UML & SysML Overview

Ákos Horváth

Dept. of Measurement and Information Systems
UML

Modeling Language (not only) for Software Engineers
Unified Modeling Language

- An OMG (Object Management Group) standard

1.x series

- 1997 – Initial version (v1.1 – first adopted version)
 - by James Rumbaugh, Grady Booch, Ivar Jacobson at Rational
- 2000 – v1.3, v1.4
- 2003 – v1.5

2.x series

- 2005 – v2.0
- 2007 – v2.1.2
- 2009 – v2.2
- 2010 – v2.3
- 2011 – v2.4.1
- 2012 – v2.5 – „In Process“
Related Standards

- **MOF – Meta Object Facility Core**
 - 2011 – v2.4.1
 - Modeling language for defining modeling languages

- **OCL – Object Constraint Language**
 - 2012 – v2.3.1
 - Textual language for formulating constraints and queries over models

- **fUML – Foundational UML**
 - 2013 – v1.1
 - Semantics of a Foundational Subset for Executable UML Models

- **ALF – Action Language for Foundational UML**
 - 2012 – v1.0.1 Beta3
 - Concrete Syntax for a UML Action Language

- **XMI – XML Metadata Interchange**
 - 2011 – v2.4.1
 - XML representation of models

- **DD – Diagram Definition**
 - 2012 – v1.0
 - for modeling and interchanging graphical notations
UML Diagram Taxonomy

Diagram

Structure Diagram
- Class Diagram
 - Profile Diagram
 - Composite Structure Diagram
- Component Diagram
 - Deployment Diagram
- Object Diagram
 - Package Diagram

Behaviour Diagram
- Activity Diagram
- Use Case Diagram
 - Interaction Diagram
 - State Machine Diagram

Notation: UML
SysML

Modeling Language (not only) for Systems Engineers
Systems Engineering

- Systems Engineering is a multidisciplinary approach to develop balanced system solutions in response to diverse stakeholder needs

- ~ Integration Engineering
 - Software engineering
 - Hardware engineering
 - Mechanical engineering
 - Safety engineering
 - Security engineering
 - ...

- ~ Process Engineering

- System
 - Military, airplane, car, aviation, railway interlocking, notebook, etc.
SysML overview

- „UML for Systems Engineering”
 - Supports the specification, analysis, design, verification and validation of systems that include hardware, software, data, personnel, procedures, and facilities
- Developed by OMG and International Council on Systems Engineering (INCOSE)
- OMG SysML™ (http://www.omgsysml.org)
 - RFP – March 2003
 - Version 1.0 – September 2007
 - Version 1.1 – November 2008
 - Version 1.2 – June 2010
 - Version 1.3 – June 2012
Relationship Between SysML and UML

UML 2

SysML

UML4SysML

UML not required by SysML (UML - UML4SysML)

UML reused by SysML

SysML extensions to UML

SysML Profile
SysML Diagram Taxonomy

- **SysML Diagram**
 - Behavior Diagram
 - Activity Diagram
 - Sequence Diagram
 - State Machine Diagram
 - Use Case Diagram
 - Requirement Diagram
 - Structure Diagram
 - Block Definition Diagram
 - Internal Block Diagram
 - Parametric Diagram
 - Package Diagram

Icons:
- White rectangle: Same as UML 2
- Black rectangle: Modified from UML 2
- Pink dashed rectangle: New diagram type
Aspects of SysML

Diagram
- Structure
 - Block definition diagram
 - Internal block diagram
 - Parametric diagram
 - Package diagram
- Behavior
 - Activity diagram
 - Use case diagram
 - State machine diagram
 - Sequence diagram
- Other
 - Requirement diagram, stereotype, model view, AP-233, XMI Metadata Interchange format

Model
- Structure model
- Behavior model
Diagram Frames in SysML

- Each SysML diagram represents a model element
- Each SysML diagram must have a diagram frame
- Diagram context is indicated in the header
 - Diagram kind
 - e.g. act for Activity Diagrams
 - Model element type
 - e.g. Package, Block, Activity
 - Model element name
 - the represented model element
 - Diagram description
 - e.g. „Context model for Cyber-Physical Agricultural System”
SysML Diagram Kinds

- pkg – Package Diagram
- bdd – Block Definition Diagram
- ibd – Internal Block Diagram
- par – Parametric Diagram
- uc – Use Case Diagram
- act – Activity Diagram
- sd – Sequence Diagram
- stm – State Machine Diagram
UML & SysML Diagrams
Organizing Models with Packages

Package Diagrams
Package Diagrams
Modeling Aspect

How to organize the model?
Objectives

- Packages are used to group elements
 - Provides a containment hierarchy for model elements
 - Similar to directories for files
- Provides a namespace for the grouped elements
 - Modeling elements are identified by their qualified name
 - E.g. Cyber-Physical Agricultural System::System Design::Structure::Cyber Physical Agricultural System
- Not for modeling real world entities
Special packages

- **Profile (UML)**
 - extends metamodel

- **Model (UML)**
 - contains set of elements that describe the domain of interest

- **Model library (SysML)**
 - contains reusable elements
Package relationships

- Containment
 - Packageable elements
 - Other packages

- Package import
 - Import all elements from another package to the namespace

- Element import
 - Import one element from another package to the namespace
Package example

Pkg [package type] package name [diagram name]

Package name

Containment

package 1

«block» Contained element

Imported package

Element import

Containment

package 2

«block» Imported element
Summary

- **Goal**
 - Group model elements hierarchically
 - Provide namespace for model elements

- **Modeling aspect**
 - *How to organize the model?*
 - Not real modeling