
 1/7

Formal Methods (VIMIM100) Year 2017/2018, semester II 13. March 2018.

First Mid-term Exam, Group A 1. 2. 3. 4. 5. 6. 

Name: ________________________________

NEPTUN code: ________________________ 10 points 6 points 8 points 6 points 12 points 8 points 50 points

1. Theoretical questions (10 points)

Statement True False Not decidable

Each transition in a Labeled Transition System (LTS) can

have only one action assigned.
X

If bounded model checking finds a counterexample for an

invariant property, it may be the case that it is not a

counterexample if we use unbounded (full) model checking.

 X

Changing the order of variables in an ROBDD will always

yield an ROBDD with the same size. X

{P/Q} {P/Q} {P} {Q}

e.g.: A(XX p) or E(X p  F q), because the path expressions may not be combined in CTL.

The incoming and outgoing transitions are executed as an atomic step, i.e., no other automaton can fire its

transition while the committed location is active.

1.1. For each of the following statements indicate (with an X) whether it is true, false or not

decidable.
3 points

1.2. Give a sequence of labeled states for which the properties G (P  Q) and XX (P U Q)

hold, but the property XX Q does not hold, using as few states as possible!
3 points

1.3. Give an example for a temporal logic expression that is syntactically valid in CTL* but

invalid in CTL. Explain why it is invalid in CTL!
2 points

1.4. Describe the behavior of committed states in timed automata (of UPPAAL)!

2 points

 2/7

2. Modeling formalisms (6 points) Please provide the solution on a new sheet!

The following figures show two timed automata (modeled in UPPAAL) that describe the states of the

controller of a cooler (Idle, Cooling or Finished) and the states of the water in a water tank (Empty,

Warm, Cold or Frozen). The automata use a single logical variable (bool frozen), and three channels

(chan refill, freeze, finished). The logical variable is initially false. Note that guards use “==” whereas

assignments use “=”.

2.1. Construct the Kripke structure corresponding to the whole system, i.e., reachable

combinations of the states of the controller and states of the water tank, including the

transitions! Label each combined state with the names of the states that it represents (you

can use the initial letters of the states)!

6 points

{Idle, Empty} {Idle, Warm} {Cooling, Cold}

{Finished, Frozen} {Cooling, Frozen}

3. Binary Decision Diagrams (8 points) Please provide the solution on a new sheet!

A Kripke structure is given in the left side of the figure, where the states are encoded in three bits using

the variables x, y, z (for example 010 corresponds to x=0, y=1, z=0).

000

001

010 100

110

x

z

01

01

0

y

10

1

3.1. Give the characteristic function for the initial state of the Kripke structure!

Give the characteristic function for the transitions outgoing from the initial state!
2 points

𝐶000 = ¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧

𝐶000→001 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∧ (¬𝑥′ ∧ ¬𝑦′ ∧ 𝑧′)
𝐶000→010 = (¬𝑥 ∧ ¬𝑦 ∧ ¬𝑧) ∧ (¬𝑥′ ∧ 𝑦′ ∧ ¬𝑧′)

 3/7

3.2. Draw the ROBDD representing the states of the Kripke structure! Use the following order

for the variables: x, y, z!
3 points

x

y

z

0 1

3.3. Give the ROBDD corresponding to the intersection of the states of the Kripke structure

(constructed in the previous task) and the states encoded by the ROBDD in the right-hand

side of the figure, using ROBDD operations! The variable order should remain x, y, z.

3 points

x

y

z

1 0

 4/7

4. CTL model checking (6 points) Please provide the solution on a new sheet!

Consider the following Kripke structure:

4.1. Check if the following CTL expression holds from the initial state using the iterative

labeling algorithm presented in the lectures: E ((p  q) U (AX q)).

For each iteration give the expression that is currently used for labeling and enumerate the

states that are labeled!

6 points

1. iteration: (labeling with p  q)

S, A, C, D

2. iteration: (labeling with AX q)

B, D

3. iteration: (labeling with E ((p  q) U (AX q)))

B, D (because of AX q)

A, C (first iteration backward, both predecessors of B or D and labeled with p  q)

S (second iteration backward, predecessor of A and labeled with p  q)

5. LTL requirement formalization (12 points) Please provide the solution on a new sheet!

On each day we record the status of the weather and our equipment to protect ourselves. The weather can

be sunny, windy or rainy. Our equipment can be an umbrella and/or a coat.

Use LTL expressions to formalize the following three requirements, which must apply to the behavior of

the system in every moment!

5.1. If the weather is rainy we will eventually take an umbrella or a coat with us. 2 points

G(rainy  F(umbrella  coat))

5.2. If the weather is rainy or windy we are taking our coat with us until the weather becomes

sunny.
2 points

G((rainy  windy)  (coat U sunny))

5.3. If the weather is sunny for three consecutive days, we are not bringing our umbrella on the

second day and we will not take an umbrella, neither a coat on the third day.
2 points

G((sunny  X sunny  XX sunny)  (X(umbrella)  XX (umbrella  coat)))

5.4. Use the tableau method to check if the requirement ¬(x U y) holds for the Kripke structure

below! Explain and document your solution! If the requirement does not hold, give a

counterexample based on the tableau!

6 points

Negated requirement: ¬(¬(x U y)) = x U y

Negated normal form: x U y

 5/7

s0 |- x U y

s0 |- y s0 |- x, X(x U y)

s2 |- x U y

s2 |- y s2 |- x, X(x U y)

s1 |- x U y

s1 |- y s1 |- x, X(x U y)

Counterexample:

s0 -> s2 -> s1

 6/7

6. UML statecharts (8 points)

Consider the following statechart, in which for all states sk there is also an entry action sk.entry and an exit

action sk.exit that is not displayed in the figure! The expressions on the arrows (transitions) have the

following form: transition_name: trigger [guard] / action.

s0

s3 s2 s1

s4s10

s11

s8

s13
t1: y[!a]/i

t2: x[a]/o t4: y[!a]/k

t3: x[a]/j

t11: y[a]/i

s5

t6: [!a]/i

y

s9

t7: [a]/i

s6 s7

t8: x/i

t9: y/j

t10: y/o

H*

t12: x/i

t13: y/j

s12
s14

t14: y[!a]/k

t15: y/o t16: x/i

t19: y/o

t17: y[!a]/i

t18: x/k

The statechart starts from the default initial state, the value of the logical variable “a” is “false”. The

incoming event is “y”.

6.1. Which transitions are enabled? 1 point

t1, t4, t6, t10, t17

6.2. Which enabled transitions are in conflict (cannot fire together)? 1 point

(t17, t1), (t17, t4), (t17, t6), (t17, t10), (t10, t6), (t1, t4)

6.3. What is the set of fireable transitions after resolving the conflicts? If there are multiple sets

of fireable transitions, give all sets!
1 point

{t1, t6}, {t4, t6}

6.4. What is (are) the next stable state configuration(s)? If there are more than one possible

stable state configurations give only one of them! Give the actions and their order during

firing the transition! Do not forget to include the entry and exit actions!

3 points

For {t1, t6}: Next: {s0, s3, s4, s8} Actions: (s2.exit, i, s3.entry) || (s6.exit, s5.exit, i, s8.entry)

For {t4, t6}: Next: {s0, s1, s4, s8} Actions: (s2.exit, i, s1.entry) || (s6.exit, s5.exit, i, s8.entry)

 7/7

6.5. The next incoming event is again “y”. Give the set of fireable transitions (after resolving

conflicts) and the next stable configuration! If there are more than one fireable sets and

next stable configurations, give all of them!

2 points

From {s0, s3, s4, s8}: Fireable: t14 Next: {s0, s3, s10, s12}

From {s0, s1, s4, s8}: Fireable: t14 Next: {s0, s1, s10, s12}

