

D§niel Darvas (CERN / BME)

PLCverif:

Model checking PLC programs

Formal Methods course, BME

22/02/2017

Contains joint work with B. Fern§ndez Adiego, E. Blanco Vi¶uela,

S. Bliudze, J.O. Blech, J-C. Tournier, T. Bartha, A. Vºrºs, R. Speroni, I. Majzik

CERN European Org. for Nuclear Research

ī Largest particle physics laboratory

ī Accelerator complex, incl. Large Hadron Collider (LHC)
Å Proton beams with high energies

É CERN

PLCs

ī Programmable Logic Controllers:

robust industrial computers, specially

designed for process control tasks

ī 1000+ PLCs at CERN
Å Including many critical systems

É Siemens AG 2014,

All rights reserved

Cryogenics Vacuum Detector

control

PLC programming

ī 5 standard PLC programming languages
Å Base building block: function block

FUNCTION_BLOCK Test

 VAR_INPUT

 in1: Bool;

 END_VAR

 VAR_OUTPUT

 out1: Bool;

 END_VAR

BEGIN

 out1:= NOT in1;

END_FUNCTION_BLOCK

DATA_BLOCK inst Test

BEGIN

END_DATA_BLOCK

final class Test {

 public boolean in1 = false;

 public boolean out1 = false;

 public void execute (boolean in1) {

 this.in1 = in1;

 execute();

 }

 public void execute () {

 out1 = !in1;

 }

}

public Test inst = new Test();

Siemens SCL language òEquivalentò Java code

Test
in1 out1

inst

Motivation for formal verification

ī PLCs are often not safety-critical

but

ī Expensive equipment is operated by PLCs

ī Update of PLC programs difficult

ī The cost of downtime is high

É CERN

Using formal methods

ī Formal verification (model checking) may complement

testing to find more complex faults

but

ī Model checking has to be accessible to the PLC

developers

ī Required effort has to be in balance with the benefits
Å The method has to be adapted to the available knowledge

Å Formal details should be hidden

Å Recurring tasks should be automated or facilitated

Model checking of PLC programs

Challenges

ī Formal models
Å Creation of formal models require lots of effort and knowledge

ī Formal requirements
Å Formalizing requirements in e.g. CTL/LTL is difficult, they are

inconvenient and ambiguous without strong knowledge

ī Model size and model checking performance
Å ñNaµve modellingò often leads to complex, large models

requiring excessive resources to verify;

Å Optimization of models is difficult and tedious

ī Model checker development
Å CERN is not a computer science research centre, development

of a custom model checker would need to much effort

Can we use external tools?

ī General-purpose formal modelling and verification

tools (e.g. UPPAAL, NuSMV)
Å Usage is too difficult for control engineers

Å Too much repetitive tasks in modelling

ī Software model checkers (e.g. CBMC)
Å PLCs use special programming languages and execution

scheme

ī PLC-specific model checkers
Å No industrial solution yet

Å Some academic tools (e.g. Arcade.PLC)

Formal modelling

ī Formal models (~automata) automatically generated

from the source code of the PLC programs (via AST)

IF c > 100 THEN

 s1;

ELSE

 s2;

END_IF;

s0

s2 s1

[c>100] [NOT c>100]

Formalizing the requirements

ī Use of CTL/LTL is too difficult for most control engineers

ī Typical requirements were captured

as textual requirement patterns
Å Placeholders to be filled by the users (using simple expressions)

If Ŭ and ɓ are true, then Ŭ shall stay true until ɓ

becomes true.

═╖♪ ♫᷈ ᴼ═♪ ╤ ♫

Model size and performance

ī Size of the generated formal model is often huge,

verification often impossible (memory bottleneck)

ī Automated reductions reduce the resource needs

Å General-purpose, structural reductions

Å Domain-specific reductions

Å Exploit the extra knowledge about the domain, the execution

schema, etc.

Å Requirement-specific reductions

Å Removes the parts of the model which do not influence the

satisfaction of the current requirement

External model checkers

ī Development of a custom model checker would need

excessive effort

ī Instead, we reuse (wrap) existing general-purpose

model checkers as generic verification engines
Å UPPAAL

Å NuSMV / nuXmv

Å ITS

Å é

ī Input (model+requirement) mapping +

Output (counterexample) mapping needed

Intermediate model

ī Simple, automata-based formalism

ī Describes the behaviour of the PLC program

ī Advantages:
Å Helps to use model reductions (on the IM)

Å Helps to use various model checkers with different syntaxes

Å Simplifies (decouples) the PLC program Ą Model checker

model transformation, thus reduces the risk of faults

PLC

program

Intermediate

model

Formal model of

model checker

More info: B. Fern§ndez et al. Bringing automated model checking to PLC program development - A CERN case

study. In Proc. WODES 2014, pp. 394-399. IFAC, 2014. doi: 10.3182/20140514-3-FR-4046.00051

Overview of the workflow

Intermediate

model

Formal

requirement

Model

checker

Satisfied Not satisfied

Counter-

example V

PLC

program

Requirement

patterns

Verification

report

Reductions

Based on the

implementation

User-friendly requiremôt

specification

Heavily automated

reductions

Replaceable external

model checker

Self-contained report

with counterexample

Overview of the workflow

Intermediate

model

Formal

requirement

Model

checker

Satisfied Not satisfied

Counter-

example V

PLC

program

Requirement

patterns

Verification

report

Reductions

Based on the

implementation

User-friendly requiremôt

specification

Heavily automated

reductions

Replaceable external

model checker

Self-contained report

with counterexample

PLC-specific

verification tool

Tool hiding the

formal details

More info: B. Fern§ndez et al. Bringing automated model checking to PLC program development - A CERN case

study. In Proc. WODES 2014, pp. 394-399. IFAC, 2014. doi: 10.3182/20140514-3-FR-4046.00051

The PLCverif tool

Eclipse-based editor for PLC programs

The PLCverif tool

Defining verification cases (requirement, fine-tuning, etc.)

No model checker-related things or temporal logic expressions

The PLCverif tool

Click-button verification, verification report with the

analysed counterexample

Example verification metrics

Source

code lines

Unreduced

model

Reduced

model

Verification

time (NuSMV)

(1) 12 24 24 0.04 s

(2) 1000 3.8 Ĭ 10242 2.2 Ĭ 108 0.24 s

(3) 1000 3.8 Ĭ 10242 5.8 Ĭ 106 0.23 s

(4) 17,700 1032446 7.9 Ĭ 1035 21.7 s

(5) 10,000 10978 1.6 Ĭ 1084 ~7 min

Verification times measured on: Intel i7-3770, 8 GB RAM, Win 7 x64, Java 8

 NuSMV 2.6.0 (physical PC)

Each line represents the verification of a PLC program with a specific requirement.

Scaling

ī Providing acceptable performance is a continuous

challenge

ī However, many successful industrial applications,

e.g.:

Å Module library of CERNôs in-house PLC framework (UNICOS)

Å ~1000 lines of code

Å Unreduced potential state space: up to ~10250

Å Verification time: typically in the range of seconds

Å Safety logic of magnet testing facility (see later)

Å ~10,000 lines of code

Å Unreduced potential state space: up to ~101000

Å Verification time: in the range of 1..10 minutes

Case study:

SM18 magnet testing facility

SM18 PLCSE safety controllers

Goal: ensuring safety by allowing/forbidding tests

Core:

É CERN

Safety-critical,

can be dangerous:

14 kA, liquid He,

ï271ÁC, vacuum

More info: D. Darvas, I. Majzik, E. Blanco. Formal verification of safety PLC based control software.

In Integrated Formal Methods, LNCS 9681, pp. 508-522. Springer, 2016. doi: 10.1007/978-3-319-33693-0_32

