
The Service Development Environment (SDE)

Version 4.4

Executive Summary

This document describes the Service Development Environment, which is intended to support the development

of Service-Oriented Software by integrating various tools across development, analysis, and deployment of

service-oriented software systems.

In this document, the current state of the Development Environment is reported, along with hints and tutorials

for using the Development Environment as well as creating new tools for this platform, and recommended

future steps.

Contents

1 About the Development Environment .. 2
1.1 Aim of the Development Environment .. 2
1.2 High-Level Overview .. 2
1.3 Basic Concepts of the Development Environment .. 3

2 Installing the Development Environment ... 5
2.1 Requirements ... 5
2.2 Installing the Tool .. 5

2.2.1 Overview ... 5
2.2.2 Detailed Steps .. 6

3 User Guide ... 9
3.1 Introduction .. 9
3.2 SDE Perspective .. 10
3.3 Using the Generic Wizard UI and the Blackboard .. 11
3.4 Using the Orchestration Functionality ... 15

3.4.1 Orchestrating with the Shell .. 15
3.4.2 Using SDE Scripts ... 16
3.4.3 Graphical Orchestration ... 18

3.5 Custom Tool UIs .. 22

4 Developers Guide .. 23
4.1 Development Environment Architecture ... 23

4.1.1 Core Extension Point ... 24
4.1.2 Core API .. 24

4.2 Creating Tools .. 25
4.2.1 Walkthrough for an Example Tool .. 26
4.2.2 Adding Model Handling .. 34
4.2.3 Advanced Topics ... 35

5 Where to Go from Here ... 37
5.1 Publishing Your Own Tools .. 37
5.2 Bug Reporting and Enhancement Requests ... 37

6 References ... 38
6.1 Figures ... 38
6.2 Links .. 39

Service Development Environment (SDE) 10/2010

 2

1 About the Development Environment

The Service Development Environment is intended to support the development of Service-Oriented Software

by integrating tools across the development, analysis, and deployment of service-oriented software systems.

1.1 Aim of the Development Environment

The main aim of the Service Development Environment is to provide a service-oriented platform for

development tool integration. On this platform,

 tools are services, and provide arbitrary functionality

 tools can be used as-is, or combined using orchestration mechanisms

 tools can be published and discovered

By integrating them into the Service Development Environment, tools become available to a broader user range

and in a larger context, and are thus more usable by developers.

In the view of the Service Development Environment, the tools each consist of functions, which can be invoked

in the Development Environment with or without User Interface (UI). The UI is not necessarily tied to a

specific function, but can also be provided in a cross-function way. Tools are easy to write, add, and remove.

Accessing remote or legacy applications is possible.

To enable composition, tools are intended to provide an Application Programming Interface (API) allowing

tool orchestration with arbitrary orchestration languages. Included within the SDE is a graphical orchestration

with data-driven activity diagrams and a JavaScript orchestrator.

1.2 High-Level Overview

As a tool for developing, analyzing, and deploying service-oriented software systems, the Development

Environment must feature an IDE-like UI, while at the same time keeping requirements for tool builders low as

not to hinder integration of such tools. To allow this, the Service Development Environment is itself built in a

service-oriented way on top of the OSGi platform. The graphical part of the Development Environment and

contributed tools ï if available ï is built on Eclipse technology.

This architecture is laid out in Figure 1.

Service Development Environment (SDE) 10/2010

 3

Native (OS) Native tool

Java Java tool

OSGI

Equinox Bundles

Java Wrap

Bundle

Native Wrap

Bundle

Some Tool

Bundle

Sensoria Core

Eclipse UI UI UIUI

Figure 1: Service Development Environment architecture

As can be seen in the figure, the Development Environment core and the tools are based on OSGi only (or,

more specifically, the Equinox implementation of OSGi). Tools may use existing Java implementations or

native code as they wish. Being only based on OSGi, they can be invoked completely independently from

Eclipse. If they additionally choose to provide a UI, this UI is integrated into and based on the Eclipse platform,

as is the UI for the SDE core itself.

1.3 Basic Concepts of the Development Environment

As outlined above, the Development Environment provides an environment for using and orchestrating tools.

The tools themselves are provided by various manufacturers and in general must be installed separately;

however, some are already distributed with the Development Environment as examples.

The basic functionality of the core is as threefold:

 It provides access to all the registered tools by an API (which can be seen as a basic discovery service)

and by a UI. The API allows retrieving tools based on their ID or name and is intended to be used

from within Java, while the UI allows graphical browsing of registered tools directly for the end user.

 It provides access to the tool functions by API and by UI as well. The API allows calling arbitrary

functions on the registered tools from within Java, while the user interface provides a generic UI for

executing these functions, storing the results, and re-using results as input for other functions.

 It provides an orchestration mechanism using a) activity diagrams and b) JavaScript. Using such

orchestrations, the API discussed in the previous two points can be accessed and tools can be

orchestrated in a simple way.

For most tools, integration into the Service Development Environment is only one way of providing users with

access to their functionality. Thus, the Service Development Environment only imposes a minimum number of

requirements on tool writers. In particular, tools can be used in any of the following three ways by the user in

the Development Environment:

 By using the generic wizards outlined above.

 By entering commands in a manual orchestrator like the SDE Shell.

Service Development Environment (SDE) 10/2010

 4

 By using UIs provided by the tools themselves, which are independent of the Development

Environment UI.

Besides simply using their functionality, tools can also be orchestrated with partial help from the platform. This

can be achieved by different means as well. In particular, the following scenarios are envisioned:

 Orchestration using the built-in shell

 Orchestration using Java, i.e. within other tools

 Orchestration by using JavaScript-based tools

 Orchestration by using the graphical orchestration inside SDE

Tools to be used as part of the Development Environment must be implemented as OSGi bundles and contain a

declarative description of their functionality but are otherwise unlimited in their implementation. In particular,

 tools may be written in Java and may consist of an arbitrary number of libraries, other Eclipse plug-

ins, or external code

 tools may also wrap native code, thereby providing an interface to non-Java software

 tools may include functionality for calling remove services, thereby providing the link to Web services

Service Development Environment (SDE) 10/2010

 5

2 Installing the Development Environment

As the Development Environment features both an OSGi and an (Eclipse)-UI component, the recommended

way is to install it onto the Eclipse platform, which will be detailed here.

2.1 Requirements

The Development Environment is built on cutting-edge technology. It requires two components to be installed:

 Java JDK 1.6. Former versions, including 1.5, will NOT work as the Development Environment uses

the Java 6 Scripting Engine. Note that you will need the JDK, not only the JRE. The JDK can be

downloaded from http://java.sun.com/javase/downloads/index.jsp.

 Eclipse version 3.4. The newest version of Eclipse 3.4.X can be downloaded from

http://download.eclipse.org/eclipse/downloads/.

It is recommended that the Java VM to use is explicitly specified when running Eclipse. This is achieved with

the -vm command line argument (for example, -vm c:\jre\bin\javaw.exe). Without -vm, Eclipse will use the

first Java VM found on the O/S path. Also, within Eclipse, the right JDK must be selected in the preferences

before starting a Runtime Workbench.

The Java JDK 1.6 must be selected in Eclipse (Window > Preferences > Java > Installed JREs...) as the default.

2.2 Installing the Tool

2.2.1 Overview

Once Eclipse has been installed, the Development Environment core and many tools can be installed via update

sites. The main update site for the Development Environment core is

http://sv n.pst.ifi.lmu.de/update/s de/

This update site contains two features:

 The core itself

 The development feature which eases development of new SDE tools

If you are familiar with Eclipse update sites, simply point Eclipse to this URL and download all the items

provided. A more detailed explanation can be found in the next section.

http://java.sun.com/javase/downloads/index.jsp
http://download.eclipse.org/eclipse/downloads/
http://svn.pst.ifi.lmu.de/update/sde/
http://svn.pst.ifi.lmu.de/update/sde/

Service Development Environment (SDE) 10/2010

 6

2.2.2 Detailed Steps

Begin the installation by selecting the following menu path from the Eclipse main menu:

Figure 2: Selecting Software Updates

A dialog will show up with two tabs: Installed Software and Available Software. Select the Available

Software tab. Then, click Add Site..., and enter the following URL:

http ://svn.pst.ifi.lmu.de/update/s de/

Select OK. The dialog now shows the new update site. Select the complete site as shown in the next figure.

http://svn.pst.ifi.lmu.de/update/sde/
http://svn.pst.ifi.lmu.de/update/sde/

Service Development Environment (SDE) 10/2010

 7

Figure 3: Update Sites in Eclipse

Now select Install.... After a while, the following dialog is shown:

Figure 4: Finishing installation

Service Development Environment (SDE) 10/2010

 8

You will be presented with more dialogs for accepting the license terms, agreeing to installing unsigned

features, and finally restarting the workbench. Simply follow the steps until the workbench has rebooted.

Service Development Environment (SDE) 10/2010

 9

3 User Guide

First and foremost, the Service Development Environment is an IDE extension to be used by developers for

creating, analyzing, and deploying Service-Oriented Software Systems by providing access to tools. This user

guide explains the meta functionality provided by the Development Environment core itself, and also contains

examples for using installed tools.

3.1 Introduction

The Service Development Environment provides one new perspective, two new views, and one editor to the

Eclipse platform. In addition, the manual orchestrator provided with the core (called the SDE Shell) provides

an additional view and a launcher for executing Shell scripts; the graphical orchestration provides another

editor and toolbar for creating graphical orchestrations.

Having installed the Development Environment core as outlined in the previous section, you can select the

newly provided SDE perspective to display the contributed views. To do this, open the perspective using the

Window menu:

Figure 5: Opening the SDE perspective, take 1

In the following dialog, select the SDE perspective:

Service Development Environment (SDE) 10/2010

 10

Figure 6: Opening the SDE perspective, take 2

Once opened, the perspective provides you with access to the complete functionality of the Service

Development Environment.

3.2 SDE Perspective

In its initial form, the Service Development Environment perspective has the following layout. Note that in the

following screenshot, some tools have already been installed by using other update sites available on the SDE

web site.

Figure 7: SDE perspective

Service Development Environment (SDE) 10/2010

 11

Three views are visible:

 On the left-hand side, the SDE Browser is displayed. It contains a categorized listing of all tools

which are currently available in this particular instance of the Development Environment.

 On the right-hand side, the SDE Blackboard is displayed. The blackboard is used to store Java object

values in-between service invocations when using the manual generic UI to access tool functions.

 At the bottom, the SDE Shell is displayed. As pointed out above, the Shell is a manual orchestrator

which can be used to employ JavaScript to call tool functions.

Double-clicking on a tool in the SDE Browser displays more information about the tool, for example the

functions of the tool Hugo/RT.

Figure 8: Hugo/RT

Besides some general information about the tool in the upper section, all available functions of the tool are

listed in the functions section. All functions may be directly invoked using the generic wizard UI by selecting

the appropriate links. This is detailed in the following sections.

Besides functions, a tool may also provide options. Options are necessary for example if the tool is actually a

wrapper for some external tool like a Web services, which is installed at some particular URL. If available,

options are displayed in another section beneath the functions section.

3.3 Using the Generic Wizard UI and the Blackboard

As pointed out in chapter 2, there are various ways for invoking tool functions. One way is using the generic

wizard UI. This UI allows calling arbitrary functions of arbitrary tools, providing input to those functions from

files, strings, or from the blackboard, and posting of the result of the invocation on the blackboard as well.

For example, consider the function uteXmiToUmlModel() of the Hugo/RT tool:

Model uteXmiToUmlModel(String) throws ModelException

Service Development Environment (SDE) 10/2010

 12

This function transforms an XMI- or UTE-based UML State Machine model into a Hugo/RT UML model. The

model is returned as a Java object of class Model ; the function requires the UTE or XML specification to be

given as a String .

Invoking the generic wizard on this function yields the following dialog:

Figure 9: Invoking a function using the generic wizard UI

There is one parameter to be provided. By selecting the parameter and clicking Change, another dialog pops up

which allows choosing a value for the parameter.

In this dialog, you have three choices for selecting a parameter value:

 You can simply provide text in a text field. This is only possible for String-typed parameters.

 You can select a value from the blackboard. This is possible for all kinds of parameter types.

 You can load the input for the parameter from a file.

In this particular example, the UTE or XMI model will probably be loaded from a file, so the dialog is used to

select a file in the workspace. As the expected type is a String, we will select ñAdd contents of file as Stringò.

Service Development Environment (SDE) 10/2010

 13

Figure 10: Choosing a file as a parameter

After executing a function, the result is either opened in the UI (for example, in an editor or a separate view), or

posted on the blackboard for further use.

In this example, the result is shown and posted to the blackboard.

Service Development Environment (SDE) 10/2010

 14

Figure 11: A successful call

As can be seen in the following figure, objects on the blackboard are sorted by providing tool. An object is

shown with its name and its class. With tools, objects are sorted by date.

Figure 12: An object on the blackboard

When invoking another function which takes an uml.Model as input, this object can now be readily retrieved

from the blackboard. The generic invocation wizard also allows more generic access to Java objects by

providing a Bean view, i.e. allowing not only the blackboard objects themselves to be used as parameters but

also objects returned by invoking zero-argument methods on these objects. The following screenshot shows an

example of selecting such a method.

Service Development Environment (SDE) 10/2010

 15

Figure 13: Selecting a bean from the blackboard

To summarize, the generic wizard invocation UI along with the blackboard can be used to invoke tool functions

with, or without a UI of their own.

3.4 Using the Orchestration Functionality

One of the main aims of the Development Environment is enabling orchestration of tools. As tools can be

discovered using the SDE core and their interface functions invoked, orchestration can be provided by arbitrary

tools on top of this service layer. The SDE provides three options for orchestrating tools:

 The SDE Shell provided within the core is a manual orchestrator which provides such an orchestration

mechanism as a UNIX-like Shell with the additional ability to store, load, and execute scripts.

 SDE Scripts are written in JavaScript and are executed without parameterization. In order to create

new tools, SDE Tool Scripts may be written which contain JavaScript functions. After converting

them to tools, they can be used as any other tool through the tool browser.

 A graphical editor is provided to write Graphical Orchestrations as data-driven activity diagrams.

Such orchestrations are again tools themselves.

In all orchestrations, the SDE core can be accessed directly; thus any tool can be retrieved from the core and its

interface functions executed.

3.4.1 Orchestrating with the Shell

The SDE Shell is a manual orchestrator, i.e. it is intended for working with direct user input like a UNIX-like

shell. A help function is provided which lists some of the available functionality. The following figure shows

the SDE Shell with the help function invoked.

Service Development Environment (SDE) 10/2010

 16

Figure 14: The SDE Shell

As can be seen, the SDE core is provided through the object sCore which is always available in SDE Scripts.

The interface of the core can also be viewed in the tool browser ï it is provided as the tool with the name SDE

Core Functions.

The shell supports a history (up arrow/down arrow) and basic syntax completion with the TAB key. As an

example for using the Shell, have a look at the following script which uses the two tools Hugo and SPIN to

model-check an UTE-based model and outputting the result. In the shell, each line must be entered separately.

Figure 15: An SDE Script

3.4.2 Using SDE Scripts

Figure 15 has already shown script code within the Eclipse text editor. The recommended file ending for such

scripts is .sscript for SDE Script . To write such a script from scratch, select File > New > Otheré in the

Eclipse main menu, and then File under the General section. A dialog appears which allows you to choose a

file name, which should end with .sscript .

Once you have written and saved the script, you can invoke it by right-clicking the file in the Navigator or

Package Explorer view, and selecting Run As > SDE Shell Script. Note that in both the Navigator and

Package Explorer views, every .sscript file is annotated with a small green run button to show it is

executable as a SDE script.

Service Development Environment (SDE) 10/2010

 17

Figure 16: Running an SDE Shell script

The most powerful way of creating orchestrations within the SDE Development is writing Tool Scripts. These

scripts are again based on JavaScript, but employ functions and certain comments for providing functionality,

which allows the SDE to convert them to standard tools.

Figure 17: An SDE Tool Script

Figure 17 shows an example of a SDE Tool Script containing one function called runAnalysis , which takes

one parameter named umlFile . The function orchestrates two tools ï the SRMC/UML bridge and the

SRMC tool itself ï to provide some functionality. In the comment at the top of the function, various tags are

Service Development Environment (SDE) 10/2010

 18

used to provide descriptions to the content of the file. Only the id and name of the tool are required, however it

is recommended to provide all of these tags to make the tool more usable.

 The @id, @name, and @description tags are used to describe the tool created from the script.

 Per function, use

o @function [functionName] [description] to add a description to a function

o @param [functionName] [paramName] [description] to add a description to

a parameter of the function. Note that you must add these @param links in the same order as

the parameters in the function.

o @returns [functionName] [description] to add a description of the return

value of the function.

After a Tool Script has been written, right-click on the file in the Navigator or Package Explorer and select

SDE: Add Script as Tool... . The script will be converted to Java and shown as a new tool in the

browser, as can be seen from Figure 18.

Figure 18: A tool converted from JavaScript

Note that all return types and parameters are assumed to be Objects.

A link to the original script source will be kept in the Service Development Environment and the tool will be

re-created upon start-up. If the original file is missing or the workspace has changed, the script will be silently

ignored.

3.4.3 Graphical Orchestration

The other alternative to writing orchestrations is to employ the graphical activity diagram editor included in the

SDE. To create a graphical orchestration, select New > Other > SDE SDE Graphical Orchestration.

Service Development Environment (SDE) 10/2010

 19

Figure 19: Creating a graphical orchestration

In the following dialogs, select a name for the two files which are created:

 The first file contains the diagram, and has the extension .god (for graphical orchestration diagram)

 The second file contains the orchestration itself, and has the extension .go (for graphical orchestration)

It is recommended to pick the same name for both files (excluding extension). Once the files have been created,

the editor in Figure 20 is shown.

The canvas of the editor corresponds to a new tool to be created in the SDE. As each tool can contain multiple

functions, a function needs to be added first. To do so, click on Function in the palette on the right hand side,

and click onto the canvas to create a new function. Name it appropriately, for example

checkWithWSEngineer (Figure 21).

Now, tool functions can be dragged into the new function as appropriate from the palette on the right-hand side,

which contains all invokeable function of all installed tools. Additionally, the following meta tools may be

used:

 Use Link to model data flow from an output of a function to the input of another

 Use Input Pin to add an input parameter to a function

 Use Output Pin to add an output parameter to a function

An example of a complete script is shown in Figure 22.

Before you can execute the function, you also need to name the tool. For this, right-click on the canvas and

select properties. The properties view shows up, you need to fill in both the name and id (Figure 23).

Finally, to execute a function, simply click on the green play button in the upper right corner of a function.

You may also use the SDE menu to convert the whole tool to a SDE tool.

Service Development Environment (SDE) 10/2010

 20

Figure 20: Graphical Orchestration editor

Figure 21: Creating a function

Service Development Environment (SDE) 10/2010

 21

Figure 22: A complete function

Figure 23: Tool Name and ID

Service Development Environment (SDE) 10/2010

 22

3.5 Custom Tool UIs

As mentioned before, each SDE tool can also provide its own custom UI to the Eclipse platform. From within

this UI, the SDE tool may be used as such, but this is not necessary.

As an example for such an UI, the Hugo/RT tool has been equipped with a wizard for model checking or

transforming UTE- or XMI files. The wizard can be invoked by right-clicking .ute or .xml files in the

Navigator or Package Explorer views. A wizard opens, which looks as follows.

Figure 24: The Hugo/RT wizard

Tools are not limited in their usage of Eclipse UI elements and may provide whatever is needed in addition to

allowing access to their core functionality via the Service Development Environment.

