
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Structure-based test design

David Honfi, Zoltan Micskei,
Istvan Majzik

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2

Test design techniques

3

Goal: Select test cases based on test objectives

Specification-based Structure-based

•SUT: black box
•Only spec. is known
•Testing specified

functionality

•SUT: white box
•Inner structure known
•Testing based on

internal behavior

STRUCTURE-BASED TESTING

4

What is “internal structure”?

 In case of models: structure of the model

5

A1

A2

A3A4

S

A5 E

S1

S2
S3

e1 / a1
e2[g] / a1

e0 / a0

S4

e1 / a2

e2

e1 / a2

e2[g1] / a2

S

What is “internal structure”?

 In case of models: structure of the model

 In case of code: structure of the code (CFG)

int a = 1;
while(a < 16) {

if(a < 10) {
a += 2 ;

} else {
a++;

}
}
a = a * 2;

Source code: Control-flow graph:

Coverage metrics

 What % of testable elements have been tested

 Testable element

o Specification-based: requirement, functionality…

o Structure-based: statement, decision…

 Coverage criterion: X % for Y coverage metric

 This is not fault coverage!

7

How to use coverage metrics?

Evaluation
(measure)

•Evaluate
quality of
existing tests

•Find missing
tests

Selection (goal)

•Design tests
to satisfy
criteria

8

CONTROL-FLOW CRITERIA

9

Learning outcomes

 Explain the differences between different control-
flow based coverage criteria (K2)

 Design tests using control-flow based coverage
criteria for imperative programs (K3)

10

Basic concepts

11

Statement

Block

Condition

Decision

Branch

int t = 1;

Speed s = SLOW;

if (! started){

start();

}

if (t > 10 && s == FAST){

brake();

} else {

accelerate();

}

12

Basic concepts

 Statement

 Block

o A sequence of one or more consecutive executable statements
containing no branches

 Condition

o Logical expression without logical operators (and, or…)

 Decision

o A logical expression consisting of one or more conditions
combined by logical operators

 Path

o A sequence of events, e.g., executable statements, of a
component typically from an entry point to an exit point.

Example: decision and condition

 A decision with one condition:

if (temp > 20) ǅƛǆ

 A decision with 3 conditions:
if (temp > 20 && (valveIsOpen || p == HIGH)) ǅƛǆ

13

Control Flow Graph (CFG)

 A CFG represents the flow of control

 G = (N, E)directed graph

o Node n ɴ N is a basic block

•Basic block: Sequence of statements with exactly one entry
and exit points.

o Edge e = (ni, nj) ɴ Eis a possible flow of control from
basic block ni to basic block nj

14

EXERCISE Building a CFG

15

public void insertionSort (int [] a) {

for (int i = 0; i < a.size (); i ++) {

int x = a[i];

int j = i - 1;

while (j >= 0 && a[j] > x) {

a[j+1] = a[j];

j = j Ƶ1;

}

a[j+1] = x;

}

System.out.println ("Finished.");

}

Build the CFG of
this program

code

16

1. Statement coverage

Number of statements executed during testing

Number of all statements

Statement coverage: 4/5 = 80%

A1

A2

A3A4

A5

Assessing statement coverage

17

k=0

k=1

m=1/k

[a>0]
[a<=0]

All statement is executed at least once

Does not guarantee coverage of empty branches

Statement coverage: 100%

BUT: [a<=0] branch missing!

18

2. Decision coverage

Outcomes of decisions taken during testing

Number of all possible outcomes

Decision coverage: 1/2 = 50%

A2

A3A4

How many outcomes can a decision have?

Assessing decision coverage

19

A2

A3A4

[safe(c) || safe(b)]

100% decision coverage:

All statement is executed at least once

Does not take into account all combinations of conditions!

All outcomes of decisions are covered

safe(c) safe(b)

1 T F

2 F F

safe(b) == True missing!

20

3. Condition coverage

Generic coverage metric for conditions:

Number of tested combinations of conditions

Number of aimed combinations of conditions

Definition (what conditions are aimed):
• Every condition must be set to true and false during testing

Other possible definition:
• Every condition is evaluated to both true and false

• Not the same as above due to lazy evaluation

Assessing condition coverage

21

Does not yield 100% decision coverage!

Every condition has taken all possible outcomes at least once

A2

A3A4

[safe(c) || safe(b)]

100% condition coverage:

safe(c) safe(b)

1 T F

2 F T

False outcome of decision missing!

4. Condition/Decision Coverage (C/DC)

22

Combination of condition and decision coverage

23

Assessing C/DC Coverage

A2

A3A4

[safe(c) || safe(b)]

Every decision has taken all possible outcomes at least once.

Every condition has taken all possible outcomes at least once

Does not take into account whether the condition has any effect!

100% C/DC coverage:

safe(c) safe(b)

1 T T

2 F F

24

5. Modified Condition/Decision Coverage (MC/DC)

 Each entry and exit point has been invoked at least once,

 every condition in a decision in the program has taken all
possible outcomes at least once,

 every decision in the program has taken all possible
outcomes at least once,

 each condition in a decision is shown to independently
affect the outcome of the decision.

A2

A3A4

[safe(c) || safe(b)]

100% MC/DC coverage:

safe(c) safe(b)

1 T F

2 F T

3 F F

25

6. Multiple Condition Coverage

Every combinations of conditions tried

 For n conditions 2n test cases may be necessary!

 (Bit less with lazy evaluation)

 Sometimes not practical, e.g. in avionics systems
there are programs with more than 30 conditions!

A2

A3A4

[safe(c) || safe(b)]

100% MCC coverage:

safe(c) safe(b)

1 F F

2 F T

3 T F

4 T T

26

Comparing control-flow criteria

Source: Kelly J. Hayhurst et al. „A Practical Tutorial on Modified Condition/Decision Coverage”, NASA/TM-2001-210876, 2001

27

Comparing control-flow criteria

Source: S. A. Vilkomirand J. P. Bowen, “From MC/DC to RC/DC: formalization and analysis of control-flow testing criteria,” Formal

Aspects of Computing, vol. 18, no. 1, pp. 42-62, 2006.

EXERCISE Specification-based test design

28

Product getProduct (String name, Category cat){

if (name == null || ! cat.isValid)

throw new IllegalArgumentException ();

Product p = ProductCache.getItem (name);

if (p == null){

p = DAL.getProduct (name, cat);

}

return p;

}

Design tests for
1. Statement
2. Decision
3. C/DC coverage

30

7. Basis path coverage

Number of independent paths traversed during testing

Number of all independent paths

A1

A2

A4A3

A5

A6

A8A7

A9

Tests
1. A1, A2, A3, A5, A6, A7, A9
2. A1, A2, A4, A5, A6, A8, A9

Statement coverage: ?
Decision coverage: ?
Path coverage: ?

Assessing full path coverage

 100% path coverage implies:

o 100% statement coverage, 100% decision coverage

o 100% multiple condition coverage is not implied

 Full path coverage is usually not practical
in case of loops

31

34

Additional coverage criteria

 Loop
o Executing loops 0, 1 or more times

 Race
o Executions from multiple threads on code

 …

Calculating coverage in practice

 Every tool uses different definitions

 Implementation

o Instrument source/byte code

o Adding instructions to count coverage

35

if (a > 10){
CoveredBranch (1 , true);
b = 3;

} else {
CoveredBranch (1, false);
b = 5;

}
send(b);

See also: Is bytecode instrumentation as good as source code instrumentation, 2013.

http://dx.doi.org/10.1109/ISSRE.2013.6698891

DATA-FLOW COVERAGE

36

Learning outcomes

 Summarize the basic ideas of data-flow coverage
criteria (K2)

37

38

Goal of data-flow coverage

 Idea:

o Track the assignment and usage of variables

o Label CFG with data-flow events

 Faults to detect:

o Erroneous assignments

o Effect of assignments

Labeling the control flow graph

 def(v): variable v is assigned in the given location

 use(v): variable v is used in the given location

o p-use(v): value of variable v is used in a condition

o c-use(v): value of variable v is used in a computation

39

EXERCISE Labeling variable def and use

40

x=a+2

z=x+y

y=24

if (x>12)

def x

c-use x

def y

c-use y def z

c-use a

x y z a

p-use x

Variable:

y=30 def y

Program paths

 Definition clear path for variable v

o v is not assigned in the nodes of the path

41

x=a+2

z=x+y

y=24

if (x>12)

y=30

Definition clear
path for x

Definition clear
path for y

42

Data-flow criteria

 All-defs:

o def v

o use v

use v use v use v

def vfor every v, for every def v:

at least one

def-free path

to one use-v

use v use v use v

def v All-uses:
o p-uses,

o c-uses

use v use v use v

def v All-paths:

43

Comparing structural coverage criteria

All-DU-Paths

All-Uses

All C-Uses / Some P-Uses

All-Defs

All-P-Uses / Some C-Uses

All-P-Uses

All-Edges

All-Nodes

Average projects do
not measure coverage

or aim only for
statement coverage

Standards for safety-
critical prescribe more

complex criteria

SUMMARY

44

Using test coverage criteria

 Can be used for:

o Find not tested parts of the program

oMeasure “completeness” of test suite

o Can be basis for exit criteria

o [Spoiler] Test generation (see lectures later)

 Cannot be used for:

o Finding/testing missing or not implemented
requirements

o Only indirectly connected to code quality

45

Using test coverage criteria

 Experience from Microsoft

o „Test suite with high code coverage and high assertion density is
a good indicator for code quality.”

o „Code coverage alone is generally not enough to ensure a good
quality of unit tests and should be used with care.”

o „The lack of code coverage to the contrary clearly indicates a
risk, as many behaviors are untested.”

(Source: „Parameterized Unit Testing with Microsoft Pex”)

 Related case studies:

o „Coverage Is Not Strongly Correlated with Test Suite
Effectiveness”, 2014. DOI: 10.1145/2568225.2568271

o „The Risks of Coverage-Directed Test Case Generation”, 2015.
DOI: 10.1109/TSE.2015.2421011

46

http://dx.doi.org/10.1145/2568225.2568271
http://dx.doi.org/10.1109/TSE.2015.2421011

