Colored Petri nets (CPNs)

dr. Tamás Bartha

BME Department of Measurement and Information Systems
Motivation

• Petri net model of Dining Philosophers
Motivation

- Why not this way?
Motivation

- Distinction of tokens: colored Petri net

val n = 5;
colset PH = index ph with 1..n;
colset CS = index cs with 1..n;
var p: PH;

fun Chopsticks(ph(i)) =
 1`cs(i) ++
 1`cs(if i=n then 1 else i+1);
Motivation

• Meaning of colored tokens
A more complex example (see later)
Colored Petri nets

- Colored Petri net (CPN)
 - Extension of uncolored Petri nets with:
 - Flexible data structures
 - Data manipulation language
 - Colored Petri nets unite:
 - Graphical representation \rightarrow clarity
 - Well-defined semantics \rightarrow formal analysis
 - CPN model = net structure + declarations + net markings, expressions + initialization
Main components of CPNs (overview)

• Extensions of tokens
 – Data value: colored token
 – Data type: color set

• Extensions of places
 – Type of place: data type of accepted tokens
 – Initial marking inscription: initial tokens
 – Current marking: multiset of tokens matching the place’s type

• Extensions of arcs
 – Arc expression: tokens moved (with variables to be bound)

• Extensions of transitions
 – Guard for firing
 – To fire: arc expressions shall be bound to colored tokens
Comparison of colored and uncolored Petri nets

Uncolored (P-T) Petri nets:
- Uncolored tokens
- Set of tokens (cardinality)
- Token manipulation
- Initial marking
- Inhibitor edges
- Edge weights
- Transition can be enabled
- Conflict between different enabled transitions
- ~ assembly

Colored Petri nets:
- Colored tokens
- Multiset of tokens
- Data manipulation
- Initial marking inscription
- Guards
- Arc expressions (+variables)
- Binding can be enabled
- Conflict between different bindings of the same transition
- ~ high-level programming lang.
Structure of colored Petri nets
Extensions of tokens

- Colored token
 - Represents a data value

- Color set:
 - Defines the data type
 - E.g., enumeration (with), base type (int, bool, string, ...)
 - Can be complex (compound)
 - E.g., color P = product U * I

- Declaration: in formal language
 - Standard ML

```
color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;
```
Extensions of PN places

- **Color set inscription**: type (color) of the place
 - Type of tokens accepted by the place (one of the declared types)
 - Visualization: written next to the place, in italic

- **Initial marking inscription**
 - Defines the initial marking
 - A multiset of the accepted color set (may be more than one token per color)
 - Visualization: written next to the place, underlined

- **Current marking**
 - Description of current tokens
 - Visualization: written next to the place, number of tokens in circle and detailed description
Extensions of PN transitions

- **Arc expression**
 - Precondition of enablement (removed tokens) and the result of firing (placed tokens)
 - Type: type of the place connected to the arc (one transition have arcs with different types)
 - Visualization: next to the arc

- **Variable can be used in the expression**
 - Can be bound to data values (colored tokens)
 - Shall have a type (the color set of tokens that can be bound to it)

- **Guard**
 - Boolean expression, needs to be true to enable the transition
 - Visualization: next to the transition, within []
Structure of colored Petri nets: Summary

- **Net structure:**
 - Represents the control and data flow structure of the system
 - Places, transitions, arcs

- **Declarations:**
 - Define the data structures and used functions
 - Color sets, variables, arc expressions

- **Markings, naming:**
 - Define the syntactic and data manipulation items
 - Names, color sets, in/out arc expressions, guards, current state

- **Initializing expression:**
 - Defines the initial state of the model (constants)
color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;

- **Elements of CPNs:**
 - **Places**
 - Name
 - Color set
 - Initial marking
 - Current marking
 - **Transitions**
 - Name
 - Guard
 - **Arcs**
 - Arc expressions (incoming, outgoing)
Example: Control structures 1

IF b THEN stat1 ELSE stat2

WHILE b DO stat
Example: Control structures 2

REPEAT stat UNTIL b

Subroutine call

Start of a process

[−b] [b]
Toolset of colored Petri nets
CPN: Definition of color sets

- Simple color sets
 - Uncolored tokens: `unit`
 - Base types: `int, bool, real, string`
 - Subset: `with 1..4;`
 - Enumeration: `with true | false;`
 - Indexing (vector): `index d with 1..4;`

- Can be used in the definitions of the following:
 - Compound color sets
 - Variables, constants
 - Functions, operators
Compound color sets

- Ways to create compound color sets:
 - Union:
    ```
    union S + T;
    ```
 - Cross product (construction of tuples):
    ```
    product P * Q * R;
    ```
 - Record (labelled tuples):
    ```
    record p:P * q:Q * r:R;
    ```
 - List:
    ```
    list int with 2..6;
    ```
Additional CPN elements: Variables

- **Variables**
 - Symbolic names of tokens
 - Variable declaration:
      ```
      var proc : P;
      ```

- **Constants**
 - With fixed values
 - Constant declaration:
      ```
      val n = 10;
      val d1 = d(1):D;
      ```

- **In the following expr.'s:**
 - Arc expressions
 - Guards

- **In the following decl.'s:**
 - Color sets
 - Functions, operators
 - Arc expressions, guards, initialization expressions
Additional CPN elements: Functions

• Functions
 Side effect-free functions in SML language

 - Example:
    ```
    fun Chopsticks(ph(i)) = 
      1`cs(i) ++ 
      1`cs(if i=n then 1 else i+1);
    ```

• Operations, operators
 Infix notation

• In the following decl.'s:
 - Color sets
 - Functions, operators, constants
 - Arc expressions, guards, initialization expressions
Additional CPN elements: Expressions

• Net expressions
 – Value: evaluated with a specific binding of the variables
 – Type: set of all possible evaluations
 – Examples:
 \[
 \begin{align*}
 \text{x=q} \\
 2\cdot(x,i) \\
 \text{if } x=q \text{ then } 2\cdot i \text{ else empty} \\
 \text{Mes}(s)
 \end{align*}
 \]

• Usage in:
 – Arc expressions, guards, initialization expressions
Expressions: Operations with multisets

Addition: $a_1 + a_2$

Comparison: $a_1 \leq a_2$, $a_1 \neq a_2$

Size: $|a_1|$

Scalar multiplication: $n \cdot a_1$

Subtraction: $a_1 - a_2$ (only if $a_2 \leq a_1$)
Behavior of colored Petri nets (informal semantic)
Marking and binding

- **Marking:**
 - Distribution of tokens (count, by color) on the places

- **Binding the arc expressions of a transition:**
 - The variables are bound to data values (colored tokens)
 - For a given transition each occurrence of a variable will be bound to the same value
 - Unbound variable on outgoing arc: Can be bound to any value of its type
 - The bindings of different transitions are independent
Enabling of transitions

- **Transition enabled with a given marking and binding:**
 - Each input arc’s expression evaluates to a multiset of tokens that is present on the corresponding input place
 - The guard is true
 - If a transition is enabled with a binding, it can fire

- **Binding item for firing:**
 - A pair (transition, binding), e.g., (T1, <x=p>)
 - Can be enabled with a marking → can fire
 - In case of one transition: many bindings, many enabled binding items may be constructed; they can fire
Firing

• Transition fires with a binding (i.e., a binding item fires):
 – Removes tokens from the input places according to the arc expressions and the firing binding
 – Adds tokens from the output places according to the arc expressions and the firing binding

• Step (effect of firing on the state space):
 – The marking of the CPN changes
Reachability graph

- **Node:**
 - A marking: count and color of tokens for each place
 - May have an ID, predecessor node and successor node

- **Edge:**
 - The firing binding item: the transition and the binding
 - By definition only one firing binding item is shown in the reachability graph
CPN Tools demo

- Model of dining philosophers
- Simulation
- Reachability graph
Formal definition and semantics of colored Petri nets
Multisets

- **Multiset**: may contain several of the same element
 - **Mapping**: $Bag(A)$, to the domain of A, $a \in [A \rightarrow \mathbb{N}]$
 - **Formally**: $a = \sum_{x \in A} a(x) \cdot x$, alternative notation: $a = \sum_{x \in A} a(x)'x$

- **Operations on multisets**:
 - **Comparison**: $a_2 \neq a_1$ if $\exists x \in A, a_2(x) \neq a_1(x)$
 $a_2 \leq a_1$ if $\forall x \in A, a_2(x) \leq a_1(x)$
 - **Size**: $|a| = \sum_{x \in A} a(x)$
 - **Addition**: $a_1 + a_2 = \sum_{x \in A} (a_1(x) + a_2(x)) \cdot x$
 - **Subtraction**: $a_1 - a_2 = \sum_{x \in A} (a_1(x) - a_2(x)) \cdot x$ if $a_2 \leq a_1$
 - **Scalar multiplication**: $n \cdot a = \sum_{x \in A} (n \cdot a(x)) \cdot x$
Operations with multisets

Addition: $a_1 + a_2$

Comparison: $a_1 \leq a_2, a_1 \neq a_2$

Size: $|a_1|$

Scalar multiplication: $n \cdot a_1$

Subtraction: $a_1 - a_2$ (only if $a_2 \leq a_1$)
Multisets (continued)

- **Union of multisets:** \(a_1 \cup a_2 \cup \ldots \cup a_m\)
 - Domain: \(A_1 \cup A_2 \cup \ldots \cup A_m\)
 - Item: \(e_i \in \bigcup_{k=1}^{m} A_k\) if \(\exists A_j, e_i \in A_j\)

- **Construction of tuples:** \(\langle A_1, A_2, \ldots, A_n \rangle\)
 - Domain: \(A_1 \times A_2 \times \ldots \times A_2\)
 - Item: \(\langle e_1, e_2, \ldots, e_n \rangle \in \Diamond_{1}^{n} A_j\) if \(\forall e_i \in A_i\)
 - Generalization: \(\langle a_1, a_2, \ldots, a_n \rangle\)
Formal definition of CPNs

\[\text{CPN} = (\Sigma, P, T, A, C, G, E, M_0) \]

Color sets: \(\Sigma = \{\sigma_1, \sigma_2, \ldots, \sigma_k\} \)

Places: \(P = \{p_1, p_2, \ldots, p_\pi\} \)

Transitions: \(T = \{t_1, t_2, \ldots, t_\tau\} \)

\[P \cap T = \emptyset \]

Arcs: \(A \subseteq (P \times T) \cup (T \times P) \)

Color set func.: \(C : P \mapsto \Sigma \)

Guards: \(G : \forall t \in T, \left[\text{Type}(G(t)) = B \land \text{Type}(\text{Var}(G(t))) \subseteq \Sigma \right] \)

Arc expressions: \(E : \forall a \in A, \left[\text{Type}(E(a)) = C(p)_{\text{MS}} \land \text{Type}(\text{Var}(E(a))) \subseteq \Sigma \right] \)

Initial marking: \(M_0 : \forall p \in P, \left[\text{Type}(M_0(p)) = C(p)_{\text{MS}} \right] \)
Notations used in the formal definition

- The type (color set) of variable \(v \): \(\text{Type}(v) \)
- The type of expression \(expr \): \(\text{Type}(expr) \)
- The set of variables in expression \(expr \): \(\text{Var}(expr) \)
- A binding of variable \(v \): \(b(v) \in \text{Type}(v) \)
- Evaluation (value) of expression \(expr \) in binding \(b \): \(expr \langle b \rangle \) where \(v \in \text{Var}(expr) \) and \(b(v) \in \text{Type}(v) \)
Arc expressions

• May use variables
 – Variables have types (color sets): $\text{Type}(v)$
 – Their value is an element of their types’ multiset

• Closed arc expression: does not contain variables

• Open arc expression: contains variables that have to be bound to values
 – Binding: a specific value assignment to each variable
 • Arc expression can be evaluated with the given binding
 – Has type: $\text{Type}(expr) = C(p)_{MS}$
 • The color set (type) to which it is evaluated
 – Set of variables in the expression: $\text{Var}(expr)$
Bound and unbound variables

Bound variables
- Value binding is determined by the incoming arcs
- Consistency: a variable has only one value in each binding
 - For all in-arcs of the transition the same variable name denotes the same value

Unbound variables
- They can only be present in outgoing arc expressions
- Enablement did not assign (bound) any value to them
- Have to be bound at firing:
 - Can take any value from its color set
 - Number of possible bindings = cardinality of the color set
 - Non-deterministic choice
Guards

- Each guard is assigned to a transition
 - Expression over multisets
 - Evaluated to Boolean value
- The transition is enabled only if the guard is evaluated to “true”
 - “Filters” the enabled bindings
Enabling in colored Petri nets

- **Binding of transitions**
 - Valid binding: \(\forall v \in \text{Var}(t): b(v) \in \text{Type}(v) \land G(t)\langle b \rangle \)
 \[
 \text{Var}(t) = \{ v \mid v \in \text{Var}(G(t)) \lor \exists a \in A(t) : v \in \text{Var}(E(a)) \}
 \]
 - Set of all valid bindings: \(B(t) \)

- **A valid binding is enabled if**
 - Guard is true
 - The input places contain enough colored tokens (cf. arc expressions \(E^{-}(p,t)\langle b \rangle \)) and the inhibitor arcs do not inhibit the firing (cf. arc expressions \(E^{h}(p,t)\langle b \rangle \)):

\[
\forall p \in \bullet t : E^{-}(p,t)\langle b \rangle \leq M(p) \land E^{h}(p,t)\langle b \rangle > M(p)
\]
Firing in colored Petri nets

• An enabled transition can fire if there is no enabled transition with higher priority, i.e.
 – The transitions with higher priority do not have enough tokens in their input places (see arc expressions $E^{-}(p,t')(b')$) or their inhibitor arcs disable the firing (see arc expressions $E^{h}(p,t')(b')$),
 \[\forall t', \pi(t') > \pi(t) : \exists p \in \bullet t' : \]
 \[E^{-}(p,t')(b') > M(p) \lor E^{h}(p,t')(b') \leq M(p) \]
 – Or their guards are not satisfied (not evaluated to true)
 \[\neg G(t')(b') \]
Firing in colored Petri nets

• Steps of firing:
 – Finding enabled bindings
 • Determined by incoming arc expressions and guards
 – Transition enabled with a given binding \(\rightarrow \) it can fire
 – Firing: removal of colored tokens from incoming places, adding colored tokens to outgoing places

\[
\forall p \in P : M'(p) = M(p) - \sum_{p \in \bullet t} E^-(p, t)\langle b \rangle + \sum_{p \in t \bullet} E^+(t, p)\langle b \rangle
\]

– Then \(M' \) directly reachable from \(M : M \ [(t, b) \rangle \ M' \)
Dynamic properties of colored Petri nets
Reachability graph (excerpt)

Sent, Received, Acknowledged
Dynamic properties of CPNs

• Extension of the uncolored Petri net properties to multisets

• Boundedness

 A place is bounded if the number of tokens in any state is bounded
 – n is an upper integer bound for p if $\forall M \in [M_0]: |M(p)| < n$
 – m is an upper multiset bound for p if $\forall M \in [M_0]: M(p) < m$

• Reversibility (home state)

 It is always possible to get back to a home state
 – M is a home state if $\forall M' \in [M_0]: M \in [M']$
 – X is a home group if $\forall M' \in [M_0]: X \cap [M'] \neq \emptyset$
Dynamic properties of CPNs

- **Liveness**

 Liveness guarantees that some of the binding items remain active

 - **Dead state (deadlock):** no binding item is enabled
 \[\forall b \in BE : \neg M[b] \]

 - **Dead transition:** none of its bindings may become enabled
 \[\forall M' \in [M], b \in B(t) : \neg M'[b] \]

 - **Live transition:** from each reachable state there is at least one trajectory starting where the transition is not dead (at least one binding will become active)
 \[\forall M' \in [M_0], \exists M'' \in [M'], \exists b \in B(t) : M''[b] \]
Dynamic properties of CPNs

• Fairness

 Fairness represents how often can a binding item fire

 – Impartial transition: fires infinitely often
 \[\forall b \in B(t), \quad |\sigma| = \infty : \quad OC_b(\sigma) = \infty \]

 – Fair transition: infinitely many enabling \(\Rightarrow \) infinitely many firing
 \[\forall b \in B(t), \quad |\sigma| = \infty : \quad EN_b(\sigma) = \infty \Rightarrow OC_b(\sigma) = \infty \]

 – Just transition: persistent enabling \(\Rightarrow \) firing
 (there is no persistent enabling without firing)
 \[\forall b \in B(t), \quad \forall i \geq 1 : \]
 \[\left[\text{EN}_{b,i}(\sigma) \neq 0 \Rightarrow \exists k \geq i : \left[\text{EN}_{b,k}(\sigma) = 0 \lor \text{OC}_{b,k}(\sigma) \neq 0 \right] \right] \]
Structural properties of colored Petri nets
T invariant in CPNs

- Transition invariant

A firing sequence σ that does not affect the state:

$$M'(p) = M(p) - \sum_{p \in t, b \in \sigma} E^-(p, t)\langle b \rangle + \sum_{p \in t, b \in \sigma} E^+(t, p)\langle b \rangle$$

where $M'(p) - M(p) = 0$ for all p

then $\sum_{p \in t, b \in \sigma} E^-(p, t)\langle b \rangle = \sum_{p \in t, b \in \sigma} E^+(t, p)\langle b \rangle$
P invariant in CPNs

- **Place invariant**

 Idea: Equation that is satisfied in every reachable state

 - Weighted token sum is constant:
 \[W_{p_1}(M(p_1)) + W_{p_2}(M(p_2)) + \ldots + W_{p_n}(M(p_n)) = m_{inv} \]

 - Weight function: maps the color sets of the places to a common multiset

 - \(W_p \) is a P invariant:
 \[\forall M \in [M_0]: \sum_{p \in P} W_p(M(p)) = \sum_{p \in P} W_p(M_0(p)) \]
Unfolding colored Petri nets
Possibilities to construct a CPN

• **CPNs: information in both structure and data**

• **Extremities**
 – Pure structural information, no data:
 • Uncolored (P/T) net (can be build as a CPN)
 – No structure, only data (data and control information):
 • 1 place + 1 transition, complex color sets and arc expressions

• **We need the golden mean**
 – To have a clean, readable CPN
Example: Modeling possibilities

Control flow expressed by the structure

The same in code ("folded")
Unfolding

- Expressivity of CPNs (with priorities) equals to the expressivity of uncoloured PNs with inhibitor edges (and with priorities)
 - Each CPN has a corresponding uncolored PN with equivalent behavior (in the automaton theoretical sense \rightarrow bisimulation for the steps)
 - Equivalent uncolored net: unfolded net
 - Unfolding:
 - Information of colored tokens is represented by the structure
 - Each event of the CPN has exactly one corresponding event in the unfolded net
Simple colored net

color A = with apple | pear;
color B = with red | yellow;
color C = with fresh | stale;
color BC = product B*C declare mult;
var x: A;
var y: B;
var z: C;
Unfolded, uncolored net

apple \quad p_1 \quad pear

red \quad p_2 \quad yellow

(red, fresh) \quad (yellow, fresh) \quad (red, stale) \quad (yellow, stale)
Example: A simple commit protocol

Problem description:

• The system consists of three components: c_1, c_2, és c_3
• One of them randomly becomes the coordinator which sends a request to the other two
• The response of another component is either an abort or commit vote
• Based on the vote of the two components the coordinator decides: the decision is commit if the two other components voted for commit, abort otherwise.
Example: Model of the simple commit protocol

- Three color sets are defined in the CPN model. Two of them are simple color sets:
 \[C = \{0, c_1, c_2, c_3\} \] representing components,
 \[D = \{\text{commit, abort}\} \] representing votes/decisions.
- One compound color set:
 \[M = C \times C \] for requests (originator and target);
 the \((0, x)\)-like token represents that the coordinator does not receive a request.
- Five variables are used, their types: \(x, y, z \in C \);
 and \(d_1, d_2 \in D \)
- The if in the arc expression has the common intuitive meaning (as in programming languages).
- In the initial state the place \(p_1 \) has 3 tokens:
 \[M(p_1) = c_1 + c_2 + c_3, \] the other places are empty.
- Empty set is denoted by \(\emptyset \)
Example: Model of the simple commit protocol

- **Colored Petri net model:**
 - p_1: Participants (tokens c_1, c_2, c_3 in initial state)
 - p_2: Requests
 - p_3: Votes
 - p_4: Decision
Example: Model of the simple commit protocol

- Partially unfolded (uncolored PN) model: c_1 is the coordinator
- Simple optimizations were done in the structure and events (firings)
Example: Model of the simple commit protocol

Similar nets needed for these parts too
Hierarchical colored Petri nets
Hierarchical colored Petri nets

- Integration of subnets into a complex CPN hierarchically
 - Pages: Colored Petri net models (subnets)
 - Page number, page name: alternatives to refer to the subnet
 - The pages can be instantiated (on any level of the hierarchy)
 - The marking (token distribution) is unique for each instance
 - Hierarchy: Structure of the pages
 - Main (prime) page: topmost level
 - Secondary page instances (subpages)
 - Identification: page-instance ID number
 - Page-hierarchy graph
Tools of hierarchical composition

1. **Coarse (substitute) transition**
 - Representation of a subpage
 - Interfaces between pages: places
 1. On main page: “Socket” places → insertion point of subnets
 2. On subpage: “Port” places → connection points of the subnet,
 port type: input, output, input-output (bidirectional), general

2. **Fusion places**
 - Places with same name, multiple instances,
 denoting the same place at different locations
 - Tokens are added / removed simultaneously
 to / from each instance
Example: hierarchical version of the simple protocol

```
color INT = int;
color DATA = string;
color INTxDATA = product INT*DATA;
color INTxINT = product INT * INT;
var n, k, n1, n2: INT;
var p, str: DATA;
val stop = "##########";

color Ten0 = int with 0..10;
color Ten1 = int with 1..10;
var s: Ten0; var r, r1, r2: Ten1;
fun Ok(s:Ten0, r:Ten1) = (r<s);
```
Example CPN:
Distributed database manager
Specification of the distributed database manager

- n different servers; local copy on each server, managed by a local database manager
 \[\text{DBM} = \{d_1, d_2, \ldots, d_n\}, \ n \geq 3 \]

- Database operations:
 - Modification of local data
 - Change notification of the other database managers which will update

- State of the system:
 - Active: handling the update is in progress
 - Passive: handling the update is finished

- States of database managers:
 - Inactive, Performing (updating), Waiting (for acknowledgement)

- Notification about changes: with messages
 - Message header: sender and receiver database manager
 \[\text{MES} = \{(s,r) \mid s,r \in \text{DBM} \land s \neq r\}, \quad \text{Mes}(s) = \sum_{r \in \text{DBM-\{s\}}} 1 \ `(s,r) \]
 - Message states: Unused, Sent, Received, Acknowledged
Distributed database: Declarations

Declaration field

val \(n = 4; \)
color \(DBM \) = index \(d \) with \(1..n; \)
color \(PR \) = product \(DBM \times DBM; \)
fun \(\text{diff}(x,y) = (x<>y); \)
color \(MES \) = subset \(PR \) by \(\text{diff}; \)
color \(E \) = with \(e; \)
fun \(\text{Mes}(s) = \text{mult}^\prime PR(1`s, DBM--1`s) \)
var \(s, r : DBM; \)

Meaning:

\[
\text{DBM} = \{d_1, d_2, \ldots, d_n\}
\]

\[
\text{MES} = \{(s, r) \mid s, r \in \text{DBM} \land s \neq r\}
\]

\[
\text{Mes}(s) = \sum_{r \in \text{DBM}-\{s\}} 1'(s, r)
\]

- **DBM:** database managers
- **PR:** DBM pairs
- **MES:** possible messages (headers)
- **Mes(s):** messages that can be sent by the DBM \(s \)
- **E:** simple token (uncolored)
Distributed database: System component

- System states denoted by a single token, initially ‘Passive’
Distributed database: Database managers

- DBMs are grouped by states, each group is represented by one place.
- Initially each DBM is inactive; later it can change or update.
Distributed database: Messages

- Places: message buffers
- A DBM sends notifications to the others; one from the set of possible messages
Distributed database: Complete CPN model

- Active and Passive places: only one DBM performs change at the same time, then waits
Particularities of the model

• **Causality**
 - Update and Send → Receive → Send Ack → Receive Ack

• **Conflict**
 - Update and Send enabled for each binding item s, but only one can fire

• **Concurrency**
 - Receive a Message for binding items (s,r) that are concurrent with themselves
Reachability graph for $n=3$

- **Occurrence graph**
- **Abbreviated transition names:**
 - **SM**: Update and Send Messages
 - **RM**: Receive a Message
 - **SA**: Send an Acknowledgment
 - **RA**: Receive all Acknowledgments
Dynamic properties: boundedness

<table>
<thead>
<tr>
<th>State</th>
<th>Multiset</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactive</td>
<td>DBM</td>
<td>n</td>
</tr>
<tr>
<td>Waiting</td>
<td>DBM</td>
<td>1</td>
</tr>
<tr>
<td>Performing</td>
<td>DBM</td>
<td>n - 1</td>
</tr>
<tr>
<td>Unused</td>
<td>MES</td>
<td>n*(n - 1)</td>
</tr>
<tr>
<td>Sent, Received, Acknowledged</td>
<td>MES</td>
<td>n - 1</td>
</tr>
<tr>
<td>Passive, Active</td>
<td>E</td>
<td>1</td>
</tr>
</tbody>
</table>
Dynamic properties: Liveness, fairness

• **Liveness Properties**
 – Dead markings: None
 – Dead transition instances: None
 – Live transition instances: All

• **Fairness Properties**
 – Impartial transition instances:
 • Update and Send Messages
 • Receive a Message
 • Send an Acknowledgment
 • Receive all Acknowledgments
 – Fair transition instances: None
 – Just transition instances: None

• Impartial transition: Fires infinitely often
• Fair transition: Infinitely many enabling → infinitely many firing
• Just transition: Persistent enabling → firing
Structural properties: P invariants

- $M(\text{Active}) + M(\text{Passive}) = 1' e$
- $M(\text{Inactive}) + M(\text{Waiting}) + M(\text{Performing}) = DBM$
- $M(\text{Unused}) + M(\text{Sent}) + M(\text{Received}) + M(\text{Acknowledged}) = MES$
- $M(\text{Performing}) - \text{Rec}(M(\text{Received})) = \emptyset$
 - Function Rec() for token mapping: $\text{Rec}(s,r) = r$
- $M(\text{Sent}) + M(\text{Received}) + M(\text{Acknowledged}) - \text{Mes}(M(\text{Waiting})) = \emptyset$
 - Function Mes() for token mapping: $\text{Mes}(s)$: the messages can be sent by DBM s
- $M(\text{Active}) - \text{Ign}(M(\text{Waiting})) = \emptyset$
 - Function Ign() turns tokens with any color into token with color $e \in E$
P invariant: the state of the system

\[M(\text{Active}) + M(\text{Passive}) = 1`e \]
P invariant: database managers

\[M(\text{Inactive}) + M(\text{Waiting}) + M(\text{Performing}) = DBM \]
P invariants: messaging subsystem

\[M(\text{Unused}) + M(\text{Sent}) + M(\text{Received}) + M(\text{Acknowledged}) = MES \]
P invariants of the model
One of the P invariants

\[M(\text{Sent}) + M(\text{Received}) + M(\text{Acknowledged}) - \text{Mes}(M(\text{Waiting})) = \emptyset \]
The complete CPN model (reminder)

- **Update and Send Messages**
- **Receive a Message**
- **Receive all Acknowledgments**
- **Send an Acknowledgment**
- **Acknowledged**

States:
- Active
- Passive
- Unused
- Inactive
- Waiting
- Performing

Transitions:
- **Sent**
- **Received**
- **DBM**

Symbols:
- s
- e
- r
- (s,r)

The complete CPN model (reminder)
Messaging unfolded for n=3