The Service Development Environment (SDE)

Version 4.4

Executive Summary

This document describesetBerviceDevelopment Environment, whidh intended to support the development
of ServiceOriented Software by integrating various toalsrossdevelopment, analysis, and deployment of
serviceoriented software systems.

In this document, the current state of the Development Environment is reported, along with hints and tutorials
for using the Development Environment as well as creating new fimokhis platform, and recommended
future steps.

Contents
1 About the Development ENVIFONMENL..........uuiiiiiiiiiiiereeie e e e 2
11 Aim of the Development ENVIFONMENL............ccuiiiiiiii e 2
1.2 HIGN-LEVEI OVEIVIEW.. ...ttt ee e s e e e e e e e e e e e e e e e e e e e ameneeneees 2
1.3 BasicConcepts of the Development ENVIFONMENL...........c..uvviiiiiiieeneeee e 3
2 Installing the Development ENVIFONMENT.........coooiiiiiiiiiiiiiieeeieeee e 5
2.1 T To 0T (=T 4= €=U OUOPUPPNS 5
2.2 T TSI =11 T o TR L= 10T] 5
N R O 1 =T 1= 5
2.2.2 Detalled StEPS... ..o e 6
K O 1= 1 o [PP EERRT 9
3.1 1o T 11X (o o P 9
3.2 SDE PEISPECTIVE. ...ttt e e e e e e e e e enenes e e as 10
3.3 Using the Generic Wizard Ul and the Blackboard....................cc e, 11
3.4 Using the Orchestration FUNCHONAILY...........cociiiiiiiieenriieee e 15
3.4.1 Orchestrating with the Shell............ccoeii 15
G B U S T o IR BT o] o] 1= TP 16
3.4.3 Graphical OrchestratiQn.........ccccoeeiiiiiiiiiicee e e e e e e e e ens 18
3.5 (O U110 .4 10 o o I] 22
A DEVEIOPEIS GUITE. .. . uuueueiiieeii i i s s emr e et ettt ettt e e e eeee s et s e reseesaeaeaeeeaaaaaaaaaaaesanassessssnneennennnes 23
4.1 Development Environment ArchiteCtute...........ooovviiiiiiii e 23
4.1.1 Core EXtENSION POIML..........ooiiiiiiiiiiee e ceeee e e s e ee s nenes 24
A.1.2 0T AP L. e et —————— e aaeeae 24
4.2 (O Y- 111 T N 1o Yo U RRSUTUPRTRRRRRRIN 25
4.2.1 Walkthrough for an Example TOOL........cooo i 26
4.2.2 Adding Model HANAINGcveiiiiiiiiiiiiii e nesi e e e 34
G I Ao V7= Vg (o7 =T o I o o[USRS 35
5 Where to GO frOM HEIE... ..ottt eeeeenene e e es 37
5.1 Publishing YOUr OWN TOOIS............uuuiiiiiiiieii et meee s 37
5.2 Bug Reporting and Enhancement REQUESLS..............oooiiiiieecvininnii e 37
LS o= 1T €= o o7 U SPUUUURPRSRPRPR 38
6.1 o [E TSP PPPPPRRPPPP 38

6.2 T 012 39

Service Development Environment (SDE) 10/2010

1 About the Development Environment

The Service Deelopment Environmeris intended to support the development of Ser@ciented Software
by integrating toolscrosshe development, analysis, and deployment ofiseioriented software systems.

1.1 Aim of the Development Environment

The main aim of theSewice Development Environmeris to provide a serviceoriented platform for
development tool integration On this platform,

e tools are services, and provide arbitrary functionality
e tools can be used s, or combined using orchestration mechanisms
e tools can be published and discovered

By integrating them into th8erviceDevelopment Environmentools become available to a broader user range
and in a larger context, and are thus more usable by developers.

In the view of theServiceDevelopment Envonment, thdools eactconsist of functions, which can be invoked
in the Development Environmenwith or without User Interface I). The Ul is not necessarily tied to a
specific function, but can also be provided in a cffasstion way. Tools areasyto write, add, and remove.
Accessing remote or legacy applications is possible.

To enable composition, tools are intended to providégplication Programming InterfacéAPI) allowing
tool orchestration with arbitrary orchestration languagredudedwithin the SDE is a graphical orchestration
with datadriven activity diagrams and a JavaScript orchestrator.

1.2 High-Level Overview

As a tool for developing, analyzing, and deploying sereiiented software systems, thi@evelopment
Environmentmust featue an IDElike Ul, while at the same time keeping requirements for tool builders low as
not to hinder integration of such tools. To allow this, $evice Development Environmeistitself built in a
serviceoriented way on top of th©SGi platform. The gaphical part of théevelopment Environmerdand
contributed tool$ if availablei is built on Eclipse technology.

This architecture is laid out in Figure 1.

Service Development Environment (SDE) 10/2010

Eclipse ul ul ul ul
Some Tool Java Wrap Native Wrap
Bundle Bundle Bundle
OSGl

Sensoria Core

v

Equinox Bundles

Java Java tool

Native (OS) Native tool

Figurel: Service Development Environmeatchitecture

As can be seen in the figure, tBevelopment Environmerdore and the tools are based ©8Gionly (or,

more specifically, the Equinox implementation ©5G). Tools may use existing Java implementations or
native code as they wislBeing orly based on OSGi, they can be invoked completely independently from
Eclipse.If they additionallychoose to provide a Ul, this Ul is integrated into and based on the Eclipse platform,
as is the Ul for th&DE coreitself.

1.3 Basic Concepts of the DevelopmetiEnvironment

As outlined above, the Development Environment provides an environment for using and orchestiksting
The tools themselves are provided by varioognufacturersand in general must be installed separately;
however, some are already distried with the Development Environment as examples.

The basic functionality of the core is as threefold:

e |t provides access to all the registered tools by an API (which can be seen as a basic discovery service)
and by a Ul. The API allows retrieving tooladed on their ID or name and is intended to be used
from within Java, while the Ul allows graphical browsing of registered tools directly for the end user.

e |t provides access to the tool functions by API and by Ul as well. The API allows calling arbitrary
functions on the registered tools from within Java, while the user interface provides a generic Ul for
executing these functions, storing the results, andigg results as input for other functions.

e |t provides an orchestration mechanism us#&)gactivty diagrams and b) JavaScrigising such
orchestrationsthe API discussed in the previous two points can be accessed and tools can be
orchestrated in a simple way.

For most tools, integration into ti&ervice Development Environmestonly one way of mviding users with

access to their functionality. Thus, t8ervice Development Environmeortly imposes a minimum number of
requirements on tool writers. In particular, tools can be used in any of the following three ways by the user in
the Development Brironment:

e By using the generic wizards outlined above.

e By entering commands in a manual orchestrator likeStDE Shell.

Service Development Environment (SDE) 10/2010

e By using Uls provided by the tools themselves, which are independent of the Development
Environment UL.

Besides simply using their fationality, tools can also be orchestrated with partial help from the platform. This
can be achieved by different means as well. In particular, the following scenarios are envisioned:

e Orchestration using the built shell

e Orchestration using Java, i.e.thin other tools

e Orchestration by using JavaScrhmsed tools

e Orchestration by using the graphical orchestration inside SDE

Tools to be used as part of the Development Environment must be implemented as OSGi bundles and contain a
declarative descriptionfaheir functionality but are otherwise unlimited in their implementation. In particular,

e tools may be written in Java and may consist of an arbitrary number of libraries, other Eclipse plug
ins, or external code

e tools may also wrap native code, therg@bgviding an interface to nedava software

e tools may include functionality for calling remove services, thereby providing the link to Web services

Service Development Environment (SDE) 10/2010

2 Installing the Development Environment

As the Development Environmerfeatures both a®SGiand an (Eclipg)-Ul component, the recommended
way is to install it onto the Eclipse platform, which will be detailed here.

2.1 Requirements

TheDevelopment Environmeiig built on cuttingedge technology. It requires two components to be installed:

e JavaJDK 1.6. Former versions, including 1.5, will NOT work as thevelopment Environmenitses
the Java 6 Scripting Enginélote that you will need the JDK, not only the JREe JDK can be
downloaded fronhttp://java.sun.com/javase/downloads/index.jsp

e Eclipse version 34. The newestversion of Eclipse 3.4X can be downloaded from
http://download.eclipse.org/eclipse/downloads/

It is recommendethat the Java VM to use is explicitly specified when running Eclipse. This is achieved with
the -vm command line argument (for examplem cljre\bin\javaw.exe). Withoutvm, Eclipse will use the

first Java VM found on the O/S pathAlso, within Eclipse the right JDK must be selected in the preferences
before starting a Runtime Workbench.

The Java JDK 1.6 must be selected in Eclipse (Window > Preferences > Java > Installed JREs...) as the default.

2.2 Installing the Tool
2.2.1 Overview

Once Eclipse has been ialieéd, theDevelopment Environmemore and manyools can be installed via update
sites. The main update site for thevelopment Environmemore is

http://sv n.pst.ifi.imu.de/update/s de/

This update siteontains two features:
e The core itself
e Thedevelopment feature which eases development of$iBftools

If you are familiar with Eclipse update sites, simply point Eclipse to this URL and download all the items
provided. A more detailed explanation can be found in the next section.

http://java.sun.com/javase/downloads/index.jsp
http://download.eclipse.org/eclipse/downloads/
http://svn.pst.ifi.lmu.de/update/sde/
http://svn.pst.ifi.lmu.de/update/sde/

Service Development Environment (SDE) 10/2010

2.2.2 Detailed Steps

Begin the installation by selecting the following menu path from the Eclipse main menu:

= Java - Eclipse SDK 1 E@g
File Edit Source Refactor MNavigate Search Project Run Window m

il B-O-Q- BEG- @ P @ Welcome

[% PackageExp 2 . Te Hierarchﬂ =g (& Help Contents H =8

a% &7 Search not available.
Dynamic Help

Key Assist... Ctrl+Shift+L
Tips and Tricks...
Cheat Sheets...

Software Updates...

About Eclipse SDK

& Problems &3 @ Javadoc} @; Declaration} = =0
0 items
Description ’ Resource Path Lo
< T 3

Figure2: Selecting Software Updates

A dialog will show upwith two tabs:Installed Software and Available Software. Select theAvailable
Software tab. Then, clickAdd Site.., and enter the following URL:

http ://svn.pst.ifi.imu.de/update/s de/

Select OK. The dialog now shows the new updéte Select the complete site as shown in the next figure.

http://svn.pst.ifi.lmu.de/update/sde/
http://svn.pst.ifi.lmu.de/update/sde/

Service Development Environment (SDE)

10/2010

= Software Updates and Add-ons

Installed Software| Awvailable Software

type filter text

Mame Version

&[] %] Ganymede Update Site
4 %] http://svn.pst.ifilmu.de/update/sct/
a [V]000 Uncategorized

L Graphical Qrchestration Feature 4.0.0
Lw SDE Core Feature 4.00
Lp¢ SDE Dev Feature 400

&[] %] The Eclipse Project Updates

dq T

Show only the latest versions of available software

[T Include itemns that have already been installed

Properties

Add Site...

Manage Sites...

= |\
RN E g

Refresh

Open the 'Automatic Updates' preference page to set up an automatic update schedule.

Cloze
Il

Figure3: Update Sites in Eclipse

Now selectinstall.... After a while, the following dialog is shown:

2 Install 4 S0l » . - e~
Install
Review and confirm that the checked items will be installed. \‘E)l_
MName Version
{[¥] 4= Graphical Orchestration Feature 4,00
L% SDE Core Feature 4.0.0
L+ SDE Dev Feature 400

Size: 12.518 KB
Detailz

»

4

)] < Back Mext »

Figure4: Finishing installation

Service Development Environment (SDE) 10/2010

You will be presented with more dialogs for accepting the license terms, agreeing to installing unsigned
features, and finally restarting the workbench. Simply follow the steps until the workbench has rebooted.

Service Development Environment (SDE) 10/2010

3 User Guide

First and foremost, th8ervice Deelopment Environmenis an IDE extension to be used by developers for
creating, analyzing, and deploying Servi@gented Software Systems by providing access to tools. This user
guide explains the meta functionality provided by Br@/elopment Environmermore itself, and also contains
exampledor usinginstalled tools.

3.1 Introduction

The Service Development Environmeptovides one new perspective, two new views, aneeditor to the
Eclipse platform. In addition, theanualorchestrator provided with the core (called 8ieE Shell) provides

an additional view and a launcher for executBigell scripts; the graphical orchestration provides another
editor and toolbar for creating graphical orchestrations.

Having installed thédevelopment Environmertore as outlined in the previous section, you can select the
newly providedSDE perspective to display the contributed views. To do this, open the perspective using the
Window menu:

ect Run | Window | Help

v (% Mew Window - -
p; Mew Editor
Open Perspective » #} Debug
Show View 3 éy Java

. . «7 Java Browsin
Custormize Perspective... e 9

Save Perspective As... Other...

Reset Perspective
Close Perspective

Close All Perspectives

Mavigation »
Working Sets 2
Preferences...

Figure5: Opening theSDEperspective, take 1

In the following dialog, select tH8DE perspective:

Service Development Environment (SDE) 10/2010

= DOpen Perspective @

Emcvs Repository Exploring
ﬁDebug

& Java (default)

S_JJa\ra Browsing

TgJJa\ra Type Hierarchy

== Plug-in Development
I-_\DRESCILI[CE
Sensotia;
B SV Repository Exploring
£ Team Synchronizing

| ok || canca |

Figure6: Opening theSDEperspective, take 2

Once opened, the perspective provides you with access to the eteniphctionality of theService
Development Environment.

3.2 SDE Perspective

In its initial form, theService Development Environmeperspective has the following layout. Note that in the
following screenshot, some tools have already been installed by atbiegupdate sites available on the SDE
web site.

= Sensoria - Eclipse SDK =RACE X
File Edit MNavigate Search Project Run Window Help
5~ Q- B oD (5 (2 Sensoria|
Sensoria Browser &2 =0 = 8| # Sensoria Blackboard 2 =0
4 e Analysis

a % Model Checker
=5, SPIN Model Checker
S, UPPAAL VerifyTA Model Checker
a ' Sensoria
<, Sensoria Core Basic Functions
4 ' Transformation
%, Huge Model Transformator

| I
£ Sensoria Shell 22 =0
‘Welcome to the Sensoria Scripting Shell -
Please type help() for more information.
Sensoria»

e

Figure7: SDEperspective

10

Service Development Environment (SDE) 10/2010

Three views are visible:

e On theleft-hand side the SDE Browser is displayed. It contains a categorized listing of all tools
which are currently available in this particular instance of the Development Environment.

e On the righthand side, th&DE Blackboard is displayed. The blackboard is used to store Java object
values irbetween service invocations when using the manual generic Ul to access tool functions.

e At the bottom, theSDE Shell is displayed. As pointed out above, the Shell is a manual orchestrator
which can be used to employ JavaScript to call tool functions.

Doubleclicking on a tool in theSDE Browser displays more information about the tool, for example the
functions of the tool Hugo/RT.

= Sensoria - Hugo Model Transformator - Eclipse SDK =NACIEE X
File Edit Mavigate Search Project Run Window Help
N-E2 i Q-id B -F-oe-o- s (T Semare)
£ Sensoria Browser &% = B|| # Huge Medel Transformater 3 = B[# sensoria Blackboard &3 =B
% Analysis H -
ugo Model Transformator
= Model Checker 9
<5 SPIN Model Checker Info
= UPPAAL VerifyTA Model Checker Basic information about this tool
& Sensoria) I de.Imu.ifi.pst hugart HugaRTService L
<, Sensoria Core Basic Functions =
_ . Name: Huge Model Transformator
t- Transformation
4, Hugo Model Transformator Description: This is the Huge Model Transformator
Functions
Available functions
* Model uteXmiToUmlIModel(String model) throws MadelException
Transforms an XMI- or UTE-based UML State Machine model into the Hugo/RT UML model
s SPINModel umliToSpin{Model model, Collaboration collaboration, Interaction interaction)
Transforms a Hugo/RT UML State Machine Model inte Promela input for SPIN. Collaboration and
interaction are optional.
s UPPAALModel umiToUPPAAL(Model model, Collaboration collaboration, Interaction interaction)
Transforms a Hugo/RT UML State Machine Model into TA/Q input for UPPAAL. Collaboration and
. imtaractinn are antinnal - :
Tool Info
Sensoria Shell &2 =B
Welcome to the Sensoria Scripting Shell
Please type help() for more information.
Sensoria
=

IL:igureS: Hugo/RT

Besides some general information about the tool in the upper secti@vadilble functions of the tool are
listed in the functions section. All functions may be directly invoked using the generic wizard Ul by selecting
the appropriate links. This is detailed in the following sections.

Besides functions, a tool may also pravaptions Options are necessary for example if the tool is actually a
wrapper for some external tool like a Web services, which is installed at some particular URL. If available,
options are displayed in another section beneath the functions section.

3.3 Using the Generic Wzard Ul and the Blackboard

As pointed out in chapter 2, there are various ways for invoking tool functions. One way is using the generic
wizard Ul. This Ul allows calling arbitrary functions of arbitrary tools, providing input to thosdidmscfrom
files, strings, or from the blackboard, and posting of the result of the invocation on the blackboard as well.

For example, consider the functioeXmiToUmIModel() of the Hugo/RT tool:

Model uteXmiToUmIModel(String) throws ModelException

11

Service Development Environment (SDE)

10/2010

This function transforms an XMbr UTE-based UML State Machine model into a Hugo/RT UML model. The
model is returned as a Java object of chsdel ; the function requires the UTE or XML specification to be

given as &btring
Invoking the generic wizardmothis function yields the following dialog:

2 Invoke Function EIg X
Invoke a tool function

This wizard page allows you to invoke a tool function, Please select parameter values,

uteXmiTolmiMaodel()

Transforms an XMI- or UTE-based UML 5State Machine model into the Hugo/RT UML model

The result of the function call (of type Model - An UTE model) will be posted to the blackboard.

Parameters of function call

Name Expected Type Selected Value Description Change
: model java.lang.String null A model in XMI or UTE format
@ [Finish l | Cancel

e

Figure9: Invoking a function using the generic wizard Ul

There is one parameter to be provided. By selecting the parameter and dlibkimge another dialog pops up

which allows cleosing a value for the parameter.
In this dialog, you have three choices for selecting a parameter value:

e You can simply provide text in a text field. This is only possible for Stiypgd parameters.

e You can select a value from the blackboard. This &sitde for all kinds of parameter types.

e You can load the input for the parameter from a file.

In this particular example, the UTE or XMI model will probably be loaded from a file, so the dialog is used to
wi | |

select a file in the workspace. As the expectpdey i s a St ri

ng,

we

s el

12

£

Service Development Environment (SDE) 10/2010

r |
£ Parameter Value Iﬁ

Select a value for parameter type class java.lang.5tring

Frorn string | From blackboard | From file |

Select a file:

Browse...

Parameter Type

() Add as a Java file object

() Add as an Eclipse resource object
" Add as workspace-relative path
~ Add as absolute file system path

(@ iAdd contents of file as a String;

@ Please choose a file,

Figurel0: Choosing a file as a parameter

After executing a function, the result is either opened in the Ul (for example, in an editor or a separate view), or
posted on the blackboard for further use.

In this example, the result is shown and posted to the blackboard.

13

Service Development Environment (SDE) 10/2010

- -
= S
- Success

Success

The operation succeeded. An object with type class uml.Model has been posted to the blackboard.

model ATM { -
properties {
networkCapacity = 2;
centralMetwork = false;
networkDelay = 10;
externalQueueCapacity = 5;
internal QueueCapacity = 2;
deferredQueueCapacity = 2;
intMin = -32768;
intMax = 32767;
mutex = false;
smileMachine = false;
phaseBased = false;
fixedOrderRegions = false;
fixed OrderTransitionFiring = false;
}

class Bank {
signature {
attr atrm ; ATM: -

b

Figurell: A successful call

As can be seen in the following figure, objects on the blackboard are sorted by proe@ingn object is
shown with its name and its class. With tools, objects are sorted by date.

A Sensoria Blackboard i3 = B8

4 {75 Huge Moedel Transformator
= ATM (Model)

Figurel2: An object on the blackboard

When invoking another function which takeswanl.Model as input, this object can now be readily retrieved

from the blackboard. The generic invocation wizard also allows more generic access to Java objects by
providing aBean view i.e. allowing not only the blackboard objects themselves to be used as pasammeter

also objects returned by invoking zeargument methods on these objects. The following screenshot shows an
example of selecting such a method.

14

Service Development Environment (SDE) 10/2010

r |
£ Parameter Value lﬁ

Select a value for parameter type class uml.Model

From blackboard | From file

) Exact type only () Arrays 8 Iterables @ All objects (Bean view)

Board object:

a4 HE Hugo Medel Transformator -
4 [E ATM (Model)
‘=1 uml.DataType getBoolean()
& java.lang.5tring getMame()
=1 java.util.List getClasses()
‘= uml.properties.Properties getProperties()
& uml.DataType getlnteger()
= java.util.5et getCollaborations()
& java.util.5et getDataTypes()
=1 java.util.5et getSignals()
= uml.DataType getClock()
‘= uml.DataType getVoid() 2

m

Java.util.5et getCollaborations()

[ok || Ccancel |

Figurel3: Selecting a bean from the blackboard

To summarize, the generic wizhinvocation Ul along with the blackboard can be used to invoke tool functions
with, or without a Ul of their own.

3.4 Using theOrchestration Functionality

One of the main aims of the Development Environment is enabling orchestration of tools. As toats can b
discovered using th8DE core and their interface functions invoked, orchestration can be provided by arbitrary
tools on top of this service layer. The SDE provitteseoptions fororchestratingools:

e TheSDE Shellprovided within the core is a manuakhestrator which provides such an orchestration
mechanism as a UNB{ke Shell with the additional ability to store, load, and execute scripts.

e SDE Scripts are written in JavaScript and are executed without parameterizhtionder tocreate
new took, SDE Tool Scripts may be written which contain JavaScript functions. After converting
them to tools, they can be used as any other tool through the tool browser.

e A graphical editor is provided to writ€raphical Orchestrations as datadriven activity diagrams.
Such orchestrations are again tools themselves.

In all orchestrationsthe SDE core can be accessed directly; thus any tool can be retrieved from the core and its
interface functions executed.

3.4.1 Orchestrating with the Shell

The SDE Shell is a manual orchestrator, i.e. it is intended for working with direct user input like a-liks1X
shell. A help function is provided which lists some of the available functionality. The following figure shows
the SDE Shell with the help furtcon invoked.

15

Service Development Environment (SDE) 10/2010

Sensoria Shell % =8

Welcome to the Sensoria Scripting Shell -
Please type help() for more information.

Sensoria> help()

Welcome to the Sensoria Shell,

To retrieve a tool:

Use object sCore (the Sensoria Corel:
» sCorefindTool(5tring toolld): Returns the tool, if found.
> sCorefindToolByMame(String toclMame): Returns the tool, if found.

Once a tool is loaded:

Use the tool object [tool] (The tool itself)
» [tool].getFunctions(): Returns list of all functions
> [tool].getServicelnterface(): Returns the actual service object

On a service object, you may directly invoke any of the functions
the tool provides.

To use the blackboard:

Use object sCore (the Sensoria Core):
» sCore.postToBoard(Object object): Posts an object to the board.
» sCoreretrieveFromBoardByToolld(String toolld): Returns a list of objects posted by this tool.

Mote: Syntax Completion (TAB) is available.

Sensorias

Figureld: TheSDEShell

As can be seen, tIf®DEcore is provided through the objexx€ore which is always available iSDE Scripts.
The interface of the core can also be viewed in the tool brawisés provided as the tool with the narS8®E
Core Functions.

The shell supports a history (up arrow/down arrow) and basic syntax completion with the TAB key. As an
example for usig the Shell, have a look at the following script which uses the two tools Hugo and SPIN to
modetcheck an UTEbased model and outputting the result. In the shell, each line must be entered separately.

| runSPIMNSession.sscript 22 = B8

hugo= sCore.findToolByMame ("Hugo Model Transformator™) .getServiceInterface():;

uteFile= =Core.loadWS5FileIntoString ("c: /users/phil/code/rtws,/Te=st,//atm.utae™)
uml Systemn= hugo.uteXmiToUmlModel (uteFile) ;

promela= hugo.umlToSpin (umlSystem, null, nuall);

spin= sCore.findToolByName ("5PIN Model Checker™) .getServiceInterfacel():

res= spin.checkWithS5PIN (promela.getPromelaCode (),
promela.getSpecificationCode (), null) ;

print (res.getResult ()) !

Figurel5: An SDEScript

3.4.2 Using SDE Scripts

Figure 15 has already shown script code within the Eclipse text editor. The recommended file ending for such
scripts is.sscript ~ for SDE Script. To write such a script from scratch, select | e > Newnthe Ot her é
Eclipse main menu, and thé&ile under theGeneral section. A dialog appears which allows you to choose a

file name, which should end witkscript

Once you have written and saved the script, you can invoke it bydligking the file in the Navigator or
Package Explorer view, and selectiRyin As > SDE Shell Script. Note that in both the Navigator and
Package Explorer views, everyscript file is annotated with a small green run button to show it is
executable as @DE script.

16

Service Development Environment (SDE) 10/2010

Refresh
& o o e
= = SomeProject 1 Sensoria Shell Script
i Debug As .
= bin Team ,| © Open Run Dialog. .
= sIC 4
_classpath Compare With »
_project Replace With »
5| atm.ute

Froperties

Figurel6: Running a SDEShell script

The most powerful way of creating orchestrations withinSB¥= Development is writing ool Scripts. These
scripts are again based on JavaScript, but employ functions and certain comments for providing functionality,
which allows the SDE to convert them to standard tools.

srme.sscript &2 =8
SEE s

* SRMC Performance Analysis Scrile:

* @id srmcorchestration
* @name SRMC Performance Analysis Script
*# @description Buns the S5EMC analysis on an UHML model.

#* @function runfinalysis Runs the analysis
* @param runfnalysis umlFile input UML file as a Java file.
* @returns runfnalysis annotated UML file

function runfnalysis(umlFile) {
srmcunl=sCore.findToolByName ("SRMC/UML Bridge™) .getServiceInterface():
uml=srmcuml . loadModel (umlFile) ;

interaction=srmcuml.extractFirstInteraction(uml) ;
node=srmcuml . transform(interaction) ;

srme==sCore.findToolEByName ("Senzoria Reference Markovian Calculus (SRMC) ™) .getSerx
markovchain=srmc.getMarkovChain (node) ;
distribution=srmc.getS3teadyS5tateProbabilityDistribution (markovchain) ;
throughput=srmc.getThroughput (markowvchain) »

/{/back-annotation
srmcuml . reflect (umlFile, interaction, throughput) 7

return umlFile;

L (LI 2

Figurel7: An SDETool Script

Figure17 shows an example of$DE Tool Script containing one function callegnAnalysis , which takes
one parameter namaghlFile . The function orchestrates two tedl the SRMC/UML bridge and the
SRMQool itselfi to provide some functionality. In the comment at the top of the function, various tags are

17

Service Development Environment (SDE) 10/2010

used to provide descriptions to the content of the file. Only the id and name of the tool are required, however it
is recommended to provide all of these tags to make the tool more usable.

e The@id, @nameand@description tags are used to describe the tool created from the script.
e Per function, use
0 @function [functionName] [description] to add a description to a fuian

0 @param [functionName] [paramName] [description] to add a description to
a parameter of the function. Note that you must add t@@gsaramlinks in the same order as
the parameters in the function.

0 (@returns [functionName] [description] to add a descrimn of the return
value of the function.

After a Tool Script has been written, rigtitck on the file in the Navigator or Package Explorer and select
SDE Add Script as Tool... . The script will be converted to Java and shown as a new tool in the
browser, as can be seen fréigurel18.

4 Sensoria Browser 1 = B || B srmesscript 4 SRMC Performance Analysis Script &3 =g
= Analysis SRMC P . -
erformance Analysis Script
t= Model Checker Yy P
2= Scripts Info
=, SRMC Performance Analysis Script Basic information about this tool
-5 i
& Sensoria . . . Id: srmcorchestration
=L, Sensoria Core Basic Functions .)
Mare: SRMC Performance Analysis Script

ta- Transformation

e Description: Runs the SRMC lysi UML model,
<& Huga Madel Transformator escription: Runs the analysis on an model

Functions
Available functions

® Object runfAnalysisiObject umlFilef

Runs the analysis

Tool Info

Figurel8: A tool converted from JavaScript

Note that all return types and parameters are assumed to be Objects.

A link to the original script source will be kept in tBervice Development Environmeand the tool will be
re-created upon stattp. If the original fle is missing or the workspace has changed, the script will be silently
ignored.

3.4.3 Graphical Orchestration

The other alternative to writing orchestrations is to employ the graphical activity diagram editor included in the
SDE. To create a graphical orchasiin, selecNew > Other >SDE SDE Graphical Orchestration.

18

Service Development Environment (SDE) 10/2010

P e L |

Select a wizard —

Creates a new Graphical Orchestration

Wizards:
type filter text

& Class

& Interface

2% Java Project

Java Project from Existing Ant Buildfile
I Plug-in Project

- = General
- = CVS
» [= Java
- [= Plug-in Development
4 [= Sensoria Development Environment
(:5 Sensoria SDE Graphical Orchestration
- = User Assistance

)
[==]
=
&
W

Finish Cancel

e

Figurel9: Creating a graphical orchestration

In the following dialogs, select a name for the two files which are created:
e The first file contains the diagram, and hias extension .god (for graphical orchestration diagram)
e The second file contains the orchestration itself, and has the extension .go (for graphical orchestration)

It is recommended to pick the same name for both files (excluding exter@im®.the fils have been created,
the editorin Figure20is shown.

The canvas of the editor corresponds to a hew tool to be created in the SDE. As each tool can contain multiple
functions, a function needs to be added first. To do so, clidkumstion in the palette on the right hand side,

and click onto the canvas to create a new function. Name it appropriately, for example
checkWithWSEngineer (Figure21).

Now, tool functions can be dragged into the new function as appropriate from the palette on-thendgditle,
which contains all invokeable function of all installed tools. Additionalhg following meta tools may be
used:

e UseLink to model data flow from an output of a function to the input of another
e Uselnput Pin to add an input parameter to a function
e UseOutput Pin to add an output parameter to a function

An example of a complete script is showrFigure22.

Before you can execute the function, you also need to name the tool. For thigliciglon the canvas and
sekct properties. The properties view shows up, you need to fill in both the name Bigliid Z3).

Finally, to execute a function, simply click on theeen play button in the upper right corner of a function.
You may also use theDE menu to convert the whole tool t&S®Etool.

19

Service Development

Environment (SDE)

10/2010

== Sensoria - Scriptsfexa.mplne.god -Eclipse SDK 8% & &

. * P"‘- >

==

File Edit Diagram Navigate

ke

Search Project Run Sensoria Window Help

|Tah0ma

Q- oW w

vlg v|H F
| v A - %

- . s | WA o o v
Av By~ ,v—>v|_ |:&vﬂuv§?v|_ |

- -

Fef [Sensorie |

| & camplegod £

4
B

4

7 Palette
Team-
o Function
/" Link
-+ Input Pin

=
I
.

=+ Clutput Pin

= Dino Broker

= DinoModes

(= LTSA

[= LTSA MsC

[= LTSA UML

(= MDD4SOA Int...
[~ Modes

= PEPA Integrati...
(= RSA Integratio...
(= Remote servic...
[~ Sensoria Core ...

[~ Sensoria Core ...
[~ Sensoria Refer...

-

- —_

Figure20: Graphical Orchestration editor

= Sensoria - Scripts/example.god - Eclipse SDK

— T ——
e

File Edit Diagram Navigate

Ty |

Search Project Run Sensoria Window Help

whd=F=
|Tah0ma

Q-

Fef [Sensorie)

a ¥
i w| P
iy !

vlg v|H F
| v i - %

Aow Ay ow ;v—)v|_'|:g;\:évclg

A W ML

4
B

7 Palette

F&e-
o Function
/" Link

—+aInput Pin

=g
I
-

g checkWithWSEngineer

=+ Clutput Pin

= Dino Broker

[~ DinoModes

(= LTSA

[= LTSA MsC

[= LTSA UML

= MDD4SOA Int...
[~ Modes

= PEPA Integrati...
= RSA Integratio...
(= Remote servic...
[~ Sensoria Core ...
[~ Sensoria Core ...
[~ Sensoria Refer...

m

Figure21: Creating a function

20

Service Development Environment (SDE) 10/2010

= Sensoria - Scriptsfwse.god - Eclipse SDK A e - s e @Eg
File Edit Diagram Navigate Search Project Run Sensoria Window Help
[3~ 15 [Sensoria
Telame 9 B .'|.‘;_vlv v—>v|_'|fg;\:€vn%v§-§v|_'|)n’}>(E|v
Q- A~ 8 Sy oy
& wsegod I =g
=
ViNi o heck Wi WSE Oﬂ * |53 Palette b
48} checkWitl N
B 'E L
o Function
(8] celectActivitiesFromRSA umlActivities:List | transformToBPEL /" Link
—»a Input Pin
list:List d =+ Clutput Pin
= Dino Brok
list.List £|| & Dino Broker
= DinoModes
(= LTSA 3
bpelAndWSDLDescriptions:List [= LTSA M5C
= LTSA UML
@) convertToESP orchestrations List list:List | () selectBPELWSDLPairs (= MDD450A Int..
] [~ Modes
= PEPA Integrati...
= RSA Integratio... | |
tring:Stri — - . .
stnngistnng (= Remote servic...
[~ Sensoria Core ...
~ | Sensoria Core .. [
1 LI} ¢ (= Sensoria Refer... ™
s
u
Figure22: A complete function
= Sensoria - Scriptsfwse.god - Eclipse SDK A e - s e @Eg
File Edit Diagram MNavigate Search Project Run Sensoria Window Help
[3~ 15 [Sensoria
Telame 9 B .'|.‘;_vlv v—>v|_'|fg;\:€vagv§:-oov|_'| =
Q- A~ Sy oy
$ wsegod I =g
=
Vi P 0‘ # | 4% Palette B
g5} checkWitl
i greas- -\
o Function =
(8] celectActivitiesFromRSA umlActivities:List | transformToBPEL /" Link
—+aInput Pin
list:List =+ Clutput Pin
Dino Brok
list:List - |ESlnelinls"
] T} + [~ DinoModes -
[Properties &3 :=:€> 17 =0
15! Orchestration checkWithWSE
I
Core Property Value
Rulers & Grid Bescnphion =
= Id '= WSECheck
s Mame = checkWithWSE
s
u

Figure23: Tool Name and ID

21

Service Development Environment (SDE) 10/2010

3.5 Custom Tool Uls

As mentioned before, ea@DE tool can also provide its own custom Ul to the Eclipse platform. From within
this Ul, theSDEtool may beused as such, but this is not necessary.

As an example for such an Ul, the Hugo/RT tool has been equipped with a wizard for model checking or
transforming UTE or XMI files. The wizard can be invoked by rigtiicking .ute or .xml files in the
Navigator orPackage Explorer view# wizard opens, which looks as follows.

Figure24: The Hugo/RT wizard

Tools are not limited in their usage of Eclipse Ul elements and may provide whatever is needed in addition to
allowing access to their core functionality via ®erviceDevelopment Environment.

22

