

D§ni el (CERNV BME)

PLCverif:
Model checking PLC programs

Formal Methods course, BME
22/02/2017

Contains joint work with B, Fern8§ndez Adiego, E. Bl anco V
S. Bliudze, J.O. Blech, J-C. Tournier, T. Bartha, A. V ° r © sSperoRi, |. Majzik

cﬁw
\

Nyl

CERN European Org. for Nuclear Research

1 Largest particle physics laboratory

1 Accelerator complex, incl. Large Hadron Collider (LHC)
A Proton beams with high energies

PLCs

| Programmable Logic Controllers:
robust industrial computers, specially
designed for process control tasks

1 1000+ PLCs at CERN

A Including many critical systems

Fed - \

Cryogenics Vacuum Detector

’}I control

sews

2

X|2
315-2AH14-0AR0 a‘h

E Si e me20%4, /
All rights reserved

PLC programming

1 5 standard PLC programming languages
A Base building block: function block

Siemens SCL language O Equi voa |l Jeante
FUNCTION BLOCK Test final class Test {
VAR_INPUT : public boolean inl = false;
inl: Bool; , nst public boolean outl = false;
’ inl outl ’
END VAR —’> Test
VAR_OUTPUT public void execute (boolean inl) {
outl: Bool; I this.inl = in1;
END VAR » execute();
BEGIN }
outl:= NOT in1; public void execute () {
END FUNCTION BLOCK outl = linl;
}
DATA BLOCK inst Test }
BEGIN
END DATA BLOCK public Test inst = new Test();

CE/RW
\

N g

Motivation for formal verification

CE/RW
\

N g

PLCs are often not safety-critical
but
Expensive equipment is operated by PLCs

Update of PLC programs difficult
The cost of downtime is high

Using formal methods

1 Formal verification (model checking) may complement
testing to find more complex faults

but

Model checking has to be accessible to the PLC
developers

Required effort has to be in balance with the benefits
A The method has to be adapted to the available knowledge
A Formal details should be hidden

A Recurring tasks should be automated or facilitated

CE/RW
\

N

Model checking of PLC programs

Challenges

T Formal models
A Creation of formal models require lots of effort and knowledge

Formal requirements
A Formalizing requirements in e.qg. CTL/LTL is difficult, they are
Inconvenient and ambiguous without strong knowledge

I Model size and model checking performance
A - ANapve modellingo often | eads t
requiring excessive resources to verify;
A Optimization of models is difficult and tedious

Model checker development
A CERN is not a computer science research centre, development
of a custom model checker would need to much effort

CE/RW
\

N

Can we use external tools?

General-purpose formal modelling and verification

tools (e.g. UPPAAL, NUSMV)

A Usage is too difficult for control engineers
A Too much repetitive tasks in modelling

Software model checkers (e.g. CBMC)
A PLCs use special programming languages and execution
scheme

PLC-specific model checkers
A No industrial solution yet
A Some academic tools (e.g. Arcade.PLC)

CE/RW
\

Nyl

Formal modelling

I Formal models (~automata) automatically generated
from the source code of the PLC programs (via AST)

IF ¢ > 100 THEN sO
si;

ELSE ‘ [c>100] [NOT ¢>100]
S2;

END IF; <1 -

CE/RW
\

N g

Formalizing the requirements

1 Use of CTL/LTL is too difficult for most control engineers

1 Typical requirements were captured

as textual requirement patterns
A Placeholders to be filled by the users (using simple expressions)

If Uand b are true, then U shall stay true until b
becomes true.

=T((Jv“ MO == 5]

CE/RW
\

N g

Model size and performance

1 Size of the generated formal model is often huge,
verification often impossible (memory bottleneck)

I Automated reductions reduce the resource needs
A General-purpose, structural reductions

A Domain-specific reductions

A Exploit the extra knowledge about the domain, the execution
schema, etc.

A Requirement-specific reductions

A Removes the parts of the model which do not influence the
satisfaction of the current requirement

CE/RW
\

N

External model checkers

| Development of a custom model checker would need
excessive effort

| Instead, we reuse (wrap) existing general-purpose

model checkers as generic verification engines
A UPPAAL

A NuSMV / nuXmv

A ITS

A é

Input (model+requirement) mapping +
Output (counterexample) mapping needed

CE/RW
\

N

Intermediate model

Simple, automata-based formalism
Describes the behaviour of the PLC program

PLC Intermediate Formal model of

program model model checker

Advantages:

A Helps to use model reductions (on the IM)

A Helps to use various model checkers with different syntaxes

A Simplifies (decouples) the PLC program A Model checker
model transformation, thus reduces the risk of faults

CE/RW
\

N g

Overview of the workflow

Based on the
Implementation

PLC

program User-friendlyr e qui r e

_ specification
C Intermediate Formal
model requirfment Heavily automated
Reductions reductions
Model Replaceable external
1 checker | model checker
Satisfied/\NOt satisfied Self-contained report
with counterexample
\V} Counter-
example
Verification
report
C\E/RW More info: B . F e r n § nBriegmg aitbmated model checking to PLC program development - A CERN case

S study. In Proc. WODES 2014, pp. 394-399. IFAC, 2014. doi: 10.3182/20140514-3-FR-4046.00051

Overview of the workflow

PLC
program

Requirement

patterns

[Project Explorer =8 DemoSource.sc B Verifi

LI Verification case

Name:

Took | NuSMV

ication Case (Demo001) 32

aaaaaaaaaaaa

= | | Refresh variables

oooooooooooooooooooo

Verification

More info: B .

report

Based on the
Implementation

User-friendlyr equi r e
specification

Heavily automated
reductions

Replaceable external
model checker

Self-contained report
with counterexample

Tool hiding the
formal details

F e r n § nBriegmg aitbmated model checking to PLC program development - A CERN case
study. In Proc. WODES 2014, pp. 394-399. IFAC, 2014. doi: 10.3182/20140514-3-FR-4046.00051

The PLCverif tool

B -

[Project Explorer = 8 & DemoSourcescl 52 = 0] Varigbles §= Outline 32 = 8
BE ~ = FUNCTION_BLOCK - o Hide nen-structural elements <==={> 13
PR=- DemoProject - vm—:“ml__ 4 = DemoSource
i DemoSource.scl b : B0OL; 4 U= [function_block] AndGate
Bl DemoVerifCasevc END_VAR 4 = <unnamed=
UNICOS5_base.tet e VAR_QUTPUT = Variable declarations
€ : BOOL; » E= Variable declarations

i = Statement list

€ :=aORb; // 0Ohno, a bug! This is an "AND-gate”, thus it should be AND here!
END_FUNCTION_BLOCK

7~

The PLCverif tool

-
B PLCverif [E=EE
Settings Help
B of
[Project Explorer = O DemoSource.sc & Verification Case (Demo001) 52 = 0 [Variables 5= Outline = O
. a8 Verification case Variables
4 == DemoProject
&l DemoSource.scl - General Filter:
& DemoVerifCasewc General information about the current verification case. Describe here the name of the case and explain its motivation. -
UNICOS_base.bt Wariable name
1D Demo001 .
instance.a
Mame: If Ais false, C cannot be true, instance.b
If A is false, C cannot be true, As this function block models an AND-gate, if any of the inputs (A or B is instance.c
false, the output should be false too.
Description: | The requirement is based on the documentation of the function block and the following Jira case:
https://icecontrols.its.cern.ch/jira/browse/UCPC-1111
Source code: | DemoSource.scl ~ | | Refresh variables
» Requirement
» Advanced configuration
Verification
The verification can be started in this section. Also, the result can be seen here.
Tool: MuSMV =
[P
[*] Dioblemns 52 = = 5
0 items

tion

Defining verification cases

(requirement, fine-tuning, etc.)

No model checker-related things or temporal logic expressions

CE/RW
\

N g

The PLCverif tool

PLCverif — Verification report

Generated at Mon Jul 07 15:18:22 CEST 2014 | PLCverif v2.0.1 | (C) CERN EN-ICE-FPLC | Showhide expert details

ID: Demo001
Name: If Ais false, C cannot be true.

Description: |If A is false, C cannot be true. As this function block models an AND-gate, if any of the inputs (A or B) is false,
the output should be false too.

The requirement is based on the documentation of the function block and the following Jira case:
https-/ficecontrols its cern chfjira/browse/UCPC-1111

Source file: |DemoSource.scl

Requirement:| 3. A = false & C = true is impossible at the end of the PLC cycle.

Tool: nusmv
Total runtime (until getting the verification results): 212 ms
Total runtime {incl. visualization): 361 ms

Counterexample
. End of
Variable Cycle 1
Input |a FALSE
Input |b TRUE
Output | € TRUE

Click-button verification, verification report with the
analysed counterexample

CE/RW
\

N g

Example verification metrics

Each line represents the verification of a PLC program with a specific requirement.

Source Unreduced Reduced Verification
code lines model model time (NuSMV)

0.04 s
(2) 1000 3.81 10242 227 108 0.24 s
(3) 1000 3.81 10242 587 106 0.23s
(4) 17,700 1032446 7.91 10% 21.7 s
(5) 10,000 10978 1.61 1084 ~7 min

CE/RW Verification times measured on: Intel 17-3770, 8 GB RAM, Win 7 x64, Java 8
P NuSMV 2.6.0 (physical PC)

Scaling

| Providing acceptable performance is a continuous
challenge

| However, many successful industrial applications,
e.g..

A Modulelibraryo f C E R-Noaise PliCriramework (UNICOS)
A ~1000 lines of code
A Unreduced potential state space: up to ~102°0
A Verification time: typically in the range of seconds

A Safety logic of magnet testing facility (see later)
A ~10,000 lines of code
A Unreduced potential state space: up to ~101090
A Verification time: in the range of 1..10 minutes

CE/RW
\

N

Case study:
SM18 magnet testing facility

N7

SM18 PLCSE safety controllers

: : o Safety-critical,
Goal: ensuring safety by allowing/forbiddir| ¢an pe dangerous:

Core: 14 kA, liquid He,
i 271AC, vacuum

D

C\'ﬁw More info: D. Darvas, I. Majzik, E. Blanco. Formal verification of safety PLC based control software.
s In Integrated Formal Methods, LNCS 9681, pp. 508-522. Springer, 2016. doi: 10.1007/978-3-319-33693-0_32

