Detailing Use Cases
Scenarios and Workflows

UML based modeling and analysis
Dániel Varró

Scenarios
Content of a UC: Scenarios

• Main success scenario (MSS):
 sequence of numbered steps
 – A step: an interaction between an actor and the system
 • Simple statement stating who carries out the step
 • Intent of the actor and not how it is done on the GUI

• Extensions: Other scenarios (successes or failures)
 – A condition: when should we deter from the MSS?
 – Differences: what should be different?
 – Questions to ask:
 • How could MSS go differently?
 • What could MSS go wrong?

Scenarios (cont.)

• Precondition: what should be ensured before the system allows the UC to begin
• Guarantee: what the system will ensure at the end of the UC
• Trigger: specifies the event that forces to UC started
Example Scenario: Register User

- **Main success scenario:**
 1. User types a user name of his or her choice
 2. User types a password
 3. User retypes the password
 4. System checks if the user name is not already in use
 5. System checks if the two passwords are identical
 6. System registers the new player with the given parameters (user name, password)
Example Scenario: Register User

- **Extensions:**
 4a. User name is already in use
 1. User is requested to select another user name and password
 5a. The two passwords are different
 1. User is requested to retype (twice) his/her password

- **Trigger:** User selects the "Register User" link
- **Precondition:** User is not logged in
- **Guarantee:** User becomes a registered player

Example Scenario: Login User

- **Trigger:** User selects the "Login" link
- **Precondition:** The user is not yet logged in
- **Guarantee:** The user can access the main menu of the championship manager system in a new session

- **Main success scenario:**
 1. User types his/her user name
 2. User types his/her password
 3. System checks if the given login parameters are valid
 4. System creates a new session for the user

- **Extensions:**
 3a User provides invalid login parameters
 (see Login Failed)
Example Scenario: Login Failed

• Login Failed:
 – Precondition: The User provides invalid login parameters
 • Precondition should be identical with the condition of the extension point
 – Main success scenario:
 1. System redirects the User to the Login page

• Login without Registration:
 – Precondition: The User typed a non-registered user name
 • Precondition should refine the precondition of Login Failed
 – Main success scenario:
 1. System redirects the User to the Login page
 2. System informs the User that he/she typed a non-registered user name

Question:
How could one capture scenarios more precisely?

Solution:
Use UML Activity / Sequence diagrams in a semi-formal way
Organization of Use Case Models

- Actors Package
- Use Cases Package
 - User Management Package
 - Login User Use Case
 - Login User Activity
 » Login User Activity Diagram
 - Register User Use Case
 - Register User Activity
 » Login User Activity Diagram
 - Game Management Package
 - Championship Management Package

UML 2.0 Activity Diagrams
UML: Activity diagram

- **Aim:**
 - *Description of business workflows* (as in HW)
 - High-level description of UC scenarios
 - Detailed description of dynamic behavior
 - Methods
 - Actions of statecharts
- **Two levels of abstraction**
 - Action (akció): atomic operation
 - Activity (aktivitás): high-level grouping of actions
- **Combined control and data flow model**
 - Semantics = dataflow networks

Activity diagram

- **Graph model:**
 - Activity nodes:
 - Object (objektum)
 - Action (akció)
 - Control (vezérlés)
 - decision, merge (döntés)
 - fork, join (párh. tevékenység)
 - initial (kezdőpont)
 - final (végpont – minden út)
 - flow final (token nyelő – egy út)
 - Activity edges: flow
 - Data/object (Adatfolyam)
 - Control (Vezérlési folyam)
Example: Process Order

Process Order
Requested Order: Order [order rejected]

Receive Order [order accepted]
Fill Order
Ship Order

Send Invoice
Make Payment
Accept Payment
Close Order

Invoice

Parameter
Initial node
Activity
Control flow
Decision
Data flow
Final node
Action
Object
Fork
Join
Merge

<pre>Order complete
post> Order closed
Order complete
post> Order closed

[order accepted]
[order rejected]
Example: Process Order II.

Data flow and Control flow

- **Data Flow**: data token
 - Object node ⇒ Action node
 - An object node is a channel / queue
 - An object may be linked to multiple action nodes
 - Output actions are competing for the data token (i.e. the object)
 - Type conformance: object type < input type of action

- **Control flow**: control token
 (ordering constraint between two actions)
 - All predecessor actions should be terminated prior to starting the current action
 - The current action should terminate prior to starting any of the successor actions

If one thread terminates, the other may continue
Semantics: Dataflow Networks

- **Tokens:**
 - control + several data

- **Channel:** object node
 - Stores the tokens

- **Node:** action node
 - Processing tokens

- **Edges:**
 - Flow of tokens
 - weights: how many tokens are in the flow at a time?

- **Firing rule:**
 - Behaviour of a node

Semantics: Dataflow Networks

- **Firing rule (cont.):**
 - precondition:
 - input tokens + curr. state
 - postcondition
 - output tokens + new state
Semantics: Dataflow Networks

- Firing rule (cont.):
 - precondition:
 - input tokens + curr. state
 - postcondition
 - output tokens + new state
- Execution of a firing:
 - Is there token on all inputs
 - Right amount?
 - Right type?
 - Execution of action
Semantics: Dataflow Networks

- **Firing rule (cont.):**
 - precondition:
 - input tokens + curr. state
 - postcondition
 - output tokens + new state

- **Execution of a firing:**
 - Is there token on all inputs with
 - Right amount?
 - Right type?
 - Execution of action
 - Sending the output tokens

Example: Process Order

- **Process Order**
 - Requested Order: Order
 - <pre> Order complete
 - <post> Order closed

- **Requested Order**
 - Receive Order
 - Fill Order
 - Ship Order
 - Send Invoice
 - Make Payment
 - Accept Payment
 - Close Order

- **Invoice**
 - Order accepted
 - Order rejected
Example: Process Order

Receive Order
Fill Order
Ship Order
Make Payment
Accept Payment
Close Order
Send Invoice
Invoice

Requested Order: Order
Order complete
Order closed
Order accepted
Order rejected
Example: Process Order

Process Order
Requested Order: Order
[order rejected]

Receive Order
Fill Order

Ship Order

Send Invoice
Make Payment
Accept Payment

Close Order

Invoice

[order accepted]

<pre> Order complete
<post> Order closed

Example: Process Order

Process Order
Requested Order: Order
[order rejected]

Receive Order
Fill Order

Ship Order

Send Invoice
Make Payment
Accept Payment

Close Order

Invoice

[order accepted]

<pre> Order complete
<post> Order closed

Example: Process Order
Example: Process Order
Example: Process Order

Process Order
Requested Order: Order
[order rejected]

Receive Order → Fill Order → Ship Order
[order accepted]

Send Invoice → Make Payment → Accept Payment

Invoice

Closed Order
Example: Process Order

Partitioning of Activities
Example: Workflow of Paper review
Business Objects

Lifecycle of Business Objects