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FRAMEWORK OVERVIEW 
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 Developed at BME-MIT, FTSRG 

 Tool for formal modeling and analysis 

o For education: Formal Methods course 

o For research: industrial applications 

o .NET based 

 Qualitative analyses 

o Model checking 

 Quantitative analyses 

o Stochastic analysis 

PetriDotNet 
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Quantitative Analysis 
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System plan Engineering measures  

Formal probabilistic model  
Formal performance 

metrics  

Stochastic analysis 

e.g Performance and Reliability measures  
 Is the specification satisfied? 



Backend Architecture 

 Don’t mind the actual data 
type 

 Use it like in pseudo-code 

 

 Provide simple operations 

 Hide storage scheme 

 

 Efficient implementations 
based on storage scheme 
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High-level algorithms 

Vector and matrix interfaces 

Operation implementations 

Transparent storage type 

Type specific implementation 



TESTING THE VECTOR AND MATRIX 
SUBSYSTEM 
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Motivation 

 Yet another math lib? 

 Not really 
o Simple operations 

• No inversion, spectral decompostion, etc. 

o Efficient implementations 

 Composability 
o Expression tree of matrices 
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Interface Testing - Prerequisites 

 Well defined interface for vectors and matrices 

 Well defined functional requirements 

o Mathematical correctness  

o Independently of storage scheme 

 Interface testing methodology 
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InterfaceTests 
#factoryMethod() 

FactoryImpl 
#factoryMethod() 

 Write tests for the interface 
methods („abstractέ tests) 

 

 Leave the object instantiation to 
derived classes („concrete” tests) 



.NET Utilities 

 CodeContracts 
o Preconditions, postconditions, invariants for methods 

o Definition on interface level 
• Every implementing class will have the contracts 

 IntelliTest (Pex) 
o Generating tests to cover code blocks (SMT solver) 

o White box testing 

 Putting it together 
o Contracts cover multiple errors in one check 

o Pex generates inputs for one check 

o Need to flatten the error checking codes 
• We want test inputs for every error possibility 
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Creating „Abstract” Tests 

 Testing for errors 
o Contract throws exception on every error 

• Can’t cover entire contract with one erroneous input 

• Pex generates multiple inputs to cover every (error) block 

o Use the inputs generated by Pex 

 Testing with valid inputs 
o Majority of inputs are indices and sizes 

o Use interval testing around crutial values 

 Expected results 
o Calculate it with by-the-book, simple algorithms 

• Simple form of software rendundancy 
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Manual Vs. Automatic Testing 

 Operation: split a vector into blocks of vectors 

 Input: sizes of required blocks (long[] parameter) 

 Req.: sum of block sizes equals original size 

 Most surprising generated test input 

o long [] blockSizes  =  
{ 2252471894865346563L,  
7150660642841915409L, 
4215399814742933512L,  
4828211721259356192L}  

o Sums to 60, perfectly valid inputs  

o We rarely test for overflow and underflow errors 
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Creating „Concrete” Tests 

 Operation definitions follow a certain structure 

o Base: the object we call the operation on 

o Operand: the operand for the operation 

• E.g. Base += Operand 

o Target: the target storage for the operation result 

• E.g. Target = Base + Operand  

 Each is behind a general interface 

o 3 abstract factory methods used by tests 

o No restrictions (yet) for the underlying storages 

o E.g. BlockVector = ConstVector + RowVector 

o 8 vector types, 8 matrix types many combinations 
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Multiple smaller 
vectors 

Every element is 
the same 

References a row 
of a matrix 



Combinatorial Testing I. 

 „Create” derived test classes for every type 
combination 

 Manually not tractable 

o Hundreds of type combinations 

o What if we add a new type 

 MS Text Template Transformation Toolkit (T4) 

o Kind of like PHP template engines 

o Generate code with an executable template 

o Generated classes inherit the test methods 

o Possible to override expected behavior  
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Combinatorial Testing II. 

 Type combination generation 

o Automated Combinatorial Testing for Software (ACTS) 

o Capable of n-wise parameter generation 

 Full combinatorial testing 

o More than 70k test methods 

o In case of breaking changes, or extra added types 

 Pair-wise testing 

o Around 10k test methods  

o In case of simple implementation changes 
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Importance of Tests 

 What we have: 

o Hundrends of „abstract” tests (scenarios) 

o Hundreds of type combinations (with „concrete” tests) 

o Custom behaviors for „concrete” tests 

 What if a test fails? 

o Bug: correct it 

o Can’t find implementation for type combination 

• Impl. exists, but delegation is wrong: correct it 

• No implementation 

– Type combination should be supported: implement it 

– Can’t support it (impossible, or not efficient): add custom behavior 

 We have a de-facto specification for the subsystem 
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TESTING THE ALGORITHM 
SUBSYSTEM 
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Quantitative Analysis 
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System plan Engineering measures  

Formal probabilistic model  
Formal performance 

metrics  

Stochastic analysis 

e.g Performance and Reliability measures  
 Is the specification satisfied? 



Stochastic Analysis Workflow 
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Stochastic analysis 

State 
Space 

Markov-
chain 

Numerical 
Solution 

Measure 
Calculation 

 Multiple algorithm choices for each step (configurable) 

 Complex, hard-to-debug algorithms 

 Hard to isolate them 
o The (non-trivial) output of one is the input of an other 



Software Redundancy-based Testing 

 Inputs of the workflow 
o Formal model 

o Formal measure definitions 

 The output is „mathematically given” 
o Even if we don’t know what it is 

o E.g. unique solution of a system of linear equations 

 Independent of the used algorithms 
o Run the workflow with different configurations (~500) 

o Compare the calculated metrics 

o Should be the same with respect to a certain 
numerical precision 
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Summary 

 Vector and matrix library testing 

o Interface testing 

o Automatic test input generation (Pex) 

o Interval testing 

o Combinatorial testing (ACTS) 

o Code generation (T4) 

 

 Algorithm workflow testing 

o Software redundancy 
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