
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Case Study:
Testing a Complex Algorithm Framework

Attila Klenik

1

FRAMEWORK OVERVIEW

2

 Developed at BME-MIT, FTSRG

 Tool for formal modeling and analysis

o For education: Formal Methods course

o For research: industrial applications

o .NET based

 Qualitative analyses

o Model checking

 Quantitative analyses

o Stochastic analysis

PetriDotNet

3

Quantitative Analysis

4

System plan Engineering measures

Formal probabilistic model
Formal performance

metrics

Stochastic analysis

e.g Performance and Reliability measures
 Is the specification satisfied?

Backend Architecture

 Don’t mind the actual data
type

 Use it like in pseudo-code

 Provide simple operations

 Hide storage scheme

 Efficient implementations
based on storage scheme

5

High-level algorithms

Vector and matrix interfaces

Operation implementations

Transparent storage type

Type specific implementation

TESTING THE VECTOR AND MATRIX
SUBSYSTEM

6

Motivation

 Yet another math lib?

 Not really
o Simple operations

• No inversion, spectral decompostion, etc.

o Efficient implementations

 Composability
o Expression tree of matrices

7

⬚ ⬚ ⬚
⬚ ⬚ ⬚
⬚ ⬚ ⬚

∗ ∙ ∙
∙ ∗ ∙
∙ ∙ ∗

 …

∗ ∙ ∙
∙ ∗ ∙
∙ ∙ ∗

 …

∗ ∙ ∙
∙ ∗ ∙
∙ ∙ ∗

 …

∗ ∙ ∙
∙ ∗ ∙
∙ ∙ ∗

 …

Block matrix
Linear

combination

Kronecker
product

Sparse
matrices

Interface Testing - Prerequisites

 Well defined interface for vectors and matrices

 Well defined functional requirements

o Mathematical correctness 

o Independently of storage scheme

 Interface testing methodology

8

InterfaceTests
#factoryMethod()

FactoryImpl
#factoryMethod()

 Write tests for the interface
methods („abstractέ tests)

 Leave the object instantiation to
derived classes („concrete” tests)

.NET Utilities

 CodeContracts
o Preconditions, postconditions, invariants for methods

o Definition on interface level
• Every implementing class will have the contracts

 IntelliTest (Pex)
o Generating tests to cover code blocks (SMT solver)

o White box testing

 Putting it together
o Contracts cover multiple errors in one check

o Pex generates inputs for one check

o Need to flatten the error checking codes
• We want test inputs for every error possibility

9

Creating „Abstract” Tests

 Testing for errors
o Contract throws exception on every error

• Can’t cover entire contract with one erroneous input

• Pex generates multiple inputs to cover every (error) block

o Use the inputs generated by Pex

 Testing with valid inputs
o Majority of inputs are indices and sizes

o Use interval testing around crutial values

 Expected results
o Calculate it with by-the-book, simple algorithms

• Simple form of software rendundancy

10

Manual Vs. Automatic Testing

 Operation: split a vector into blocks of vectors

 Input: sizes of required blocks (long[] parameter)

 Req.: sum of block sizes equals original size

 Most surprising generated test input

o long [] blockSizes =
{ 2252471894865346563L,
7150660642841915409L,
4215399814742933512L,
4828211721259356192L}

o Sums to 60, perfectly valid inputs 

o We rarely test for overflow and underflow errors
11

Creating „Concrete” Tests

 Operation definitions follow a certain structure

o Base: the object we call the operation on

o Operand: the operand for the operation

• E.g. Base += Operand

o Target: the target storage for the operation result

• E.g. Target = Base + Operand

 Each is behind a general interface

o 3 abstract factory methods used by tests

o No restrictions (yet) for the underlying storages

o E.g. BlockVector = ConstVector + RowVector

o 8 vector types, 8 matrix types many combinations
12

Multiple smaller
vectors

Every element is
the same

References a row
of a matrix

Combinatorial Testing I.

 „Create” derived test classes for every type
combination

 Manually not tractable

o Hundreds of type combinations

o What if we add a new type

 MS Text Template Transformation Toolkit (T4)

o Kind of like PHP template engines

o Generate code with an executable template

o Generated classes inherit the test methods

o Possible to override expected behavior 

13

Combinatorial Testing II.

 Type combination generation

o Automated Combinatorial Testing for Software (ACTS)

o Capable of n-wise parameter generation

 Full combinatorial testing

o More than 70k test methods

o In case of breaking changes, or extra added types

 Pair-wise testing

o Around 10k test methods 

o In case of simple implementation changes

14

Importance of Tests

 What we have:

o Hundrends of „abstract” tests (scenarios)

o Hundreds of type combinations (with „concrete” tests)

o Custom behaviors for „concrete” tests

 What if a test fails?

o Bug: correct it

o Can’t find implementation for type combination

• Impl. exists, but delegation is wrong: correct it

• No implementation

– Type combination should be supported: implement it

– Can’t support it (impossible, or not efficient): add custom behavior

 We have a de-facto specification for the subsystem
15

TESTING THE ALGORITHM
SUBSYSTEM

16

Quantitative Analysis

17

System plan Engineering measures

Formal probabilistic model
Formal performance

metrics

Stochastic analysis

e.g Performance and Reliability measures
 Is the specification satisfied?

Stochastic Analysis Workflow

18

Stochastic analysis

State
Space

Markov-
chain

Numerical
Solution

Measure
Calculation

 Multiple algorithm choices for each step (configurable)

 Complex, hard-to-debug algorithms

 Hard to isolate them
o The (non-trivial) output of one is the input of an other

Software Redundancy-based Testing

 Inputs of the workflow
o Formal model

o Formal measure definitions

 The output is „mathematically given”
o Even if we don’t know what it is

o E.g. unique solution of a system of linear equations

 Independent of the used algorithms
o Run the workflow with different configurations (~500)

o Compare the calculated metrics

o Should be the same with respect to a certain
numerical precision

19

Summary

 Vector and matrix library testing

o Interface testing

o Automatic test input generation (Pex)

o Interval testing

o Combinatorial testing (ACTS)

o Code generation (T4)

 Algorithm workflow testing

o Software redundancy

20

