Verification of Implementations of the IOT protocol MQTT via Active Automata Learning

Baseem AL-Twajre
baseem@hit.bme.hu
Model-Based Testing IoT Communication via Active Automata Learning

Martin Tappler Bernhard K. Aichernig
Institute of Software Technology
Graz University of Technology, Austria
{martin.tappler, aichernig}@ist.tugraz.at

Roderick Bloem
Institute of Applied Information Processing and Communications
Graz University of Technology, Austria
roderick.bloem@iaik.tugraz.at
Overview

- Introduction.
- The Approach.
- The Architecture of learning setup.
- The Case Study:
 - Learning.
 - Conformance Checking.
 - Bug Hunt.
- The main contribution and Limitation.
Introduction

Learning Automata

An Automaton which selects one of its actions related to its past experiences and rewards or punishments from the Environment.

Actions $a = \{a_1, a_2, ..., a_r\}$

Environment $c = \{c_1, c_2, ..., c_r\}$

Outputs $b = \{b_1, b_2, ..., b_r\}$
Learning Automata

Applications:

- Network Routing.
- Priority assignment in Queuing System.
- Task Scheduling.
- Multiple-Access Networks.
- Image Compression.
- Pattern Classification.
A Mealy machine is a 6-tuple \((Q, q_0, I, O, \delta, \lambda)\) where:

- \(Q\) is a finite set of states.
- \(q_0\) is the initial state.
- \(I/O\) is a finite set of input/outputs symbols.
- \(\delta : Q \times I \rightarrow Q\) is the state transition function.
- \(\lambda : Q \times I \rightarrow O\) is the output function.
As we need a basis for determining whether two Mealy machines are equivalent. Equivalence is usually defined with respect to outputs, i.e. two deterministic Mealy machines are equivalent if they produce the same outputs for all input sequences.

We say that a Mealy machine Q_2

\[
\langle Q_2, q_{02}, I, O, \delta_2, \lambda_2 \rangle
\]

is equivalent to another Mealy machine Q_1

\[
\langle Q_1, q_{01}, I, O, \delta_1, \lambda_1 \rangle
\]

Iff:

\[
\forall s \in I^* : \lambda_1(q_{01}, s) = \lambda_2(q_{02}, s)
\]
The MQTT protocol is a lightweight publish/subscribe protocol and therefore well-suited for resource-constrained environments such as the Internet of Things (IoT).
The Approach

The approach is a learning-based approach to detecting failures in reactive systems.

The technique is based on inferring models of multiple implementations of a common specification which are pair-wise cross-checked for equivalence.

Any counterexample to equivalence is flagged as suspicious and has to be analyzed manually.

Hence, it is possible to find failures in a semi-automatic way without prior modeling.
Learn (Mealy-machine) models of several different implementations of some standardized protocol or operation.

These models are then pair-wise cross-checked with respect to some conformance relation.

This may either reveal a bug in one or both implementations corresponding to the counterexample, or it may reveal an under specification of some aspect of the standard.

All counterexamples to conformance are then analyzed manually by consulting a given standards document.

Fig.1. Overview of bug-detection process.
This approach apparently cannot detect all possible faults because:

- Specific faults may be implemented by all examined implementations.
- The fault-detection capabilities are limited by the level of abstraction used for learning.

This gives rise to two research questions they aim at answering:

- Is it possible to effectively detect nontrivial faults using this approach despite the necessary severe abstraction?
- What are the limitations of the approach?
Active Automata Learning

consider learning algorithms operating in the minimally adequate teacher (MAT) framework proposed by Angluin. These algorithms infer models of black-box systems, also referred to as systems under learning (SULs).

- **Minimally Adequate Teacher Framework (MAT):**
 The interaction is carried out via two types of queries posed by the learning algorithm and answered by a minimally adequate teacher. These two types of queries are usually called membership queries and equivalence queries.

- **Learning Mealy Machines:**
 They want to learn the behavior of a black-box SUL of which they only know the input and output interface. Hence, output queries are conceptually simple: inputs are provided to the SUL and it produces some outputs.
Active Automata Learning

Since we are dealing with a black-box system, we normally cannot check for equivalence with a hypothesis. In practice, it is thus necessary for a teacher used in a learning algorithm to approximate equivalence queries somehow. This can for instance be achieved via conformance testing as implemented in LearnLib.

To summarize, a learning algorithm for Mealy machines relies on three operations:

- **Reset**
 resets the SUL

- **output query**
 performs a single test executing a sequence of inputs and recording the outputs

- **equivalence query**
 performs a set of tests comparing the outputs of the SUL and the current hypothesis
the teacher is usually some component interacting with the SUL in order to implement these operations.

An equivalence query results in a positive answer if all tests pass.

i.e. the SUL produces the same outputs as the hypothesis automaton.

If there is a test for which their outputs differ, the corresponding sequence of inputs is presented to the learning algorithm as a counterexample.

Fig. 2. The interaction between SUL, teacher and learning algorithm
The architecture of a learning environment for MQTT

Two aspects influence the architecture of a learning environment for MQTT:

- **Firstly**, the need to account for dependencies between clients. Unlike in pure client/server settings, like in the TLS protocol or the TCP, it is not sufficient to simulate one client to adequately infer a model of the server/broker in MQTT. They need to control multiple clients and record the messages each one has received.

- **Secondly**, the need to cope with the enormous amount of possible inputs, i.e. the large number of packets they can send to the brokers. This, however, is a general problem of active automata learning in the MAT framework and an issue for learning almost all non-trivial systems.

To deal with this problem, they introduce a **mapper** component performing **abstraction** and **concretization**.
In order to learn SUL behavior they control its environment made up of several clients which basically consist of the adapter blocks and the client-interface blocks.

The adapter handles communication-related tasks, whereas the client-interface components implement a client library with a simple interface and default values for control-packet parameters.

The components responsible for learning. LearnLib implements several algorithms for actively learning Mealy machines.

Fig. 3. The architecture used for learning of Mealy-machine models of MQTT brokers.
Model-based testing process

For each input alphabet:

1) Learn a model m_i of each implementation i.
2) For each pair (m_i, m_j) of learned models:
 - Check equivalence.
 - For each counterexample c to equivalence.
 1) Test c on implementations i and j.
 2) Analyze manually if outputs of i and j are correct.

Note that if they find a counterexample to equivalence, i.e. a suspicious trace c, they test it on the corresponding implementations. They do so to ensure that c actually shows a difference between the implementations and is not the result from an error introduced by learning. Although active automata learning is in general sound, this may happen because they only approximate equivalence queries by conformance testing.

As they check conformance on model-level, they can also use techniques other than testing. They could, e.g., use external tools such as CADP to check equivalence, encode the problem as reachability problem and use satisfiability modulo theories (SMT) solvers for the task, or use a graph based approach. They will actually use a graph-based approach, whereby they roughly interpret Mealy machines as labeled transition systems (LTSs).
The Case Study

They carried out experiments in which they learned models of five implementations of MQTT brokers/servers. Examining these models, they found several violations of the MQTT specification.

Learning

The learning part was implemented in Scala using the Java-library LearnLib for active automata learning. Most of the learning-related functionality was thus already implemented and they only had to implement application-specific components such as mappers, and a component responsible for the configuration of learning experiments.
Conformance Checking

They actually check for equivalence and either output that the models are equivalent or present all found counterexamples to the user.

This is accomplished through the application of bisimulation checks. ”On the Fly”-Check: they interpreted Mealy machines as LTSs whereby they interpreted input-output pairs labeling a transition in a Mealy machine as a single transition label in the LTS-interpretation.
Bug Hunt

with respect to error detection in implementations. Altogether they found 17 bugs in all implementations combined whereby they did not find any in the Mosquitto broker.

A simple example of a violation of the protocol specification can be found by considering the behavior of the HBMQTT broker with respect to the functionality covered by the Simple mapper.
A counterexample to equivalence is **Connect → Connect** we have the output **C_Ack, connectionClosed**.
HBMQTT acknowledges the first connection attempt and ignores the second by not producing any output and it actually does not change its state as well.

The output $C_{\text{Ack}} \cdot \text{Empty}$

Fig. 5. HBMQTT model learned by observing the HBMQTT broker with abbreviated action labels
The MQTT specification states that Mosquitto’s behaviour is correct whereas HBMQTT behaves in an incorrect way.

A Client can only send the CONNECT Packet once over a Network Connection. The Server MUST process a second CONNECT Packet sent from a Client as a protocol violation and disconnect the Client [MQTT-3.1.0-2].
The main contribution of this paper is thus the presentation and empirical evaluation of the mentioned approach based on learning experiments with five different black-box systems. More concretely, they learned models of five different MQTT brokers, systems used in IoT communication.

What are the limitations of the approach?

This approach apparently cannot detect all possible faults because specific faults may be implemented by all examined implementations. In addition to that, the fault-detection capabilities are limited by the level of abstraction used for learning.
THANK YOU FOR YOUR ATTENTION
Any questions?