
How Representative Is a SPARQL Benchmark?
An Analysis of RDF Triplestore Benchmarks

Muhammad Saleem
AKSW, Leipzig University

saleem@informatik.uni-leipzig.de

Gábor Szárnyas∗
MTA-BME Lendület Cyber-Physical

Systems Research Group
szarnyas@mit.bme.hu

Felix Conrads
DICE, Paderborn University

felix.conrads@upb.de

Syed Ahmad Chan Bukhari
Department of Pathology,
Yale School of Medicine
ahmad.chan@yale.edu

Qaiser Mehmood
Insight Centre for Data Analytics,
University of Ireland, Galway

qaiser.mehmood@insight-centre.org

Axel-Cyrille Ngonga Ngomo
DICE, Paderborn University
AKSW, Leipzig University

axel.ngonga@upb.de

ABSTRACT
Triplestores are data management systems for storing and query-
ing RDF data. Over recent years, various benchmarks have been
proposed to assess the performance of triplestores across different
performance measures. However, choosing the most suitable bench-
mark for evaluating triplestores in practical settings is not a trivial
task. This is because triplestores experience varying workloads
when deployed in real applications. We address the problem of de-
termining an appropriate benchmark for a given real-life workload
by providing a fine-grained comparative analysis of existing triple-
store benchmarks. In particular, we analyze the data and queries
provided with the existing triplestore benchmarks in addition to
several real-world datasets. Furthermore, we measure the correla-
tion between the query execution time and various SPARQL query
features and rank those features based on their significance lev-
els. Our experiments reveal several interesting insights about the
design of such benchmarks. With this fine-grained evaluation, we
aim to support the design and implementation of more diverse
benchmarks. Application developers can use our result to analyze
their data and queries and choose a data management system.
ACM Reference Format:
Muhammad Saleem, Gábor Szárnyas, Felix Conrads, Syed Ahmad Chan
Bukhari, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2019. How
Representative Is a SPARQL Benchmark? An Analysis of RDF Triplestore
Benchmarks. In Proceedings of the 2019 World Wide Web Conference (WWW
’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3308558.3313556

1 INTRODUCTION
The last years have witnessed a significant growth in the use of
Linked Data and Semantic Web technologies. This growth has mo-
tivated the development of new triplestores with increasingly more
efficient RDF storage and SPARQL query processing mechanisms.
∗Also with the Department of Measurement and Information Systems at the Budapest
University of Technology and Economics.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313556

Accordingly, various benchmarks [2, 5, 8, 11, 14, 16, 18, 24, 27, 30,
31, 33] have been proposed to evaluate the querying performance of
these triplestores. However, due to heterogeneity of RDF datasets
and SPARQL queries, real-world applications often require cus-
tomized deployments and experience different workloads when
deployed in real environments [22]. Thus, designing a one-fit-all
benchmark or selecting the most suitable benchmark for any given
use-case and workload is not a straightforward task [12, 21, 24].

This work highlights key features of triplestore benchmarks per-
taining to the three main components of benchmarks, i.e., datasets,
queries, and performancemetrics. State-of-the-art triplestore bench-
marks are analyzed and compared against these features. Particu-
larly, we consider triplestore benchmarks that rely on the native
capabilities of the triplestores and do not require further reasoning
over queries to get complete results. We also analyze the data and
query logs of five real-world datasets selected from three different
domains so as to provide a comparison with real-world datasets
and queries. Our contributions are as follows.

(1) We identify key design features of SPARQL triplestore bench-
marks based on our systematic survey on the state-of-the-art.

(2) We provide a detailed comparative analysis of the queries
and datasets of 11 representative triplestore querying bench-
marks: Train Benchmark [30], FEASIBLE [24], WatDiv [2],
DBpedia SPARQL Benchmark (DBPSB) [18], FishMark [5],
Bowlogna [11], SP2Bench [11], Berlin SPARQL Benchmark
(BSBM) [8], BioBench [33], LDBC Social Network Bench-
mark Business Intelligence workload (SNB-BI) [31], and
LDBC SNB Interactive workload (SNB-INT) [14].

(3) We analyze real data and corresponding user queries of five
real-world datasets – DBpedia,1 Semantic Web Dog Food
(SWDF),2 NCBI Gene,3 SIDER,4 DrugBank5 – and compare
them with the selected triplestore benchmarks.

(4) We measure the impact of various SPARQL query features
(e.g., result sizes, triple patterns selectivity and number of
join vertices) on the overall query execution time and rank
these features according to their significance. In addition,

1DBpedia: http://dbpedia.org
2SWDF: https://old.datahub.io/dataset/semantic-web-dog-food
3NCBI Gene: https://www.ncbi.nlm.nih.gov/gene
4SIDER: http://sideeffects.embl.de/
5DrugBank: https://www.drugbank.ca/

1

https://doi.org/10.1145/3308558.3313556
https://doi.org/10.1145/3308558.3313556
http://dbpedia.org
https://old.datahub.io/dataset/semantic-web-dog-food
https://www.ncbi.nlm.nih.gov/gene
http://sideeffects.embl.de/
https://www.drugbank.ca/

WWW ’19, May 13–17, 2019, San Francisco, CA, USA M. Saleem et al.

we demonstrate that state-of-the-art triplestore benchmarks
vary greatly, and highlight their current limitations.

(5) We performed extensive experiments and measure the im-
pact of dataset structuredness (a well-known RDF dataset
metric [12] formally defined in Section 2.1.1) on the overall
query execution time as well as on the result sizes.

The rest of this paper is organized as follows: We provide an
overview of the key RDF datasets and SPARQL query features that
need to be considered while designing triplestore benchmarks based
on a review of the state of the art. We then present a systematic
survey of the current benchmarks for triplestores. The subsequent
comparison of selected representative SPARQL benchmarks based
on key data and query features identified in the survey is followed
by a discussion of our results and some concluding remarks. The
data and results presented in this evaluation are available online at
https://github.com/dice-group/triplestore-benchmarks. The com-
plete results can be reproduced and new benchmarks can be easily
compared using the scripts provided at the project page.

2 BENCHMARK DESIGN FEATURES
In general, triplestore benchmarks comprise three main compo-
nents: (1) a set of RDF datasets, (2) a set of SPARQL queries, and
(3) a set of performance metrics. This section presents key fea-
tures of each of these components that are important to consider in
the development of triplestore benchmarks. Most of these features
originate from state-of-the-art research contributions pertaining to
triplestore benchmarks.

2.1 Datasets
Datasets used in triplestore benchmarks are either synthetic or
selected from real-world RDF datasets [24]. The use of real-world
RDF datasets is often regarded as useful to perform evaluation close
to real-world settings [18]. Synthetic datasets are useful to test the
scalability of systems based on datasets of varying sizes. Synthetic
dataset generators are utilized to produce datasets of varying sizes
which can often be optimized to reflect the characteristics of real-
world datasets [12]. Previous works [12, 20] highlighted two key
measures for selecting such datasets for triplestores benchmarking:
(1) Dataset Structuredness, (2) Relationship Specialty. However, ob-
servations from the literature (see e.g., [12, 23]) suggest that other
features such as varying number of triples, number of resources,
number of properties, number of objects, number of classes, di-
versity in literal values, average properties and instances per class,
average indegrees and outdegrees as well as their distribution across
resources should also be considered.

2.1.1 Dataset Structuredness: Duan et al. [12] combine many of
the aforementioned dataset features into a single composite metric
called dataset structuredness or coherence. This metric measures
how well a dataset’s classes (i.e., rdf:type) are covered by the
different instances of the dataset. The structuredness value for
any given dataset lies between [0, 1], where 0 stands for lowest
possible structure and 1 points to a highest possible structured
dataset. They conclude that synthetic datasets are highly structured
while real-world datasets have structuredness values ranging from
low to high, covering the whole structuredness spectrum. Formally,

dataset structuredness is defined in the form of class coverage. The
coverage of a class C , denoted by CV (C), is defined as follows [12]:

Definition 2.1 (Class Coverage). Let D be a dataset. Moreover,
let P(C) denote the set of distinct properties of class C , and I (C)
denote the set of distinct instances of the class C . Let I (p,C) count
the number of entities for which property p has its value set in the
instances of C . Then, the coverage of the class CV (C) is

CV (C) =

∑
p∈P (C)

I (p,C)

|P(C)| · |I (C)|

In general, RDF datasets comprise multiple classes with a vary-
ing number of instances for different classes. The authors of [12]
proposed a mechanism that considers the weighted sum of the cov-
erage CV (C) of individual classes. For each class C , the weighted
coverage is defined below.

Definition 2.2 (Weighted Class Coverage). The weighted coverage
for a class C denoted byWTCV (C) is calculated as:

WTCV (C) =
|P(C)| + |I (C)|∑

C ′∈D
|P(C ′)| + |I (C ′)|

By using Definitions 2.1 and 2.2, we are now ready to compute
the structuredness of a dataset D.

Definition 2.3 (Dataset Structuredness). The overall structured-
ness or coherence of a dataset D denoted by CH (D) is defined as

CH (D) =
∑
C ∈D

CV (C) ·WTCV (C)

2.1.2 Relationship Specialty. In datasets, some attributes are more
common and associated with many resources. In addition, some
attributes are multi-valued, e.g., a person can have more than one
cellphone number or professional skill. The number of occurrences
of a predicate associated with each resource in the dataset provides
useful information on the graph structure of an RDF dataset, and
makes some resources distinguishable from others [20]. In real
datasets, this kind of relationship specialty is commonplace. For
example, several million people can like the samemovie. Likewise, a
research paper can be cited in several hundred of other publications.
Qiao et al. [20] suggest that synthetic datasets are limited in how
they reflect this relationship specialty. This is either due to the
simulation of uniform relationship patterns for all resources, or a
random relationship generation process. The relationship specialty
of a relationship predicate is defined as follows:

Definition 2.4 (Predicate Relationship Specialty). Let d be the dis-
tribution that records the number of occurrences of a relationship
predicate r associated with each resource and µ is the mean and σ
is the standard deviation of d . The specialty value of r denoted as
κ(r) is defined as the Pearson’s Kurtosis value of the distribution d .

κ(r) =
n(n + 1)

(n − 1)(n − 2)(n − 3)
·

∑
xi ∈d (xi − µ)4

σ 4 −
3(n − 1)2

(n − 2)(n − 3)

Where n is the number of available values, i.e., sample size.
The relationship specialty of a dataset is defined in the form of
a weighted sum of specialty values of all relationship predicates:

2

https://github.com/dice-group/triplestore-benchmarks

How Representative Is a SPARQL Benchmark? WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Definition 2.5 (Dataset Relationship Specialty). The relationship
specialty of dataset D denoted by RS(D) is calculated as follows:

RS(D) =
∑
ri ∈R

|T (ri)| · κ(ri)∑
r j ∈R

|T (r j)|

where |T (ri)| is the number of triples in the dataset having pred-
icate ri , κ(ri) is the specialty value of relationship predicate ri .

The dataset structuredness and relationship specialty directly
affect the result size, the number of intermediate results, and the
selectivities of the triple patterns of the given SPARQL query. There-
fore, they are important dataset design features to be considered
during the generation of benchmarks [12, 20, 24].

2.2 SPARQL Queries
The literature about SPARQL Queries [2, 15, 23, 24, 26] suggests
that a SPARQL querying benchmark should vary the queries with
respect to various features such as query characteristics: number of
triple patterns, number of projection variables, result set sizes, query
execution time, number of BGPs, number of join vertices, mean
join vertex degree, mean triple pattern selectivities, BGP-restricted
and join-restricted triple pattern selectivities, join vertex types,
and highly used SPARQL clauses (e.g., LIMIT, OPTIONAL, ORDER BY,
DISTINCT, UNION, FILTER, REGEX). All of these features have a direct
impact on the runtime performance of triplestores. We assume that
the reader is familiar with the basic concepts of SPARQL, including
the notions of a triple pattern, a basic graph pattern (BGP), and
projection variables.6 In the following, we define the remaining
SPARQL features formally, i.e., the number of join vertices, mean
join vertex degree, join vertex types, triple pattern selectivities,
BGP-restricted and join-restricted triple pattern selectivities.

We represent any basic graph pattern (BGP) of a given SPARQL
query as a directed hypergraph (DH) [25], a generalization of a di-
rected graph in which a hyperedge can join any number of vertices.
In our specific case, every hyperedge captures a triple pattern. The
subject of the triple becomes the source vertex of a hyperedge and
the predicate and object of the triple pattern become the target
vertices. For instance, the query (Figure 1) shows the hypergraph
representation of a SPARQL query. Unlike a common SPARQL rep-
resentation where the subject and object of the triple pattern are
connected by an edge, our hypergraph-based representation con-
tains nodes for all three components of the triple patterns. As a
result, we can capture joins that involve predicates of triple patterns.
Formally, our hypergraph representation is defined as follows:

Definition 2.6 (Directed hypergraph of a BGP). The hypergraph
representation of a BGP B is a directed hypergraph HG = (V ,E)
whose vertices are all the components of all triple patterns in B, i.e.,
V =

⋃
(s,p,o)∈B {s,p,o}, and that contains a hyperedge (S,T) ∈ E

for every triple pattern (s,p,o) ∈ B such that S = {s} andT = (p,o).

The representation of a complete SPARQL query as a DH is the
union of the representations of the query’s BGPs. Based on the
DH representation of SPARQL queries, we can define the following
features of SPARQL queries:

6See https://www.w3.org/TR/sparql11-query/ for the corresponding definitions.

SELECT DISTINCT * WHERE { ?drug :description ?drugDesc .
?drug :drugType :smallMolecule . ?drug :keggCompoundId ?compound .
?enzyme :xSubstrate ?compound . ?chemReac :xEnzyme ?enzyme .
?chemReac :equation ?chemEq . ?chemReac :title ?reacTitle }

Figure 1: Directed hypergraph representation of a SPARQL
query. Prefixes are ignored for simplicity.

Definition 2.7 (Join Vertex). For every vertex v ∈ V in such a hy-
pergraph we write Ein(v) and Eout(v) to denote the set of incoming
and outgoing edges, respectively; i.e., Ein(v) = {(S,T) ∈ E |v ∈T }
and Eout(v) = {(S,T) ∈E |v ∈S}. If |Ein(v)| + |Eout(v)| > 1, we call
v a join vertex.

Definition 2.8 (Join Vertex Degree). Based on the DH representa-
tion of the queries the join vertex degree of a vertex v is JVD(v) =
|Ein(v)|+ |Eout (v)|, where Ein(v) resp. Eout (v) is the set of incoming
resp. outgoing edges of v .

Definition 2.9 (Join Vertex Types). A vertex v ∈ V can be of
type star, path, hybrid, or sink if this vertex participates in at least
one join. A star vertex has more than one outgoing edge and no
incoming edges. A path vertex has exactly one incoming and one
outgoing edge. A hybrid vertex has either more than one incoming
and at least one outgoing edge or more than one outgoing and at
least one incoming edge. A sink vertex has more than one incoming
edge and no outgoing edge. A vertex that does not participate in
joins is simple.

Definition 2.10 (Triple Pattern Selectivity). Let tpi be a triple
pattern of a SPARQL query Q and D be a dataset. Furthermore,
let N be the total number of triples in D and Card(tpi ,D) be
the cardinality of tpi w.r.t. D, i.e., total number of triples in D
that matches tpi , then the selectivity of tpi w.r.t. D denoted by
Sel(tpi ,D) = Card(tpi ,D)/N .

Definition 2.11 (BGP-Restricted Triple Pattern Selectivity). Con-
sider a Basic Graph Pattern BGP and a triple pattern tpi belonging
to BGP , let R(tpi ,D) be the set of distinct solution mappings (i.e.,
result set) of executing tpi over dataset D and R(BGP,D) be the
set of distinct solution mappings of executing BGP over dataset
D. Then the BGP-restricted triple pattern selectivity denoted by
SelBGP-Restricted(tpi ,D) is the fraction of distinct solution mappings
in R(tpi ,D) that are compatible (as per standard SPARQL seman-
tics [3]) with a solution mapping in R(BGP,D) [2]. Formally, if Ω
and Ω′ denote the sets underlying the (bag) query results R(tpi ,D)
and R(BGP,D), respectively, then

SelBGP-R.(tpi ,D) =
|{µ ∈ Ω |∃µ ′ ∈ Ω′ : µ and µ ′ are compatible}|

|Ω |

3

https://www.w3.org/TR/sparql11-query/

WWW ’19, May 13–17, 2019, San Francisco, CA, USA M. Saleem et al.

Definition 2.12 (Join-Restricted Triple Pattern Selectivity). Con-
sider a join vertex x in the DH representation of a BGP . Let BGP ′
belonging to BGP be the set of triple patterns that are incidents
to x . Furthermore, let tpi belonging to BGP ′ be a triple pattern
and R(tpi ,D) be the set of distinct solution mappings of executing
tpi over dataset D and R(BGP ′,D) be the set of distinct solution
mappings of executing BGP ′ over dataset D. Then the x-restricted
triple pattern selectivity denoted by SelJVx-Restricted(tpi ,D), is the
fraction of distinct solution mappings in R(tpi ,D) that are compati-
ble with a solution mapping in R(BGP ′,D) [2]. Formally, if Ω and
Ω′ denote the sets underlying the (bag) query results R(tpi ,D) and
R(BGP ′,D), respectively, then

SelJVx-R.(tpi ,D) =
|{µ ∈ Ω |∃µ ′ ∈ Ω′ : µ and µ ′ are compatible}|

|Ω |

All of the above important query features were collected from
the previous works [2, 15, 23, 24] in triplestores benchmarking.
Finally, we combine all these important query features into a sin-
gle composite metric called the Diversity Score of the benchmark
queries, defined as follows.

Definition 2.13 (Queries Diversity Score). Let µi be the mean and
σi the standard deviation of a given distribution w.r.t. the ith feature
of the said distribution. The overall diversity scoreDS of the queries
is the average coefficient of variation of all the query features k
analyzed in the queries of benchmark B:

DS =
1
k

k∑
i=1

σi (B)

µi (B)

2.3 Performance Metrics
Based on the previous triplestores benchmarks and performance
evaluations [2, 5, 8, 10, 11, 14, 16, 18, 24, 27, 30, 31, 33] the perfor-
mance metrics for such comparisons can be categorized as:

• Query Processing Related: The performance metrics in
this category are related to the query processing capabilities
of the triplestores. The query execution time is the central
performance metric in this category. However, reporting the
execution time for individual queries might not be feasible
due to the large number of queries in the given benchmark.
To this end, Query Mix per Hour (QMpH) and Queries per
Second (QpS) are regarded as central performance measures
to test the querying capabilities of the triplestores [8, 18, 24].
In addition, the query processing overhead in terms of the
CPU and memory usage is important to measure during
the query executions [27]. This also includes the number of
intermediate results, the number of disk/memory swaps, etc.

• Data Storage Related: Triplestores need to load the given
RDF data and mostly create indexes before they are ready
for query executions. In this regard, the data loading time,
the storage space acquired, and the index size are important
performance metrics in this category [8, 11, 27, 33].

• Result Set Related: Two systems can only be compared
if they produce exactly the same results. Therefore, result
set correctness and completeness is important metrics to be
considered in the triplestores evaluations [8, 24, 27, 33].

• Parallelism with/without Updates: Some of the afore-
mentioned triplestores performance evaluations [8, 10, 33]
also measured the parallel query processing capabilities
of the triplestores by simulating workloads from multiple
querying agents with and without dataset updates.

We analyzed state-of-the-art existing SPARQL triplestore bench-
marks across all of the above mentioned dataset and query features
as well as the performance metrics. The results are presented in
Section 4.

3 SYSTEMATIC SURVEY
In this section, we present a systematic survey carried out to collect
triplestore benchmarks and their selection criteria for further anal-
ysis. We conducted a public survey7 through various relevant W3C
Linked Open Data mailing list8 and SemanticWebmailing list9 with
a request to participate email. We received 14 responses10 regard-
ing SPARQL triplestore benchmarks. Moreover, we used Google
Scholar to retrieve published research work relating to the design
of triplestore benchmarks and/or their performance evaluation. Ini-
tially, we selected 40 relevant papers11 and evaluated them against
our designed inclusion criteria. In our inclusion criteria we man-
dated that (1) the benchmark target the query runtime performance
evaluation of triplestores, (2) both RDF data and SPARQL queries
of the benchmark are publicly available or can be generated (3) the
queries must not require reasoning to retrieve the complete results.
After manual evaluation, we found 11 benchmarks (7 with synthetic
and 4 with real data) that fulfilled our requirements. The sections
below provide details of the selected benchmarks.

3.1 Synthetic Triplestore Benchmarks
The Train Benchmark (TrainBench) [30] uses a data generator that
produces railway networks in increasing sizes and serializes them
in different formats, including RDF. The Waterloo SPARQL Diversity
Test Suite (WatDiv) [2] provides a synthetic data generator that
produces RDF data with a tunable structuredness value and a query
generator. The queries are generated from different query tem-
plates. SP2Bench [27] mirrors vital characteristics (such as power
law distributions or Gaussian curves) of the data in the DBLP bibli-
ographic database. The Berlin SPARQL Benchmark (BSBM) [8] uses
query templates to generate any number of SPARQL queries for
benchmarking, covering multiple use cases such as explore, update,
and business intelligence. Bowlogna [11] models a real-world set-
ting derived from the Bologna process and offers mostly analytic
queries reflecting data-intensive user needs. The LDBC Social Net-
work Benchmark (SNB) defines two workloads: (1) the Interactive
workload (SNB-INT) measures the evaluation of graph patterns
in a localized scope (e.g., in the neighborhood of a person), with
the graph being continuously updated [14], and (2) the Business
Intelligence workload (SNB-BI) focuses on queries that mix complex
graph pattern matching with aggregations, touching on a signifi-
cant portion of the graph [31], without any updates. Note that these

7Survey: https://goo.gl/R59uoM
8public-lod@w3.org
9semantic-web@w3.org
10Responses: https://goo.gl/JdivN3
11SPARQL benchmarking studies: https://goo.gl/cCu85z

4

https://goo.gl/R59uoM
public-lod@w3.org
semantic-web@w3.org
https://goo.gl/JdivN3
https://goo.gl/cCu85z

How Representative Is a SPARQL Benchmark? WWW ’19, May 13–17, 2019, San Francisco, CA, USA

two workloads are regarded as two separate triplestore benchmarks
based on the same dataset.

3.2 Triplestore Benchmarks Using Real Data
FEASIBLE [24] is a cluster-based SPARQL benchmark generator,
which is able to synthesize customizable benchmarks from the
query logs of SPARQL endpoints. The DBpedia SPARQL Benchmark
(DBPSB) [18] is another cluster-based approach that generates
benchmark queries from DBpedia query logs, but employs different
clustering techniques than FEASIBLE. The FishMark [5] dataset is
obtained from FishBase12 and provided in both RDF and SQL ver-
sions. The SPARQL queries were obtained from logs of web-based
FishBase application. BioBench [33] evaluates the performance
of RDF triplestores with the real biological datasets and queries
from five different real-world RDF datasets13, i.e., Cell, Allie, PDBJ,
DDBJ, and UniProt. Due to the size of the datasets, we were
only able to analyze the combined data and queries of the first three.

3.3 Selected Real-World Datasets
As mentioned before, we aimed to analyze the data and queries
of real-world datasets and compare them to those of the bench-
mark datasets and queries. The selection criteria for the real-world
datasets were: (1) The RDF datasets must be publicly available,
(2) the real queries posted by users of the datasets via SPARQL
endpoints should be available. We were able to get real log queries
of the Bio2RDF datasets,14 DBpedia, and Semantic Web Dog Food.
Our goal was to select real-world datasets from different domains.
Hence, we selected DBpedia15 and SWDF and three datasets – NCBI-
Gene, Sider, DrugBank from Bio2RDF. The selection of the three
Bio2RDF datasets was based on a recommendation from domain
experts. The well-known DBpedia dataset is the RDF version of
Wikipedia. The SWDF represents the publication from Semantic
Web and Linked Data as RDF. NCBIGene provides genetic infor-
mation from a wide range of species. SIDER contains information
on marketed medicines and their recorded side-effects. DrugBank
knowledge base contains information about drugs, their composi-
tion and their interactions.

Table 1 shows statistics from selected datasets of the benchmarks
and real-world datasets. More advanced statistics will be presented
in the next section. The table also shows the number of SPARQL
queries of the datasets included in the corresponding benchmark or
query log. It is important to mention that we only selected SPARQL
SELECT queries for analysis. This is because we wanted to analyze
the triplestore benchmarks for their query runtime performance
and most of these benchmarks only contain SELECT queries [24].
For the synthetic benchmarks that include data generators, we
chose the datasets used in the evaluation of the original paper
that were comparable in size to the datasets of other synthetic
benchmarks. For template-based query generators such as WatDiv,
DBPSB, SNB, we chose one query per available template. For FEASI-
BLE, we generated a benchmark of 50 queries from DBpedia log to

12FishBase: http://fishbase.org/search.php
13BioBench: http://kiban.dbcls.jp/togordf/wiki/survey#data
14Bio2RDF: http://download.bio2rdf.org/files/release/3/release.html
15Version 3.5.1 as used in FEASIBLE and DBPSB

be comparable with a well-knownWatDiv benchmark that includes
20 basic testing query templates, and 30 extensions for testing.16

Benchmark Subjects Predicates Objects Triples Queries

Sy
nt
he

ti
c

Bowlogna [11] 2,151k 39 260k 12M 16
TrainB. [30] 3,355k 16 3,357k 41M 11
BSBM [8] 9,039k 40 14,966k 100M 20
SP2Bench [27] 7,002k 5,718 19,347k 49M 14
WatDiv [2] 5,212k 86 9,753k 108M 50
SNB [14, 31] 7,193k 40 17,544k 46M 21

R
ea
l

FishMark [5] 395k 878 1,148k 10M 22
BioBench [33] 278,007k 299 232,041k 1,451M 39
FEASIBLE [24] 18,425k 39,672 65,184k 232M 50
DBPSB [18] 18,425k 39,672 65,184k 232M 25

D
at
as
et
s DBpedia3.5.1 18,425k 39,672 65,184k 232M 35,803

SWDF 36k 185 95k 0.3M 71,406
NCBIGene 15,614k 57 82,688k 159M 3,644
SIDER 1,222k 39 5,952k 17M 26,048
DrugBank 316k 105 1,828k 3M 50,877

Table 1: High-level statistics of the data and queries used
on our evaluation. Both SNB-BI and SNB-INT use the same
dataset and are therefore named as SNB for simplicity.

4 ANALYSIS OF THE BENCHMARKS
We present a detailed analysis of the datasets, queries, and perfor-
mance metrics of the selected benchmarks and datasets according
to the design features presented in Section 2.

4.1 Datasets
We presents results pertaining to the dataset features of Section 2.1.

4.1.1 Structuredness. Figure 2a shows the structuredness values of
the selected benchmarks and real-world datasets. Duan et al. [12]
establish that synthetic benchmarks are highly structured while
real-world datasets are low structured. This important dataset fea-
ture is well-covered in recent synthetic benchmarks such as Train-
Bench (with a structuredness value of 0.23) and WatDiv, which lets
the user generate a benchmark dataset of a desired structuredness
value. However, Bowlogna (0.99), BSBM (0.94), and SNB (0.86) have
relatively high structuredness values. The average structuredness
value of the selected five real-world datasets is 0.49, and 0.65 for
the 13 real-world datasets used in LargeRDFBench [23]. Finally, on
average, synthetic benchmarks are still more structured than real
data benchmarks (0.61 vs. 0.45).

4.1.2 Relationship Specialty. According to [20], relationship spe-
cialty in synthetic datasets is limited, i.e., the overall relationship
specialty values of synthetic datasets are lower than those of simi-
lar real-world datasets. The dataset relationship specialty results
presented in Figure 2b mostly confirm this behavior. On average,
synthetic benchmarks have a smaller specialty score than real-
world datasets (744 vs. 11098). The relationship specialty values
of Bowlogna (8.7), BSBM (2.2), and WatDiv (22.0) are on the lower
side compared to real-world datasets. The highest specialty value
(28282.8) is recorded in the DBpedia dataset.

An important issue is the correlation between structuredness and
the relationship specialty of the datasets. To this end, we computed
16WatDiv query templates: http://dsg.uwaterloo.ca/watdiv/

5

http://fishbase.org/search.php
http://kiban.dbcls.jp/togordf/wiki/survey#data
http://download.bio2rdf.org/files/release/3/release.html
http://dsg.uwaterloo.ca/watdiv/

WWW ’19, May 13–17, 2019, San Francisco, CA, USA M. Saleem et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
at

as
e

t
st

ru
ct

u
re

d
n

e
ss

Synthetic benchmark

Real data benchmark

Real world dataset

(a) Structuredness

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

D
at

as
e

t
re

la
ti

o
n

sh
ip

 s
p

e
ci

al
ty

 (
lo

g
sc

al
e

)

Synthetic benchmark

Real data benchmark

Real world dataset

(b) Relationship Specialty

Figure 2: Analysis of the datasets of triplestore benchmarks and real-world data.

the Spearman’s correlation between the stucturedness and spe-
cialty values of all the selected benchmarks and real-world datasets.
The correlation of the two measures is −0.5, indicating a moderate
inverse relationship. This means that the higher the structured-
ness, the lower the specialty value. This is because in highly struc-
tured datasets, data is generated according to a specific distribution
without treating some predicates more particularly (in terms of
occurrences) than others.

4.2 Queries
This section presents results pertaining to the query features dis-
cussed in Section 2.2. Figure 3 shows the box plot distributions of
real-world datasets and benchmark queries across the query fea-
tures defined in Section 2. The values inside the brackets, e.g., the
0.89 in “BioBench (0.89)”, show the diversity score (Definition 2.13)
of the benchmark or real-world dataset for the given query feature.

Starting from the number of projection variables (ref. Figure 3a),
the NCBIGene dataset has the lowest diversity score (0.16) and
SP2Bench has the highest score of 1.14. The mean diversity score
(across all benchmarks and real-world datasets) for this feature is
0.59 and hence the diversity scores of DBPSB, SNB-BI, SNB-INT,
WatDiv, and Bowlogna are below the average value. Even though
the diversity score of BSBM is above average, the distribution shows
that the values mostly lie in the second quartile of the box plot.
The average diversity score of the number of join vertices (ref.
Figure 3b) is 1.39 and hence the diversity scores of the Bowlogna,
FishMark, WatDiv, BSBM, TrainBench, BioBench, DBPSB, SNB-
BI, and SNB-INT benchmarks are below the average value. It is
important to mention that the highest number of join vertices
recorded in a query is 51 in the SNB-BI benchmark. The average
diversity score of the number of triple patterns (ref. Figure 3c) is
0.75 and hence the diversity scores of the FishMark, Bowlogna,
BSBM, and WatDiv benchmarks are below the average value. The
average diversity score of the result sizes (ref. Figure 3d) is 11.89 and
hence the diversity scores of all benchmarks are below the average
value. The average diversity score of the join vertex degree (ref.
Figure 3e) is 1.08 and hence the diversity scores of all benchmarks
except FEASIBLE are below the average value. The average diversity
score of the triple pattern selectivity (ref. Figure 3f) is 3.17 and
hence the diversity scores of all benchmarks except FEASIBLE

are below the average. The average diversity score of the join-
restricted triple pattern selectivity (ref. Figure 3g) is 1.39 and hence
the diversity scores of all benchmarks except FEASIBLE and BSBM
are below the average value. The average diversity score of the
BGP-restricted triple pattern selectivity (ref. Figure 3h) is 4.11 and
hence the diversity scores of all benchmarks except WatDiv are
below the average value. The average diversity score of the number
of BGPs (ref. Figure 3i) is 0.63 and hence the diversity scores of
SNB-BI, SNB-INT, BSBM, SP2BENCH, TrainBench, WatDiv, and
Bowlogna are below the average value.

The Linked SPARQL Queries (LSQ) [22] representation stores
additional SPARQL features, such as use of DISTINCT, REGEX, BIND,
VALUES, HAVING, GROUP BY, OFFSET, aggregate functions, SERVICE,
OPTIONAL, UNION, property paths, etc. We make a count of all of
these SPARQL operators and functions and use it as a single query
dimension as number of LSQ features. The average diversity score
of the number of LSQ features (ref. Figure 3j) is 0.30, and hence only
the diversity scores of SNB and WatDiv are below average value.
Finally, the average diversity score of the query runtimes is 12.87
(ref. Figure 3k), and hence the diversity scores of all benchmarks
are below average value.

In summary, FEASIBLE’s diversity scores are below the average
values in 3 of the 11 features, followed by BioBench with 7/11. These
are followed by SP2Bench, TrainBench, and BSBM with 8/11 each.
The next is FishMark 9/11 and then Bowlogna, WatDiv, SNB-BI,
SNB-INT, and DBPSB with 10/11 each. Figure 3l shows the overall
(across all the features, ref. Definition 2.13) diversity scores of the
benchmarks and real-world datasets. In the benchmarks category,
FEASIBLE produces the most diverse benchmarks (diversity score
2.15), followed by BioBench (1.51), FishMark (1.33), WatDiv (1.32),
Bowlogna (1.23), SP2Bench (1.22), BSBM (1.08), DBPSB (1.03), SNB-
BI (0.90), SNB-INT (0.863) and TrainBench (0.79).

Table 2 shows the percentage coverage of widely used [22]
SPARQL clauses and join vertex types for each benchmark and
real-world dataset. We highlighted cells for benchmarks that either
completely miss or overuse certain SPARQL clauses and join vertex
types. TrainBench and WatDiv queries mostly miss the important
SPARQL clauses. All of FishMark’s queries contain at least one
“Star" join node. The distribution of other SPARQL clauses, such as
subquery, BIND, aggregates, solution modifiers, property paths, and
services are provided in the LSQ versions of each of the benchmark
queries, available from the project website.

6

How Representative Is a SPARQL Benchmark? WWW ’19, May 13–17, 2019, San Francisco, CA, USA

0 5 10 15 20 25

Bowlogna(0.54)

TrainBench(0.72)

BSBM(0.6)

SP2Bench(1.14)

WatDiv(0.42)

SNB-BI(0.37)

SNB-INT(0.5)

FEASIBLE(0.82)

FishMark(0.62)

DBPSB(0.32)

BioBench(0.89)

DBpedia3.5.1(0.65)

SWDF(0.56)

NCBIGene(0.16)

SIDER(0.4)

DrugBank(0.43)
Real World dataset
Real data benchmark
Synthetic benchmark

(a) No. of projection variables

0 10 20 30 40 50 60

Bowlogna(0.6)

TrainBench(0.87)

BSBM(0.65)

SP2Bench(1.25)

WatDiv(0.61)

SNB-BI(1.12)

SNB-INT(0.85)

FEASIBLE(1.43)

FishMark(0.61)

DBPSB(0.98)

BioBench(0.98)

DBpedia3.5.1(1.23)

SWDF(0.89)

NCBIGene(3.16)

SIDER(5.75)

DrugBank(0.7)
Real World dataset
Real data benchmark
Synthetic benchmark

(b) No. of join vertices

0 10 20 30 40 50 60 70 80 90

Bowlogna(0.59)

TrainBench(0.85)

BSBM(0.54)

SP2Bench(0.96)

WatDiv(0.36)

SNB-BI(1.1)

SNB-INT(0.83)

FEASIBLE(1.13)

FishMark(0.73)

DBPSB(0.94)

BioBench(1.04)

DBpedia3.5.1(1.03)

SWDF(0.86)

NCBIGene(0.42)

SIDER(0.41)

DrugBank(0.26)
Real World dataset
Real data benchmark
Synthetic benchmark

(c) No. of triple patterns

20 10 . 8
25 10 . 8

(d) Result size

0 2 4 6 8 10 12 14 16

Bowlogna(0.34)

TrainBench(0.62)

BSBM(0.33)

SP2Bench(0.93)

WatDiv(0.49)

SNB-BI(0.22)

SNB-INT(0.2)

FEASIBLE(1.09)

FishMark(0.59)

DBPSB(0.74)

BioBench(0.46)

DBpedia3.5.1(1.09)

SWDF(0.71)

NCBIGene(3.03)

SIDER(5.06)

DrugBank(0.43)
Real World dataset
Real data benchmark
Synthetic benchmark

(e) Join vertex degree

0 0.2 0.4 0.6 0.8 1

Bowlogna(2.48)

TrainBench(1.13)

BSBM(1.79)

SP2Bench(1.55)

WatDiv(2.52)

SNB-BI(0.91)

SNB-INT(1)

FEASIBLE(5.56)

FishMark(1.48)

DBPSB(1.27)

BioBench(2.99)

DBpedia3.5.1(7.68)

SWDF(3.86)

NCBIGene(1.47)

SIDER(4.46)

DrugBank(8.4) Real World dataset
Real data benchmark
Synthetic benchmark

(f) Triple pattern (TP) selectivity

0 0.2 0.4 0.6 0.8 1

Bowlogna(0.88)

TrainBench(0.21)

BSBM(1.48)

SP2Bench(1.03)

WatDiv(0.95)

SNB-BI(0.64)

SNB-INT(0.92)

FEASIBLE(1.94)

FishMark(0.74)

DBPSB(1.35)

BioBench(1)

DBpedia3.5.1(2.25)

SWDF(1.45)

NCBIGene(2.37)

SIDER(3.43)

DrugBank(1.1) Real World dataset
Real data benchmark
Synthetic benchmark

(g) Join-restricted TP selectivity

0 0.2 0.4 0.6 0.8 1

Bowlogna(1.9)

TrainBench(0.7)

BSBM(2.22)

SP2Bench(1.79)

WatDiv(5.04)

SNB-BI(1.38)

SNB-INT(1.58)

FEASIBLE(2.03)

FishMark(2.86)

DBPSB(2.02)

BioBench(2)

DBpedia3.5.1(3.44)

SWDF(14.68)

NCBIGene(19.43)

SIDER(0.52)

DrugBank(1.69) Real World dataset
Real data benchmark
Synthetic benchmark

(h) BGP-restricted TP selectivity

7

WWW ’19, May 13–17, 2019, San Francisco, CA, USA M. Saleem et al.

0 5 10 15 20 25

Bowlogna(0)

TrainBench(0.36)

BSBM(0.5)

SP2Bench(0.45)

WatDiv(0)

SNB-BI(0.54)

SNB-INT(0.54)

FEASIBLE(1.05)

FishMark(1.72)

DBPSB(0.9)

BioBench(1.17)

DBpedia3.5.1(1.45)

SWDF(0.78)

NCBIGene(0.12)

SIDER(0.16)

DrugBank(0.22)
Real World dataset
Real data benchmark
Synthetic benchmark

(i) No. of BGPs

0 5 10 15 20 25

Bowlogna(0.43)

TrainBench(0.38)

BSBM(0.44)

SP2Bench(0.36)

WatDiv(0)

SNB-BI(0.18)

SNB-INT(0.48)

FEASIBLE(0.41)

FishMark(0.09)

DBPSB(0.38)

BioBench(0.46)

DBpedia3.5.1(0.45)

SWDF(0.31)

NCBIGene(0.14)

SIDER(0.21)

DrugBank(0.33)
Real World dataset
Real data benchmark
Synthetic benchmark

(j) No. of LSQ features

0 100000 200000 300000 400000 500000 600000

Bowlogna(2.73)

TrainBench(1.7)

BSBM(2.22)

SP2Bench(2.39)

WatDiv(3.02)

SNB-BI(2.56)

SNB-INT(1.52)

FEASIBLE(3.41)

FishMark(1.69)

DBPSB(0.51)

BioBench(1.97)

DBpedia3.5.1(25.68)

SWDF(17.23)

NCBIGene(4.12)

SIDER(24.31)

DrugBank(100.85) Real World dataset
Real data benchmark
Synthetic benchmark

(k) Runtimes (ms)

0

2

4

6

8

10

12

14

16

18

Q
u

e
ri

e
s

d
iv

e
rs

it
y

sc
o

re

Synthetic benchmark

Real data benchmark

Real world dataset

(l) Overall diversity score

Figure 3: Analysis of queries used in triplestore benchmarks and for real-world datasets.

Distributions of SPARQL Clauses Distr. of Join Vertex Type

Benchmark DIST FILT REG OPT UN LIM ORD Star Path Sink Hyb. N.J.

Sy
nt
he

ti
c

Bowlogna 6.2 37.5 6.2 0.0 0.0 6.2 6.2 93.7 37.5 62.5 25.0 6.2
TrainB. 0.0 45.4 0.0 0.0 0.0 0.0 0.0 81.8 27.2 72.7 45.4 18.1
BSBM 30.0 65.0 0.0 65.0 10.0 45.0 45.0 95.0 60.0 75.0 60.0 5.0
SP2Bench 42.8 57.1 0.0 21.4 14.2 7.1 14.2 78.5 35.7 50.0 28.5 14.2
Watdiv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 64.0 26.0 20.0 0.0
SNB-BI 0.0 61.9 4.7 52.3 14.2 80.9 100.0 90.4 38.1 80.9 52.3 0.0
SNB-INT 0.0 47.3 0.0 31.5 15.7 63.15 78.9 94.7 42.1 94.7 84.2 0.0

R
ea
l

FEASIBLE 56.0 58.0 22.0 28.0 40.0 42.0 32.0 58.0 18.0 36.0 16.0 30.0
Fishmark 0.0 0.0 0.0 9.0 0.0 0.0 0.0 100.0 81.8 9.0 72.7 0.0
DBPSB 100.0 48.0 8.0 32.0 36.0 0.0 0.0 68.0 20.0 32.0 20.0 24.0
BioBench 28.2 25.6 15.3 7.6 7.6 20.5 10.2 71.7 53.8 43.5 38.4 15.3

D
at
as
et
s DBpedia 34.7 38.4 8.2 43.0 14.8 2.2 0.1 39.9 10.7 10.5 1.3 52.2

SWDF 71.6 2.4 1.0 46.5 55.1 2.4 40.2 65.7 21.9 44.3 54.0 28.7
NCBIGene 4.3 4.9 0.1 0.6 0.2 90.4 0.1 7.4 2.5 0.4 0.0 89.8
SIDER 79.3 7.8 0.0 0.0 0.2 79.0 0.0 3.4 0.8 0.5 0.1 96.0
DrugBank 53.7 2.1 0.2 0.0 2.8 14.4 0.0 89.7 23.2 23.4 0.0 10.0

Overall 33.8 30.3 4.4 20.4 13.0 26.0 16.5 64.7 33.0 37.8 28.9 26.0

Table 2: Coverage of SPARQL clauses and join vertex
types for each benchmark in percentages. SPARQL clauses:
DIST[INCT], FILT[ER], REG[EX], OPT[IONAL], UN[ION], LIM[IT],
ORD[ER BY]. Join vertex types: Star, Path, Sink,Hyb[rid], N[o]
J[oin]. Missing and overused features are highlighted.

4.3 Performance Metrics
This section presents results pertaining to the performance metrics
discussed in Section 2.3. Table 3 shows the performance metrics

used by the selected benchmarks to compare triplestores. The query
runtimes for complete benchmark’s queries is the central perfor-
mance metrics and is used by all of the selected benchmarks. In
addition, the QpS and QMpH are commonly used in the query pro-
cessing category. We found that in general, the processing overhead
generated by query executions is not paid much attention as only
SP2Bench measures this metric. In the “storage” category, the time
taken to load the RDF graph into triplestore is most common. The
in-memory/HDD space require to store the dataset and correspond-
ing indexes did not get much attention. The result set correctness
and completeness are important metrics to be considered when
there are large number of queries in the benchmark and composite
metrics such as QpS and QMpH are used. We can see many of the
benchmarks do not explicitly check these two metrics. They mostly
assume that the results are complete and correct. However, this
always might not be the case [23]. Additionally, only BSBM consid-
ers the evaluation of triplestores with simultaneous user requests
with updates. However, benchmarks execution frameworks such
IGUANA [10] can be used to measure the parallel query processing
capabilities of triplestores in presence of multiple querying and
update agents.

4.4 Impact of Dataset Structuredness
The dataset structuredness has been regarded as one of the most
important RDF dataset feature [12]. However, to the best of our
knowledge, the impact of dataset structuredness on query runtimes

8

How Representative Is a SPARQL Benchmark? WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Processing Storage Result Set Additional

Benchmark QpS QMpH PO LT SS IS RCm RCr MC DU

Sy
nt
he

ti
c

Bowlogna ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗
TrainBench ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓
BSBM ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓
SP2Bench ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗
WatDiv ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
SNB-BI ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
SNB-INT ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓

R
ea
l

FEASIBLE ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗
Fishmark ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
DBPSB ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
BioBench ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Table 3: Metrics used in the selected benchmarks pertaining
to query processing, data storage, result set, simultaneous
multiple client requests, and dataset updates. QpS: Queries
per Second, QMpH: Queries Mix per Hour, PO: Processing
Overhead, LT: Load Time, SS: Storage Space, IS: Index Sizes,
RCm: Result Set Completeness, RCr: Result Set Correctness,
MC: Multiple Clients, DU: Dataset Updates.

and result set sizes has not been measured in the literature. To
measure this impact, we need to create synthetic datasets of varying
structuredness values, all following the same dataset description
model or schema and comparably to each others in terms of their
sizes. We then need to execute the same set of benchmark queries
over the generated datasets and measure the result set sizes and
query runtimes. The WatDiv benchmark data generator allows the
control of the size of generated datasets as well as the structuredness
values of individual entities. However, the task of generating the
datasets with exact sizes and structuredness values are difficult to
achieve due to the scaling and structuredness factors used to control
the size and structuredness of the overall dataset. We generated 10
datasets of varying structuredness values given in Table 4.

We run complete WatDiv queries on the individual datasets by
using Virtuso triplestore and measured the result set sizes and
runtimes of individual queries. Figure 4 shows the impact of the
dataset structuredness values on query runtimes and result set
sizes. We can clearly see there is a positive correlation of dataset
sturcturedness values and the query runtimes as-well-as result sizes,
i.e. the higher the structuredness value of the dataset the higher the
result sizes and query runtimes. The result also suggests that there
is a direct correlation with the result sizes and the query runtimes.

4.5 Correlation of Query Features vs. Runtimes
In previous sections, we presented the results of some important
SPARQL query features that should be considered while design-
ing SPARQL benchmarks. These features were mostly taken from
previous works [2, 18, 24] in SPARQL benchmarking. However, an
important question to investigate is how significantly these features
impact the query runtimes. To this end, we calculated Spearman’s
correlation of the said query features with the query runtime as
shown in Table 5. Note that this table presents combined results
obtained from Virtuoso and FUSEKI triplestores. We choose two
triplestores as the query planner of the triplestore can greatly affect
the query runtimes and hence biased the result towards a partic-
ular query planner. The overall results show that the number of
projection variables (correlation 0.32) has the highest impact and

Rank 1 2 3 4 5 6 7 8 9 10
Feature PV JV TP Result JVD JTPS TPS BGPs LSQ BTPS

Sy
nt
he

ti
c

Bowlogna 0.25 0.46 0.25 0.64 0.01 0.32 0.20 NaN 0.09 0.08
TrainB. 0.76 0.48 0.46 0.85 0.61 0.03 0.67 −0.21 −0.09 −0.66
BSBM −0.28 0.17 −0.04 −0.36 −0.11 −0.24 0.21 −0.11 0.38 −0.16
SP2Bench 0.59 0.38 0.49 0.84 0.34 −0.27 −0.06 0.24 0.24 0.32
WatDiv 0.00 −0.09 0.05 0.65 0.23 −0.02 0.03 NaN NaN 0.46
SNB-BI 0.11 0.41 0.46 0.05 0.23 0.08 −0.20 0.31 −0.16 −0.20
SNB-INT −0.10 0.33 0.36 0.07 0.02 −0.08 0.05 0.27 0.20 −0.33

R
ea
l

FEASIBLE 0.25 0.23 0.27 0.20 0.33 0.39 0.16 −0.14 −0.12 0.32
Fishmark 0.69 0.80 0.69 0.56 0.43 0.18 0.12 −0.13 −0.12 0.35
DBPSB 0.23 0.45 0.42 0.16 0.02 0.11 0.10 0.52 0.31 −0.05
BioBench 0.27 0.36 0.31 0.46 0.19 0.01 0.14 −0.03 0.12 0.15

D
at
as
et
s DBpedia 0.22 −0.04 0.10 0.07 −0.07 0.20 0.00 0.18 0.03 0.01

SWDF 0.65 0.67 0.74 −0.17 0.67 −0.16 −0.18 0.76 0.45 −0.47
NCBIGene 0.46 −0.49 −0.50 0.66 −0.49 0.37 0.29 −0.19 −0.13 0.66
SIDER 0.19 −0.03 −0.03 0.02 −0.03 0.39 0.64 −0.01 −0.05 0.17
DrugBank 0.81 0.88 0.86 −0.81 0.86 0.30 −0.50 0.06 −0.15 −0.2

Overall 0.32 0.31 0.30 0.24 0.20 0.11 0.10 0.09 0.06 0.00

Table 5: Spearman’s rank correlation coefficients between
query features and query runtimes. PV: Projection Vari-
ables, JV: Join Vertices, TP: Triple Patterns, JVD: Join Vertex
Degree, JTPS: Join-Restricted Triple Pattern Selectivity, TPS:
Triple Pattern Selectivity, BTPS: BGP-Restricted TPS. Corre-
lations and colors (−+): 0.00. . .0.19 very weak (), 0.20. . .0.39
weak (), 0.40. . .0.59moderate (), 0.60. . .0.79 strong (),
0.80. . .1.00 very strong ().

BGP-restricted triple pattern selectivity (correlation 0.00) has the
lowest impact on query runtimes. Yet, the result suggests that there
is no single query feature that has a strong or very strong correla-
tion with the query runtimes. This further suggests that the overall
query runtime is impacted by a combination of different features.

5 RELATEDWORK
Graph structure vs. query performance. The correlation between

query runtime and workload metrics were studied in [17]. In addi-
tion to standard metrics, the authors introduced composite metrics
such as the absolute difficulty (logarithm of the search space size),
and the relative difficulty, which expresses howmuch worse a query
engine does than the theoretical lower bound required by a certain
query. The authors generated 12 graphs with different degree dis-
tributions along with 25+ queries of different shapes and measured
their execution times. Then, they calculated the Kendall’s τ rank
correlation coefficient for p < 0.001 between each metric and the
query execution times. The strongest correlation (+0.38) was ex-
hibited by the absolute difficulty metric. The goal of gMark [4] is to
define a schema-driven workload generator that synthesizes graph
instances and queries for a given schema. The approach relies on
controlling the diversity of the generated graphs and the difficulty
of the generated workloads, using a selectivity estimation algorithm,
which guarantees the selectivity of (certain) generated queries. The
flexibility of their approach is demonstrated by generating work-
loads based on existing RDF benchmarks (SNB, SP2Bench, WatDiv).

Characterization of typed graphs. While this paper focuses on de-
termining the correlation query execution time and graph metrics
such as relationship specialty and structuredness (Sec. 2.1.1), other
metrics could also provide valuable insight. In particular, the tools of

9

WWW ’19, May 13–17, 2019, San Francisco, CA, USA M. Saleem et al.

1e+02

1e+04

1e+06

0.
11

08
3

0.
11

08
7

0.
31

50
7

0.
40

45
7

0.
49

19
1

0.
57

67
7

0.
65

97
5

0.
74

08
5

0.
82

05
3

0.
89

84
4

Structuredness

R
un

tim
e

[m
s]

(a) Structuredness vs. runtime

1e+02

1e+05

1e+08

1e+11

0.
11

08
3

0.
11

08
7

0.
31

50
7

0.
40

45
7

0.
49

19
1

0.
57

67
7

0.
65

97
5

0.
74

08
5

0.
82

05
3

0.
89

84
4

Structuredness

R
es

ul
t s

et
 s

iz
e

(b) Structuredness vs. result set size

Figure 4: Correlation of structuredness value with runtimes and result set sizes. Note
that the structuredness values are slighly off from the configured [0.1, 0.2, . . . , 1.0]
values as theWatDiv generator can only target an approximate structuredness value.

DS SF Structuredness Total Triples

1 0.1 0.110,878 103,394,017
2 0.2 0.110,835 103,395,364
3 0.3 0.315,073 105,813,355
4 0.4 0.404,579 99,583,093
5 0.5 0.491,919 98,636,578
6 0.6 0.576,772 102,975,692
7 0.6 0.659,752 102,463,145
8 0.7 0.740,858 107,058,360
9 0.8 0.820,532 98,341,615
10 0.9 0.898,443 108,962,809

Table 4: WatDiv datasets with
varying structuredness values.
DS: Data Set, SF: the Structured-
ness Factor that controls the
structuredness values of the en-
tities used in the datasets.

network science are often used to uncover the structural interplay be-
tween the nodes of a certain graph [9], which in turn could be used
to predict the difficulty of querying such graphs. However, most
works in the field only target the characterization of homogeneous,
untyped networks, which omit a great deal of valuable information
when trying to understand the structure of typed networks such
as RDF graphs. Only recent research targeted the understanding
of typed graphs, referred to as “multilayer”, “multiplex”, or “multi-
dimensional” networks. The authors of [7] generalized the degree
distribution to take edge types into account and introduced a set
of typed connectivity metrics. Extending this work, the authors
of [19] defined a set of additional metrics to characterize the effect
of types on nodes and edge pairs. Meanwhile, paper [6] introduced
variants of the local clustering coefficient that described the ratio
of typed triangles in the network. Survey [1] summarizes the state-
of-the-art on analyzing multilayer (edge-typed) networks. Typed
graph metrics were used successfully in the context ofmodel-driven
engineering to describe the structure of system models and distin-
guish real graph models from synthetic ones [29, 32]. However,
these were limited to graphs containing at most 1M nodes.

In the fields of semantic web and database engineering, a set
of simple typed graph metrics were proposed in the context for
social network analysis in [13]. The concept of “meta-path”, a path
with a given sequence of node/edge types and its related literature
were investigated in survey [28]. Duan et al. [12] presented the
structuredness values of several real-world datasets and synthetic
benchmarks. RBench [20] introduced the relationship specialty
metric and compared real datasets with datasets synthesized by
data generators. WatDiv [2] introduced the Join-restricted and BGP-
restricted triple pattern selectivities as important query features.

Our work. In this paper, we conducted a systematic survey to
collect a current list of triplestore benchmarks. We collected impor-
tant query and dataset features from state-of-the-art [2, 12, 20, 24]
and added additional important query features such as the number
of projection variables, the number of BGPs, the number of LSQ fea-
tures, etc. We compared 11 triplestore benchmarks and 5 real-world
datasets across the identified important data and query features.
We also measured the correlation of the identified query features

with the overall query runtime. To the best of our knowledge, there
exists no such detailed analysis of triplestore benchmarks.

6 CONCLUSION AND FUTUREWORK
We performed a comprehensive analysis of existing benchmarks
by studying synthetic and real-world datasets as well as by em-
ploying SPARQL queries with multiple variations. Our evaluation
results suggest the following: (1) The dataset structuredness prob-
lem is well covered in recent synthetic data generators (e.g., WatDiv,
TrainBench). The low relationship specialty problem in synthetic
datasets still exists in general and needs to be covered in future
synthetic benchmark generation approaches; (2) The FEASIBLE
framework employed onDBpedia generated themost diverse bench-
mark in our evaluation; (3) The SPARQL query features we selected
have a weak correlation with query execution time, suggesting
that the query runtime is a complex measure affected by multi-
dimensional SPARQL query features. Still, the number of projection
variables, join vertices, triple patterns, the result sizes, and the join
vertex degree are the top five SPARQL features that most impact the
overall query execution time; (4) Synthetic benchmarks often fail
to contain important SPARQL clauses such as DISTINCT, FILTER,
OPTIONAL, LIMIT and UNION; (5) The dataset structuredness has
a direct correlation with the result sizes and execution times of
queries and indirect correlation with dataset specialty. As future
work, we endeavour to broaden the scope of our analysis by adding
more types of SPARQL query benchmarks (e.g., using reasoning,
querying streams) and investigating more typed graph metrics on
benchmark data sets.

ACKNOWLEDGMENTS
This work has been supported by the project HOBBIT (GA no.
688227), LIMBO (no. 19F2029I) and OPAL (no. 19F2028A) as
well as by Science Foundation Ireland (SFI) under Grant No.
SFI/12/RC/2289, MTA-BME Lendület Cyber-Physical Systems Re-
search Group, and the ÚNKP-18-3-III New National Excellence
Program of the Ministry of Human Capacities, Hungary. The au-
thors would like to thank János Benjamin Antal for his assistance
in reworking and benchmarking the LDBC SNB queries.

10

How Representative Is a SPARQL Benchmark? WWW ’19, May 13–17, 2019, San Francisco, CA, USA

REFERENCES
[1] Alberto Aleta and Yamir Moreno. 2019. Multilayer Networks in a Nutshell.

Annual Review of Condensed Matter Physics 10, 1 (2019). https://doi.org/10.1146/
annurev-conmatphys-031218-013259

[2] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014. Di-
versified Stress Testing of RDF Data Management Systems. In ISWC. 197–212.
https://doi.org/10.1007/978-3-319-11964-9_13

[3] Marcelo Arenas, Claudio Gutiérrez, and Jorge Pérez. 2009. On the Semantics of
SPARQL. In Semantic Web Information Management - A Model-Based Perspective.
Springer, 281–307. https://doi.org/10.1007/978-3-642-04329-1_13

[4] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Aurélien
Lemay, and Nicky Advokaat. 2017. gMark: Schema-Driven Generation of Graphs
and Queries. IEEE Trans. Knowl. Data Eng. 29, 4 (2017), 856–869. https://doi.org/
10.1109/TKDE.2016.2633993

[5] Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman, Mark van
Harmelen, Rafael S. Gonçalves, and Cristina Garilao. 2012. FishMark: A Linked
Data Application Benchmark. In Proceedings of the Joint Workshop on Scalable
and High-Performance Semantic Web Systems. 1–15. http://ceur-ws.org/Vol-943/
SSWS_HPCSW2012_paper1.pdf

[6] Federico Battiston, Vincenzo Nicosia, and Vito Latora. 2014. Structural measures
for multiplex networks. Phys. Rev. E 89 (Mar 2014), 032804. Issue 3. https:
//doi.org/10.1103/PhysRevE.89.032804

[7] Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, and
Dino Pedreschi. 2013. Multidimensional networks: Foundations of structural
analysis. World Wide Web 16, 5-6 (2013), 567–593. https://doi.org/10.1007/
s11280-012-0190-4

[8] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL Benchmark. Int. J.
Semantic Web Inf. Syst. 5, 2 (2009), 1–24. https://doi.org/10.4018/jswis.2009040101

[9] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. 2006. Complex
networks: Structure and dynamics. Physics Reports 424, 4 (2006), 175 – 308.
https://doi.org/10.1016/j.physrep.2005.10.009

[10] Felix Conrads, Jens Lehmann, Muhammad Saleem, Mohamed Morsey, and Axel-
Cyrille Ngonga Ngomo. 2017. IGUANA: A Generic Framework for Benchmarking
the Read-Write Performance of Triple Stores. In ISWC. Springer, 48–65. https:
//doi.org/10.1007/978-3-319-68204-4_5

[11] Gianluca Demartini, Iliya Enchev, MarcinWylot, Joël Gapany, and Philippe Cudré-
Mauroux. 2011. BowlognaBench - Benchmarking RDF Analytics. In Data-Driven
Process Discovery and Analysis SIMPDA. Springer, 82–102. https://doi.org/10.
1007/978-3-642-34044-4_5

[12] SongyunDuan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea.
2011. Apples and oranges: A comparison of RDF benchmarks and real RDF
datasets. In SIGMOD. ACM, 145–156. https://doi.org/10.1145/1989323.1989340

[13] Guillaume Erétéo, Michel Buffa, Fabien Gandon, and Olivier Corby. 2009. Analysis
of a Real Online Social Network Using Semantic Web Frameworks. In ISWC.
Springer, 180–195. https://doi.org/10.1007/978-3-642-04930-9_12

[14] Orri Erling, Alex Averbuch, Josep-Lluis Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In SIGMOD. ACM, 619–630.
https://doi.org/10.1145/2723372.2742786

[15] Olaf Görlitz, Matthias Thimm, and Steffen Staab. 2012. SPLODGE: Systematic
Generation of SPARQL Benchmark Queries for Linked Open Data. In ISWC.
Springer, 116–132. https://doi.org/10.1007/978-3-642-35176-1_8

[16] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for
OWL knowledge base systems. J. Web Sem. 3, 2-3 (2005), 158–182. https:
//doi.org/10.1016/j.websem.2005.06.005

[17] Benedek Izsó, Zoltán Szatmári, Gábor Bergmann, Ákos Horváth, and István Ráth.
2013. Towards precise metrics for predicting graph query performance. In ASE.

421–431. https://doi.org/10.1109/ASE.2013.6693100
[18] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo.

2011. DBpedia SPARQL Benchmark - Performance Assessment with Real
Queries on Real Data. In ISWC. Springer, 454–469. https://doi.org/10.1007/
978-3-642-25073-6_29

[19] Vincenzo Nicosia and Vito Latora. 2015. Measuring and modeling correlations
in multiplex networks. Phys. Rev. E 92 (Sep 2015), 032805. Issue 3. https:
//doi.org/10.1103/PhysRevE.92.032805

[20] Shi Qiao and Z. Meral Özsoyoglu. 2015. RBench: Application-Specific RDF
Benchmarking. In SIGMOD. ACM, 1825–1838. https://doi.org/10.1145/2723372.
2746479

[21] Shi Qiao and Z. Meral Özsoyoğlu. 2015. One Size Does not Fit All: When to
Use Signature-based Pruning to Improve Template Matching for RDF graphs.
arXiv preprint arXiv:1501.07184 (2015). arXiv:1501.07184 http://arxiv.org/abs/
1501.07184

[22] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser Mehmood, and
Axel-Cyrille Ngonga Ngomo. 2015. LSQ: The Linked SPARQL Queries Dataset.
In ISWC. Springer, 261–269. https://doi.org/10.1007/978-3-319-25010-6_15

[23] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. 2018. Larg-
eRDFBench: A billion triples benchmark for SPARQL endpoint federation. J. Web
Sem. 48 (2018), 85–125. https://doi.org/10.1016/j.websem.2017.12.005

[24] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015.
FEASIBLE: A Feature-Based SPARQL Benchmark Generation Framework. In
ISWC. Springer, 52–69. https://doi.org/10.1007/978-3-319-25007-6_4

[25] Muhammad Saleem, Alexander Potocki, Tommaso Soru, Olaf Hartig, and Axel-
Cyrille Ngonga Ngomo. 2018. CostFed: Cost-Based Query Optimization for
SPARQL Endpoint Federation. In SEMANTICS (Procedia Computer Science),
Vol. 137. Elsevier, 163–174. https://doi.org/10.1016/j.procs.2018.09.016

[26] Muhammad Saleem, Claus Stadler, Qaiser Mehmood, Jens Lehmann, and Axel-
Cyrille Ngonga Ngomo. 2017. SQCFramework: SPARQL Query Containment
Benchmark Generation Framework. In K-CAP. 28:1–28:8. https://doi.org/10.
1145/3148011.3148017

[27] Michael Schmidt et al. 2009. SP2Bench: A SPARQL Performance Benchmark.
In Semantic Web Information Management - A Model-Based Perspective. 371–393.
https://doi.org/10.1007/978-3-642-04329-1_16

[28] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and Philip S. Yu. 2017. A Survey
of Heterogeneous Information Network Analysis. IEEE Trans. Knowl. Data Eng.
29, 1 (2017), 17–37. https://doi.org/10.1109/TKDE.2016.2598561

[29] Gábor Szárnyas et al. 2016. Towards the characterization of realistic models:
Evaluation of multidisciplinary graph metrics. In MODELS. 87–94. http://dl.acm.
org/citation.cfm?id=2976786

[30] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2018. The Train
Benchmark: Cross-technology performance evaluation of continuous model
queries. Softw. Syst. Model. 17, 4 (2018), 1365–1393. https://doi.org/10.1007/
s10270-016-0571-8

[31] Gábor Szárnyas, Arnau Prat-Pérez, Alex Averbuch, József Marton, Marcus
Paradies, Moritz Kaufmann, Orri Erling, Peter A. Boncz, Vlad Haprian, and
János Benjamin Antal. 2018. An early look at the LDBC Social Network Bench-
mark’s Business Intelligence workload. In GRADES-NDA at SIGMOD. ACM,
9:1–9:11. https://doi.org/10.1145/3210259.3210268

[32] Dániel Varró, Oszkár Semeráth, Gábor Szárnyas, and Ákos Horváth. 2018. To-
wards the Automated Generation of Consistent, Diverse, Scalable and Realistic
Graph Models. In Graph Transformation, Specifications, and Nets - In Memory of
Hartmut Ehrig. Springer, 285–312. https://doi.org/10.1007/978-3-319-75396-6_16

[33] Hongyan Wu et al. 2014. BioBenchmark Toyama 2012: An evaluation of the
performance of triple stores on biological data. J. Biomedical Semantics 5 (2014),
32. https://doi.org/10.1186/2041-1480-5-32

11

https://doi.org/10.1146/annurev-conmatphys-031218-013259
https://doi.org/10.1146/annurev-conmatphys-031218-013259
https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-642-04329-1_13
https://doi.org/10.1109/TKDE.2016.2633993
https://doi.org/10.1109/TKDE.2016.2633993
http://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.pdf
http://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.pdf
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1007/s11280-012-0190-4
https://doi.org/10.1007/s11280-012-0190-4
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1007/978-3-319-68204-4_5
https://doi.org/10.1007/978-3-319-68204-4_5
https://doi.org/10.1007/978-3-642-34044-4_5
https://doi.org/10.1007/978-3-642-34044-4_5
https://doi.org/10.1145/1989323.1989340
https://doi.org/10.1007/978-3-642-04930-9_12
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1007/978-3-642-35176-1_8
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1109/ASE.2013.6693100
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1103/PhysRevE.92.032805
https://doi.org/10.1103/PhysRevE.92.032805
https://doi.org/10.1145/2723372.2746479
https://doi.org/10.1145/2723372.2746479
http://arxiv.org/abs/1501.07184
http://arxiv.org/abs/1501.07184
http://arxiv.org/abs/1501.07184
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1016/j.websem.2017.12.005
https://doi.org/10.1007/978-3-319-25007-6_4
https://doi.org/10.1016/j.procs.2018.09.016
https://doi.org/10.1145/3148011.3148017
https://doi.org/10.1145/3148011.3148017
https://doi.org/10.1007/978-3-642-04329-1_16
https://doi.org/10.1109/TKDE.2016.2598561
http://dl.acm.org/citation.cfm?id=2976786
http://dl.acm.org/citation.cfm?id=2976786
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1186/2041-1480-5-32

	Abstract
	1 Introduction
	2 Benchmark Design Features
	2.1 Datasets
	2.2 SPARQL Queries
	2.3 Performance Metrics

	3 Systematic Survey
	3.1 Synthetic Triplestore Benchmarks
	3.2 Triplestore Benchmarks Using Real Data
	3.3 Selected Real-World Datasets

	4 Analysis of the Benchmarks
	4.1 Datasets
	4.2 Queries
	4.3 Performance Metrics
	4.4 Impact of Dataset Structuredness
	4.5 Correlation of Query Features vs. Runtimes

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

