
same source model, all of which need to be maintained as the
model change. Moreover, view models may also depend on
other view models, i.e. they can be derived from other view
models forming a chain of dependent view models. In such
a case, a change in the source model needs to be propagated
transitively to all dependent views. Due to these challenges,
most industrial tools built using state-of-the-art technologies
such as the Eclipse modeling infrastructure rely on hand
coded views.

In this paper, we define a lightweight mechanism to spec-
ify view models by means of derivation rules captured in
the form of annotated model queries following incremental
and live graph transformations on a semantic level. As a re-
sult, after initialization, the view elements are automatically
populated in accordance with the lifecycle of regular model
elements - however, their existence (and non-existence) is en-
tirely bound to the underlying source model. We propose an
efficient incremental technique for view maintenance on top
of the EMF-IncQuery framework, which supports multiple
views over a source model and the chaining of view models.

Our concepts and implementation is presented in the con-
text of an avionics toolchain where high-level functional ar-
chitecture models are extracted from low-level Simulink mod-
els. Moreover, a graphical notation model is also derived
as a view from the architecture model to demonstrate the
chaining of views.



Our paper is structured as follows. A tooling challenge in
an avionics context is presented as a motivating example in
Sec. 2. The query language is overviewed and the deriva-
tion rules are detailed in Sec. 3. Implementation details
on query based objects for incremental unidirectional view
model synchronization are discussed in Sec. 4. Initial perfor-
mance measurements are presented in Sec. 5. Related work
is overviewed in Sec. 6 while Sec. 7 concludes our paper.

2. A MOTIVATING SCENARIO:
AN AVIONICS TOOLCHAIN

Our motivating example is extracted from an ongoing in-
dustrial avionics research project where the main purpose
was to define a complex, semi-automated development chain
to allocate software functions onto different hardware archi-
tectures. The tool takes Matlab Simulink (SIM) block dia-
grams models as input, and it abstracts them into a func-
tional architecture model (FAM), which later serves as an
input for the allocation step. The FAM has to be avail-
able both in its abstract EMF representation and also in a
graphical notation via the user interface of the tool (illus-
trated in Fig. 1). Our example is simplified by considering
only subsystems collected into functions and complex block-
port-signal interconnections into information links.

Example 2.1. Our sample Simulink model of Fig. 1 con-
sists of six blocks, out of which PilotControl Navigation, En-
gine Management System (EMS) and Flight Management Sys-
tem (FMS) represent functions (blue rectangles tagged with
“func”) while SubS1 and SubS2 represent blocks which are
irrelevant for allocation (green rectangles without a “func”
tag). These blocks are arranged into a containment hierar-
chy (with PilotControl and SubS2 as top level elements). The
FAM model contains only equivalents of the four function
blocks and it also abstracts from complex block-port-signal
interconnections as supported by Matlab Simulink (depicted
by red rectangles for external ports of a function which within
the function translates into grey spheres for representing the
same ports within the function), representing them as (logi-
cal) information links between functions. Finally, the graph-
ical notation model of the FAM shows only the functions
connected by edges for information links.

As only the SIM models are allowed to be modified, the
abstract FAM is a view model which always reflects the cur-
rent structure of the underlying SIM model. Furthermore,
the graphical notation of the FAM is a view model on a
different abstraction level, which is strongly tied to the ab-
stract FAM model, thus creating a chain of views. Addi-
tionally, during the building of view models, a generic trace-
ability model is also constructed to store traces between the
objects of source and target models. The main concepts
of these modeling languages are captured by corresponding
metamodels in EMF presented inFig. 2.

The main EClass (represented by a rectangle) of the Simulink
metamodel is the SubSystem that includes InPort and Out-
Port elements and PortBlocks. It has a tag EAttribute which
stores the role of the element. Subsystems may contain
Blocks along the subBlocks EReference. A Signal represents
a communication link between one OutPort and some InPorts
of different SubSystems.

The (simplified) FAM metamodel contains Function ele-
ments and InformationLinks between them if a communica-

Figure 2: Metamodels of Simulink, Functional Architecture
and Notation model

tion link exists. In this context, the provider function sends
data to the consumer.

The Notation metamodel (similar to standard notation
metamodels used e.g. by the Eclipse Graphical Modeling
Framework) describes a uniform model format to describe
graphical representations, such as lists, trees or graphs. It
defines Edges or Containments between Items where the edges
symbolize simple reference relations while the containments
represent a hierarchical structure. Additionally, these ele-
ments can have some display information stored in Format-
Specification such as background color and text color.

A generic Traceability metamodel is used to define di-
rected links between a specific set of EObject instances (com-
mon supertype for all EMF classes) from the source and an
instance of target metamodels using Trace elements.

Challenges of view models.
From lessons learned while developing a complete and a

feature-rich version of this tool chain, we have identified the
following challenging recurring tasks: (i) the definition of
view models in a reusable and preferably declarative way, (ii)
facilitating efficient and incremental updates to view models
when source models change, (iii) serialization support for
view models taking dependency chains into consideration
and (iv) chaining view model abstractions in order to reuse
view transformations across several layers of abstraction.



Figure 1: Simulink models, functional architecture models with graphical notation

3. DEFINITION OF VIEW MODELS
View models are defined by using a fully declarative, rule

based formalism. Preconditions of rules are defined by model
queries (building on the language of the EMF-IncQuery
framework [4]), which identify parts of interest in the source
model. Derivation rules then use the result set of a query to
define elements of the view model. On the theoretical level,
queries are defined as graph patterns while rules can be for-
malized as live graph transformation rules [15] and executed
using the EMF-IncQuery Event-Driven Virtual Machine
(EVM) [19]. Informally, when a new match appears in the
result set of a query then the corresponding derivation rule
is fired to create elements of the target view model. When
an existing match disappears in the result set of a query, the
inverse of the rule is fired to delete the corresponding view
model elements.

3.1 Model queries by graph patterns
A graph pattern (GP) represents structural constraints

prescribing the interconnection between nodes and edges of
a given type. They are extended with algebraic expressions
to define attribute constraints and pattern composition to
build up new queries by reusing existing graph patterns.
The called pattern is used as an additional set of constraints
to meet. A negative application condition (NAC) describing
cases when the original pattern is not valid. Pattern pa-
rameters are a subset of nodes and attributes representing
the model elements interesting from the perspective of the
pattern user.

A match of a pattern is a tuple of pattern parameters that
fulfill all the following conditions: (1) have the same struc-
ture as the pattern; (2) satisfy all structural and attribute
constraints; and (3) does not satisfy any NAC. When eval-
uating the results of a graph pattern, a pattern parameter
can be used both as input to pre-select model elements or
attribute values and output which are bound by a successful
match of the pattern.

Example 3.1. We demonstrate the capabilities of the EMF-
IncQuery language using a few simple patterns described
in Lst. 1. Pattern function enumerates all SubSystems that
are tagged as “Func”. The functionIdentifier pattern (Lst. 1)
pairs the name of the source Block and the corresponding
SubSystem where the SubSystems are tagged as “Func” - for
this reason, it reuses the previously defined patterns using the
find keyword. Finally, subFunction gathers all sub-systems
for each SubSystem.

3.2 Derivation rules by query annotations

Listing 1 Model query and derivation rule subFunction

@QueryBasedObject(eClass = "Function")
pattern function(subsys : SubSystem){
SubSystem.tag(subsys, "Func");

}
@TraceLookup(src ={subsys}, trg =f, type = "Function")
@QueryBasedFeature(src = f, trg = id, feature = "id")
pattern functionIdentifier(subsys:SubSystem, id:EString){
find functionSubsystem(subsys);
Block.name(subsys,id);

}
@TraceLookup(src = {psys}, trg = p, type = "Function")
@TraceLookup(src = {ssys}, trg = s, type = "Function")
@QueryBasedFeature(src=p, trg=s, feature="subFunctions")
pattern subFunction(psys :SubSystem, ssys :SubSystem){
find functionSubsystem(psys);
SubSystem.subBlocks+(psys,ssys);
find functionSubsystem(ssys); }

In our context, view models are conceptually equivalent to
regular models. Their structure is defined by a metamodel,
which thus consists of (view) classes, features (e.g., refer-
ences and attributes). However, the lifecycle (i.e. existence
and non-existence) of view model elements is strongly tied
to certain elements of the underlying source model as being
specified by query-based derivation rules.

In principle, an arbitrary model transformation language
could be used to specify how to synthesize view models. Our
approach uses a lightweight mechanism exploiting annota-
tions of the previous query language to capture derivation
rules, instead of relying on a full-fledged model transforma-
tion language. As a result, we obtain a declarative formalism
compliant with the execution semantics of incremental and
non-deleting graph transformations (GT) , where the LHS
of the GT-rule is defined by the query itself and the creation
rules are captured by its annotations.

Note that unlike bidirectional model synchronization ap-
proaches like triple graph grammars [14, 9], derivation rules
define a unidirectional transformation from the source model
to the view model, where model changes are also propagated
only in this direction but not vice versa.

A derivation rule is obtained when a query is extended by
one or more of the following annotations:

• @QueryBasedObject(eClass = "ClassName"):
The QueryBasedObject annotation adds a new view ob-
ject of type ClassName and creates a Trace element into
the Traceability model where parameters of the pattern
will be the source n-ary, and the created object will be
in the target.



• @QueryBasedFeature(src = source, trg = target,

feature = "FeatureName"):
The QueryBasedFeature annotation, as defined in [16],
is used to define references and attributes initialized
by queries. It sets the pattern parameter trg as the
value of FeatureName feature of the pattern parameter
src where src has to be a view model object.

Additionally, to support the explicit traceability, another
annotation is defined to select the corresponding elements
from the created view model.

• @TraceLookup(src = source1, source2, trg = target,

type = "TargetClass")

The TraceLookup annotation is used to declare a new
variable with its “trg” attribute to use in other annota-
tions, find the proper target element in the view model
which is created from the collection of “src”, and select
the target elements of type “TargetClass”. (Note that
the type is only an optional filter.)

3.2.1 Informal execution semantics of derivation rules
The execution of derivation rules is triggered by changes

in the source model. (1) When a new match of a query ap-
pears in the source model, the corresponding derivation rules
are fired and new elements are created in the view model,
according to the annotations above. (2) When an existing
match of an annotated query disappears, the corresponding
derivation rule is reverted to undo all its creation operations
(thus deleting its corresponding view-model elements). (3)
Traceability links are established between source and view
model elements.

In fact, changes in the source model can trigger more
derivation rules at the same time, these rules have to be
ordered. (a) When new matches appear, the QueryBase-
dObject rules have higher priority than QueryBasedFeatures
to firstly create the elements in the view model, and then
set its features. (b) When existing matches disappear, the
priorities change so firstly reset the features of elements then
delete the elements from the view model.

We assume that the derivation rules are non-conflicting to
guarantee that the creation of each view model element is
uniquely determined by one (or more) elements of the source
model. Although not detailed in the current paper, the ap-
proach can be scaled to more complex view model deriva-
tion rules by assigning rule priorities and custom execution
scheduling strategies as supported by the EMF-IncQuery
EVM [19].

The current approach is tailored towards interactive ap-
plications where the source model is assumed to be modified
in “atomic” transactions, i.e. the user modifying the model
step-by-step each time performing a simple command. Thus
the system can synchronize after each such step is registered
(through model change notifications propagated through the
incremental pattern matcher, see Sec. 4) as an atomic run-
to-completion step.

Example 3.2. The patterns from Lst. 1 have derivation
annotations defined that are to be read as follows. The deriva-
tion rule of function in Lst. 1 prescribes the derivation of
a view object of type Function in the FAM together with a
traceability link. The functionIdentifier sets the identifier at-
tribute of the created object to the name of the corresponding
Simulink block (passed by the pattern parameter identifier).

Figure 3: Correlation between view model chaining and vi-
sualizing

Finally, the derivation annotation subFunction prescribes the
creation of a subFunctions reference when a new match of the
query between the view objects identified by p and s appears.
Applying these rules on the SIM model of Fig. 1, we ob-
tain all the (blue) Function nodes of the FAM model and the
appropriate subFunctions references between them.

3.3 Derivation rules of the case study
Let us now demonstrate how to capture the chain of view

models for the motivating example of Fig. 1. As Fig. 3
shows, a graphical visualization of the FAM is obtained by
chaining view models. In fact, a graphical visualization is
derived as a view model where its source model is the FAM,
which is a view model in itself. This graphical visualization
is used as the input of one of the available renderers that dis-
plays the model using e.g. Eclipse JFacelist or table viewers,
or Zestor yFiles for Javagraph visualization engines.

3.3.1 From Simulink models to FAM
First in Lst. 2, we show how the complex interconnections

of Simulink blocks (via ports and signals) are simplified to
create InformationLinks, which connect a consumer and a
provider Function in the FAM. For that purpose, we define
a derivation rule for query informationLink using two auxil-
iary queries connectedBlocks and inPortToInPortConn (where
a sourceInPort is connected to a targetInPort along the block
hierarchy, either from upper level to lower level or the other
way round). Query connectedBlocks checks if there is a sig-
nal assigned between the two ports. To set the references
and the description attribute of the new created Informa-
tionLink element, we use another derivation rule called infor-
mationLinkData that selects the Function created from the
corresponding source elements.

When applying the set of rules to the SIM model of Fig. 1,
we obtain the FAM as a view model also depicted in Fig. 1.
Note that the real query in the industrial tool is contains
several similar queries to detect different types of connec-
tions between blocks. For space considerations, we restrict
the synthesis of information links to a single case when hi-
erarchical levels are crossed.

3.3.2 From FAM to a graphical notation model
As visualizing parts of EMF models are a recurring task,

we have also defined a set of shorthands to make rule spec-
ification more concise. The (1) @Item rule creates an Item
element from the Notation metamodel (see Fig. 2) with an
attribute named label. The (2) @ContainsItem and (3) @Edge
rules create containment and non-containment references be-
tween selected model elements, respectively. Finally, the (4)
Format annotation defines additional formatting rules to be



Listing 2 Defining information links

// inport connected to inport through hierarchy
pattern inPortToInPortConn(src :InPort, trg :InPort){
// from upper level into subsystem
Port.portBlock.outports.signals.to(src, trg);

} or {
// from inside subsystem to upper level
Port.portBlock.inports(outerOutPort, src);
OutPort.signals.to(outerOutPort, trg);

}
// blocks are directly connected or transitively
pattern connectedBlocks(prov :Block, con :Block){
Block.outports.signals.to(prov, consumerInPort);
Block.inports(con, consumerInPort);

} or {
Block.outports.signals.to(prov, innerIP);
find inPortToInPortConn+(innerIP, consumerInPort);
Block.inports(con, consumerInPort);

}
@QueryBasedObject(eClass = "InformationLink")
pattern informationLink(prov :SubSystem, con :SubSystem){
find functionSubsystem(prov);
find connectedBlocks(prov, con);
find functionSubsystem(con);

}
@TraceLookup(src={c}, trg=cF, type = "Function")
@TraceLookup(src={p}, trg=pF, type = "Function")
@TraceLookup(src={p,c}, trg=l, typ = "InformationLink")
@QueryBasedFeature(src=l, trg=pF, feature = "provider")
@QueryBasedFeature(src=l, trg=cF, feature = "consumer")
@QueryBasedFeature(src=l, trg=desc, feature = "desc")
pattern informationLinkData(p : SubSystem, c : SubSystem,

desc : EString){
find informationLinks(p,c);
desc = eval(p.name + "->" + c.name);}

attached as a FormatSpecification instance to the current el-
ement.

Example 3.3. We illustrate the view model derivation by
a set of derivation rules described in Lst. 3. The patterns
item, containment and edge patterns are responsible for cre-
ating their corresponding Notation model elements using el-
ements from the FAM metamodel and the created trace ele-
ments. In Fig. 4a we illustrate the notation model deriva-
tion process. At first, the Item elements are created together
with their corresponding specification from the matches of
the item. Then for all matches of the containment and edge
patterns the source and target Items are looked up, and the
corresponding notation element is created. Note that in this
case, TraceLookup annotations do not use type filtering be-
cause every created elements are Item. Finally, the resulting
model is added to a renderer. Fig. 4b depicts the finished
visualization as created by the yFiles renderer.

4. UPDATING VIEW MODELS BY
INCREMENTAL QUERY EVALUATION

Now we outline the mechanism of handling changes in the
source models and show how derivation rules are used to
update the target model continuously.

4.1 Incremental evaluation of queries
The key to update any target model synchronously is

incremental query evaluation, where query result changes
caused by model manipulation are also provided without
complete reevaluation. We use the EMF-IncQuery frame-
work [20] that supports incremental query evaluation over

Listing 3 Deriving graphical notation from functional ar-
chitecture model

@Item(label = "$func.identifier$")
@Format(color = "#FFFFFF", textColor = "#000000")
pattern item(func : Function) {
Function(func);

}
@TraceLookup(source = {p}. target = {par})
@TraceLookup(source = {s}. target = {sub})
@ContainsItem(source = par, target = sub)
pattern containment(par : Item, sub : Item) {
Function.subFunctions(p, s);

}
@TraceLookup(source = {p}. target = {provider})
@TraceLookup(source = {c}. target = {consumer})
@Edge(source = provider, target = consumer)
@Format(color = "#FF0000")
pattern edge(provider : Item, consumer : Item) {
InformationLink.provider(link, p);
InformationLink.consumer(link, c); }

Figure 5: Overview of integration architecture

EMF instance models by constructing a Rete rule network
that processes change notifications sent by the EMF no-
tification API. This Rete network remains in operation as
long as the query is needed: it continues to receive elemen-
tary change notifications and propagates them to produce
query result deltas. Even though this imposes a slight per-
formance overhead on model manipulation, and a memory
cost proportional to the cache size (approx. the size of match
sets), EMF-IncQuery can evaluate very complex queries
over large instance models very efficiently.

The framework also provides an interface to notify any
observer object when a new match appears or an old one
disappears. With this functionality, our query-based ap-
proach has the ability to react on these events by firing all
the required derivation rules.

4.2 Integration architecture of
view synchronization

The view models are constructed and updated incremen-
tally by translating the match set deltas from the incremen-
tal query evaluation into model modifications. The integra-
tion architecture for our framework is shown in Fig. 5. After
an initial configuration of the view synchronization using the
derivation rules, the source model is loaded by EMF and the
initial query results from the query engine are used for con-
structing the view model.

Once the view model is created, the synchronization is a
reactive process with the following main steps: (1) model
manipulations are carried out by an application (e.g. graph-
ical editor or user interface) on the source model, (2) these
changes are propagated to the query engine as change noti-
fications, (3) a match set delta is sent to the view synchro-
nization, and finally, (4) model manipulation is performed on
the view model based on the derivation rules.



(a) The Derivation Process (b) Rendering (yFiles)

Figure 4: Notation Model Derivation

4.3 From match set changes to
view model synchronization

4.3.1 Initial setup of derivation rules
The view models are created entirely based on the deriva-

tion rules specified as model queries with annotations (see
Sec. 3.2). Additionally, the Ecore models (i.e. metamodels)
for view models are also selected. These metamodels must
include the EClasses and EStructuralFeatures (EAttributes
and EReferences) defined by the derivation rules.

The view synchronization groups the derivation rules into
two sets, based on the annotation type (query-based object,
query-based feature). For each rule, a matcher for the model
query is initialized in the query engine and handlers are at-
tached to the matcher to receive deltas. These handlers are
responsible for modifying the objects or feature settings in
the view model.

4.3.2 Query result deltas
As described in Sec. 4.1, the Rete network processes change

notifications and provides query result deltas, that can be
considered as higher level notifications. A delta is a struc-
ture Delta = (Found ,Lost), where Found is the set of new
matches that appeared and Lost is the set of old matches
that disappeared since the last delta.

The initial construction is executed similarly as incremen-
tal updates are handled, since the initial query results can
be considered as a delta containing the initial matches in
Found .

4.3.3 Source-view traceability
During the synchronization process, internal traceability

links are stored for identifying the view model elements cor-
responding to appearing and disappearing matches in deltas.
Fig. 6 shows the Simulink source model, the query results,
the traceability links and the FAM view model for the ex-
ample in Fig. 1 (the EMS function is omitted).

The query results contain all matches for each model query
that is used by derivation rules in the Simulink-FAM exam-
ple. The matches are tuples of pattern parameter assign-
ments, where each assignment is a direct reference to an
EObject in the source model, or an attribute value. For eas-
ier readability this assignment between the FAM elements
and their corresponding pattern parameter is not shown in
Fig. 6 (like PilotControl assigned to f1).

The traceability structures are created for each view model
object created by object derivation rules. The traceability
structure stores the source match for the view model ele-
ment. This explicit traceability model is managed by the

view model synchronization and is used for finding the con-
tainer and target objects of view model links and attributes.

4.3.4 Incremental view maintenance
Fig. 6 also shows the order of steps performed when the

FMS and Navigation subsystems in Simulink are connected
by their ports: (1) a delta is received with Found = {(f 2, f 3)}
for the informationLink query, (2) the handler of the object
derivation rule (see Lst. 2) creates a new Trace in the trace-
ability model and (3) adds an InformationLink EObject to the
view model. When all view model objects are created, (4)
another delta is received with Found = {(f 2, f 3, l 1, d 1)}
for informationLinkData that leads to (5) set the consumer
and provider references in the view model.

The targets of these references are selected by finding the
appropriate Trace in the explicit traceability model, where
the source of the link is the proper match. For example, Nav-
igation is identifiable by the match f 2 in Simulink, and the
view element for the corresponding Trace is FAM Navigation.
Therefore, the consumer reference is set to this object.

Although not shown in Fig. 6, the description attribute
of the information link is set at the same time with the
references in a similar way.

4.3.5 Derivation rule priority
Since the traceability links are used for identifying view el-

ements and their corresponding matches in the delta, the or-
der of handler execution is not arbitrary. For Found matches,
object derivation rules are executed first, even if there are
link and attribute rules defined for the same query. Links
and attributes are set after the objects are created. How-
ever, for Lost matches, links and attributes are handled be-
fore objects to ensure that the source and target objects are
still available. Derivation rules of a given query can depend
on objects created by rules for other queries, therefore deltas
are not handled separately, but combined based on both rule
types (query-based object and feature) and events (found,
lost).

5. PERFORMANCE EVALUATION
We carried out an initial evaluation to demonstrate the

scalability of our approach on the Train benchmark case
study [20] (an accepted model querying performance bench-
mark). It was selected as in our industrial case study we
only had moderate size models containing only a few hun-
dred elements and their execution in all cases were smaller
than half a second.

All measurements were executed on a developer PC with
a 3.5 GHz Core i7 processor, 16 GB RAM, Windows 7 and



Figure 6: Internal traceability from base models to view models

(a) Runtime performance (b) Memory Usage

Figure 7: Measurement Results

Java 7. Measurement were repeated ten times, and the time
and memory results were averaged. To avoid interference
between different executions, each time a new JVM was cre-
ated with a 2 GB heap limit. The time to start up and shut
down the JVM was not included in the measurement results.

Based on the Train benchmark we defined 3 queries in-
cluding advanced features such as transitive closure compu-
tation to define the view models. For the different cases
we selected 6 model sizes for the source model ranging be-
tween 6000–175000 elements that produced view models of
150–4500 elements.1

Fig. 7a depicts the runtime results: each row shows the
time required to (1) load a source model, (2) initialize the
query engine and (3) derive the view model. Additionally,
for each instance model, the number of model elements of
the source (S) and view (V ) models are presented.

Fig. 7b highlight the overall memory usage for the differ-
ent model instances, where the blue section shows the mem-
ory consumption of the source model alone and the (upper)
red part depicts the memory needed for both the Rete net-
work of the cached queries and the generated view-models.
As expected the overall memory consumptions for the view
models are 2-3 times larger than the source models them-
selves due to the Rete caching mechanism [20]. However,
this intensive caching provides the fast incremental update
in case of small source model changes [20].

To sum up, we were able to demonstrate that our view
model based approach is capable of scaling up to source
models with more than 100 000 elements within acceptable
timeframe and memory consumption, which is in line with

1More details are available at https://incquery.net/
publications/query-based-synchronization

our previous experiments [20]. As future work we plan to
execute further evaluations to provide (i) comparison with
similar approaches and (ii) performance characteristics for
different complexity view models.

6. RELATED WORK
Defining database views by derived classes and model queries

captured in OCL was first proposed in [2], but without sup-
port for incremental view calculation. This approach could
exploit recent results for incremental support of OCL as in
[5, 10]. Obviously, any other model query languages can be
used for defining database or model views, our paper uses of
a graph based query language [4].

Formal frameworks for bidirectional model synchroniza-
tion like [7, 18] are more general on the theoretical level than
unidirectional view maintenance by query-based derived ob-
jects, but no implementation is proposed in these papers.
There are several model transformation and synchronization
approaches and tools providing certain levels of incremental-
ity, such as triple graph grammars (TGGs) [14, 9], ATL [12,
21]or QVT [17]. Fully incremental approaches guarantees
minimal number of processing steps upon change, which is
achieved so far only by RETE-based approaches [15, 8]).

View maintenance by incremental and live QVT transfor-
mations is used in [17] to define views from runtime models.
The proposed algorithm operates in two phase, starting in
check-only mode before an enforcement run, but its scala-
bility is demonstrated only on models up to 1000 elements.

VirtualEMF [6] allows the composition of multiple EMF
models into a virtual model based on a composition meta-
model, and provides both a model virtualization API and
a linking API to manage these models. The approach is
also able to add virtual links based on composition rules.
In [21] an ATL-based method is presented for automatically
synchronizing source and target models. In [13] correspon-
dences between models are handled by matching rules de-
fined in the Epsilon Comparison Language, where the guards
use queries similarly to our approach, although incremental
derivation is not discussed.

A recent work by Diskin et al. [7] proposes a theoreti-
cal background for model composition based on queries us-
ing Kleisli Categories, in their approach derived features are
used for representing features merged from different meta-
models. The conceptual basis is similar to our approach in
using query-based derived features and objects, however, it
offers algebraic specification, while our approach might serve
as an implementation for this generic theoretical framework.

View models can also be obtained by means of model com-
position. Anwar [1] introduces a rule-driven approach for

https://incquery.net/publications/query-based-synchronization
https://incquery.net/publications/query-based-synchronization


creating merged views of multiple separate UML models and
relies on external traceability and OCL expressions to sup-
port model merging and composition. ConceptBase.cc [11]
is a database (DB) system for metamodeling and method
engineering and defines active rules that react to events and
can update the DB or call external routines, which can be
used for incremental view calculation, but the tool itself is
not EMF compliant.

Compared to previous work of the authors, we extend
[16] by providing support for derived objects (in addition to
derived attributes and relations), and improve performance
by smart traceability links for (a subclass of) change driven
transformations [3]. Furthermore, it offers a fully declarative
transformation language for incremental live transformation
with explicit traceability unlike [15].

We believe that our contribution is unique in providing
a combination of fully incremental, unidirectional synchro-
nization of view models allowing chaining of views by means
of explicit traceability links and derived objects, which de-
pend on the match set of the precondition of derivation rules.

7. CONCLUSION AND FUTURE WORK
In the paper, we presented an approach for deriving and

synchronizing non-persistent (virtual) view modes in an in-
cremental (but uni-directional) way that supports the main-
tenance of multiple views over the same source model and
also the chaining of view models along derivation rules. To
support the definition of such view models we extended
the EMF-IncQuery framework with: (i) the ability to de-
fine derivation rules using annotations over graph queries,
(ii) an explicit tracing mechanism that and (iii) an EVM
based runtime environment to automatically maintain and
synchronize the view models. Finally, we provided initial
performance evaluation of our approach on a model valida-
tion performance benchmark over models with more than
100 000 elements.

As future work we plan to (i) provide a domain specific
language for derivation rule definition with more precise life-
cycle management capabilities and (ii) extend our approach
to serve as a possible runtime environment for Kleisli cate-
gory based model transformations.
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