
Constraint Programming with Multi-valued
Decision Diagrams: A Saturation Approach

Vince Molnár, István Majzik
Budapest University of Technologies and Economics, Department of Measurement and Information Systems

Email: {molnarv, majzik}@mit.bme.hu

Abstract—Constraint programming is a declarative way of
modeling and solving optimization and satisfiability problems
over finite domains. Traditional solvers use search-based strate-
gies enhanced with various optimizations to reduce the search
space. One of such techniques involves multi-valued decision
diagrams (MDD) to maintain a superset of potential solutions,
gradually discarding combinations of values that fail to satisfy
some constraint. Instead of the relaxed MDDs representing a
superset, we propose to use exact MDDs to compute the set
of solutions directly without search, compactly encoding all the
solutions instead of enumerating them. Our solution relies on the
main idea of the saturation algorithm used in model checking
to reduce the required computational cost. Preliminary results
show that this strategy can keep the size of intermediate MDDs
small during the computation.

I. INTRODUCTION

Many problems in computer science such as operations
research, test generation or error propagation analysis can be
reduced to finding at least one (optimal) assignment for a set
of variables that satisfies a set of constraints, a problem called
constraint programming (CP) [9]. CP solvers usually use a
search-based strategy to find an appropriate solution, enhanced
with various heuristics to reduce the search space.

Multi-valued decision diagrams (MDD) are graph-based
representations of functions over tuples of variables with a
finite domain [7]. As such, they can be used to compactly rep-
resent sets of tuples by encoding their membership function.
Set operations computed on MDDs then have a polynomial
time complexity in the size of the diagram instead of the
encoded elements [4].

One of the heuristics proposed for CP solvers use MDDs to
maintain a superset of potential solutions, gradually shrinking
the set by discarding tuples failing to satisfy some constraint
[1]. These approaches limit the size of MDDs to sacrifice
precision for computational cost, which is compensated for by
the search strategy. Using an exact representation of solution
sets seems to be neglected by the community, except in [6]
where special decision diagrams are used to achieve this.

This paper proposes to revisit the idea of exact MDD-
based CP solvers, applying a strategy well-known in the
model checking community: the saturation algorithm [5]. An
efficient implementation of the idea could overcome a common

This work has been partially supported by the CECRIS project, FP7–Marie
Curie (IAPP) number 324334. Special thanks to Prof. András Pataricza and
Imre Kocsis for their motivation and support.

limitation of search-based approaches, i. e., the complexity of
computing every solution. As opposed to traditional search-
based solvers, such a tool could natively compute the MDD
representation of all the solutions instead of enumerating them
one by one.

II. PRELIMINARIES

A. Multi-valued Decision Diagram

Multi-valued decision diagrams (MDD) offer a compact
representation for functions in the form of NK → {0, 1} [7].
MDDs can be regarded as the extension of binary decision
diagrams first introduced in [4]. By interpreting MDDs as
membership functions, they can be used to efficiently store
and manipulate sets of tuples. Definition of MDDs (based on
[8]) and common variants are as follows.

Definition 1 (Multi-valued Decision Diagram) A multi-
valued decision diagram (MDD) encoding the function
f(x1, x2, . . . , xK) (where the domain of each xi is Di ⊂ N)
is a tuple MDD = 〈N, r, level, children, value〉, where:
• N =

⋃K
i=0 Ni is a finite set of nodes, where items of

N0 are terminal nodes, the rest (N>0 = N \ N0) are
nonterminal nodes;

• level : N → {0, 1, . . . ,K} is a function assigning
non-negative level numbers to each node (Ni = {n ∈
N | level(n) = i});

• r ∈ N is the root node of the MDD (level(r) = K);
• children : Ni × Di → N is a function defining edges

between nodes labeled by elements of Di, denoted by
nk[i] (i. e., children(nk, i) = nk[i]);

• (N, children) as a directed graph is acyclic (DAG);
• value : NT → {0, 1} is a function assigning a binary

value to each terminal node (therefore N0 = {0,1},
where 0 is the terminal zero node (value(0) = 0) and
1 is the terminal one node (value(1) = 1).

An MDD is ordered iff for each node n ∈ N and value
i ∈ Dlevel(n) : level(n) > level(n[i]). An ordered MDD is
quasi-reduced (QROMDD) iff the following holds: if n ∈ N
and m ∈ N are on the same level and all their outgoing edges
are the same, then n = m. An ordered MDD is fully reduced
(ROMDD) if it is quasi-reduced and there is no node n ∈ N
such that every children of n are the same node.

The width of an MDD is the maximum number of nodes
belonging to the same level: w(MDD) = max 1≤i≤K(|Ni|).

54

1

0 2

0 1 0

1 1

Fig. 1: An ordered MDD.

1

0 2

0
1

0

1

Fig. 2: A quasi-reduced MDD.

1

0

2

0

1

Fig. 3: A fully-reduced MDD.

1

0 2

0

0 12

1

1
2 0 2 1

Fig. 4: MDD representation of
ALLDIFFERENT(x1, x2, x3).

The height of an MDD is the highest level to which any
node belongs: h(MDD) = maxn∈N (level). Note that only
ROMDDs can have a lower height than K.

The semantics of a quasi-reduced MDD rooted in node
r in terms of the encoded function f is the follow-
ing: f(v1, v2, . . . vK) = value((((r[vK])[vK−1]) · · ·)[v1]).
When interpreted as a set, the set of all tuples en-
coded in an MDD rooted in node r is S(r) =
{v | value((((r[vK])[vK−1]) · · ·)[v1]) = 1}.

In case of ROMDDs, a reduced node is assumed to have
all edges connected to the target of its incoming edge.

Figures 1–3 illustrate an ordered but not reduced, a quasi-
reduced and an ROMDD respectively, both encoding the set of
tuples {(0, 0, 0), (0, 1, 0), (0, 0, 1)} over the domain {0, 1, 2}×
{0, 1}×{0, 1}. For the sake of simplicity, the terminal 0 node
is omitted in figures.

An advantage of decision diagrams is the ability to compute
set operations such as union and intersection with polynomial
time complexity in the number of nodes in the operands [4].

B. Constraint Programming

Constraint programming (CP) is a framework for modeling
and solving continuous or discrete optimization or satisfiability
problems over finite domains [9]. The main advantage of CP
over the similar SAT or ILP problems is that it can handle
arbitrary finite domains and virtually any type of constraints:
they can be any relation over the set of defined variables. The
subset of CP problems addressed in this paper is constraint
satisfaction problems (CSP), where the goal is to find at least
one tuple that satisfies all the defined constraints.

Definition 2 (Constraint satisfaction problem) A
constraint satisfaction problem (CSP) is defined over
a set of variables X = {x1, . . . , xK} with finite
domains D = {D(x1), . . . , D(xK)} and set of
arbitrary relations over the variables (called constraints)
C = {ci | ci ∈ D(xi1) × · · · × D(xik)}, where
S(ci) = {xi1 , . . . , xik} ⊆ X is the support of the
constraint, i. e., the variables over which the relation is
defined. The question is whether there exists a tuple
v ∈ D(x1)× · · · ×D(xK) that satisfies all constraints in C.

Due to the rich modeling opportunities, solvers cannot
exploit any uniform semantics of the constraints. CP solvers
therefore employ a systematic search, supported by propa-
gation strategies that transfer the knowledge inferred in a
constraint to other constraints to reduce the search space
[9]. Constraint propagation is the process of discarding as
many potential solutions as possible before stepping in the
search. One extremity is the explicit enumeration of every
possible tuple, gradually shrinking the set by discarding those
that violate some constraint. In this case, a search in the
traditional sense is not necessary, as after the restrictions,
every tuple is a valid solution to the problem. Since this
approach is generally considered infeasible or not scalable,
the CP literature proposed various relaxations that are still
useful to reduce the search space with an acceptable cost. Note
however, that most of these solutions are therefore limited
when it comes to computing every solution of a problem.

1) Domain-based Constraint Propagation: The traditional
constraint propagation approach for CSP solving is built
around domain stores [9]. Domain stores maintain the current
domain for every variable of the problem, propagating inferred
knowledge by the means of domain consistency [9].

Definition 3 (Domain consistency) A constraint C is do-
main consistent with the current variable domains D if for
every value v ∈ D(xi) of every variable xi ∈ X , there exists
a tuple v with v[i] = v that satisfies C.

A constraint C can be made domain consistent by discarding
values from the domains that cannot be extended to a tuple that
satisfies C. Constraint propagation then consists of making
constraints domain consistent until every constraint is domain
consistent. If any domain becomes empty, the problem is
unsatisfiable. If every domain contains a single value only,
a solution is found and returned. In any other case, the search
strategy binds the value of a variable and repeats the process.

2) MDD-based Constraint Propagation: One weakness of
domain-based constraint propagation approaches is the lack of
interaction between variables, i. e., every subset of the Carte-
sian product of the domains is domain consistent. For example,
in the case of the ALLDIFFERENT constraint, which demands
that all the variables in the tuple should assume different
values, domain consistency fails to express the connection

55

between values of the variables.
To address this, [1] introduced the notion of MDD con-

sistency and enhanced the domain store with an MDD store.
MDDs can efficiently encode the various interactions between
variables (see Figure 4 for the MDD representation of the
ALLDIFFERENT constraint for three variables). One or more
MDDs can then be used to communicate the restrictions
between different constraints.

Definition 4 (MDD consistency) A constraint C is MDD
consistent with an MDD rooted in node r if every edge in
children belongs to at least one path leading from r to the
terminal 1 representing a tuple v ∈ S(r) that satisfies C.

MDD-based constraint propagation approaches usually use
limited-width MDDs to reduce the complexity of MDD oper-
ations at the cost of losing some information. As previously
noted, the spurious solutions introduced by the relaxation
are eliminated with a search strategy that will eventually
concretize solutions to obtain an exact result.

Note that in this form, MDDs are used as a relaxed set
of potential solutions, a superset of the actual solutions.
Domain stores can be regarded as the special case when the
width of the MDD is fixed in one [2]. In this case, every
domain is represented by the edges starting from the node on
the corresponding level and the MDD encodes the Cartesian
product of the domains.

III. SATURATION-BASED CONSTRAINT PROPAGATION

As presented in Section II, the CP community have em-
braced limited-width MDDs as a means to enhance the tradi-
tional domain store for more efficient constraint propagation.
However, the literature rarely mentions the possibility of
using explicit MDD representations (with unlimited width)
and MDD operations to compute the set of solutions directly
without relaxations and searching. As it seems, researchers
of the community consider this approach infeasible or not
scalable, which can explain the lack of corresponding results.

This paper proposes to revisit the idea mentioned as an
extremity in Section II-B, that is, enumerating every potential
solution and discarding those that fail to satisfy some of the
constraints. In this setting, fully reduced MDDs provide an
efficient encoding as only the levels corresponding to variables
in the support of a constraint will contain nodes. The set of
all tuples, for example, is encoded simply by the terminal 1
node, as none of the variables are bound by any constraint.

Discarding invalid solutions is then equivalent to computing
the intersection of the current set of potential solutions with the
set of solutions of the next constraint ci. The set of all actual
solutions is therefore obtained by taking the intersection of all
the MDDs representing every constraint in the problem:

S =
⋂

ci∈C
S(ci) (1)

The usual pitfall in MDD-based set operations is that the
decision diagrams tend to grow very large during computation.
Such computations usually aim to reach a fixed point, thus

the number of encoded tuples constantly rises or falls during
the computation. Denser or sparser sets usually have a more
compact MDD representation than those encoding around half
of all the possible tuples, thus the final size of the decision
diagram is usually in an acceptable range. Intermediate re-
sults, however, can be exponentially larger (multiple orders of
magnitude in practice as shown in Section IV).

The symbolic model checking community uses an efficient
strategy to combat this phenomenon: saturation [5].

A. The Saturation Approach

Originally, saturation has been proposed as an iteration
strategy tailored to work with decision diagrams to perform
least fixed point computation with the transition relation of
state-based behavioral models for state space exploration [5].
In other words, its original purpose is to efficiently compute
the reflexive transitive closure of a relation on a set of initial
values (initial states), minimizing the size of intermediate
decision diagrams during the computation.

The essential idea of saturation is to keep the intermediate
decision diagrams as dense as possible by applying relations
affecting only the lower levels first. Relations are therefore
applied in the order of the highest level that they affect.

In the CSP setting, transition relations are replaced with
constraints and instead of the reflexive transitive closure, the
intersection of all constraints must be computed. Nevertheless,
the idea of ordering the constraints by the “highest” variable
they affect (highest in terms of the decision diagram level
that encodes the variable) is applicable. Moreover, it should
carry the same benefits since the number of currently encoded
tuples is again monotonic during the computation – this time
converging towards the empty set.

To formally describe the proposed solution, we have to as-
sume that a variable ordering is given, i. e., there is a bijective
function l : X → {1, . . . ,K}. This function describes the
relationship between the variables and the encoding MDD
as well: every variable xi is represented by the level l(xi).
W.l.o.g., we will assume that l(xi) = i, unless otherwise noted.

Definition 5 (Level of constraint) The level of a constraint
ci is Top(ci) = max{l(xi) | xi ∈ S(ci)}, i. e., the largest
level number assigned to the variables in the support of the
constraint. Let Ci = {cj | Top(cj) = i} then denote the set
of constraint belonging to level i.

Ordering the constraints by the assigned Top level modifies
Equation 1 as follows:

S =

((((
c11 ∩ . . .︸ ︷︷ ︸
c1j∈C1

)
∩ c21 ∩ . . .︸ ︷︷ ︸

c2j∈C2

)
∩ . . .

)
cK1 ∩ . . .︸ ︷︷ ︸
cKj ∈CK

)
(2)

B. Discussion

The strategy of the proposed saturation approach can be
characterized by two goals:
• In every step, minimize the height of the resulting (fully-

reduced) MDD.

56

1

10

100

1000

10000

100000

1000000
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

Si
ze

 o
f

M
D

D

#Processed Constraints

random

sorted

saturation

Fig. 5: MDD size during computation.

• If a new node n is introduced on a new level, minimize
the number of tuples n encodes.

Both of these goals are accomplished with the ordering of
constraints. The following lemmas provide the rationale.

Lemma 1 The width of an ROMDD cannot be higher than
the number of tuples it encodes.

Proof Assume there is an ROMDD with width w encoding
w − 1 tuples. Having a width w means there is at least one
level with w nodes. Every node in any ROMDD has to be on
a path leading from the root node to the terminal 1, so the
MDD must encode at least w tuples, as opposed to w − 1.

Lemma 2 The number of nodes in an ROMDD cannot be
higher than w(MDD) · h(MDD).

From the lemmas we can conclude that the saturation
strategy aims to minimize the size of the resulting MDD in
every step. Note, however, that the number of encoded tuples
is not in a direct relationship with the width of the MDD.
As stated before, the two extremities are the empty set and
the universe, but in between the size can grow exponentially.
The saturation strategy can be therefore considered as a “best
effort” heuristic rather than an optimal algorithm.

IV. RESULTS

The proposed approach has been implemented in Java as a
CSP solver processing problems given in the XCSP3 format
[3]. As a proof of concept, a small experiment has been carried
out where a simple model encoding error propagation in a
railway system has been solved by three different strategies.

The first “strategy” applied the constraints in the order of
declaration in the problem definition (which can be considered
more-or-less random). The second one orders the constraints
by the number of variables supporting the constraint, while
the third one is the proposed saturation approach. Figure 5
shows the size of the solution MDD after the processing of
each constraint for the three strategies on a logarithmic scale.

The experiment demonstrates the potential benefits of using
the saturation approach in an explicit MDD-based CSP solver.
Compared to the “random” strategy, the peak size of the

MDD was almost three orders of magnitude smaller with the
saturation approach, at most 6 times more than the final size.
Ordering the constraints by the number of supporting variables
yields a better result than the random strategy, but it is still
far worse than the saturation approach. The remaining peaks
correspond to the inclusion of complex constraints when a
new variable is processed and the size of the MDD usually
normalizes before processing the next variable.

V. CONCLUSION AND FUTURE WORK

This paper proposed to revisit a seemingly undiscussed topic
of applying exact MDD-based methods to compute the solu-
tion set of finite-domain constraint programming problems.
Although the approach of compiling the MDD representation
of constraints and computing their intersection may seem
“brute-force”, it is worth exploring the solutions employed in
related research areas such as symbolic model checking.

In this spirit, we have applied the strategy of the saturation
algorithm well-known in the model checking community.
Saturation orders the relations by the highest level assigned
to one of their supporting variables, keeping the intermediate
MDD relatively compact compared to other approaches.

We have demonstrated the benefits of the strategy in a
small experiment, which provided promising results. Once a
larger set of benchmark models are available after the first
XCSP3 competition1, we plan to systematically evaluate and
fine-tune our solution to see if it can match the performance
of traditional tools employing the domain- and MDD-store
approaches. Regardless of the performance, it is noteworthy
that the proposed solution can natively compute the set of all
solutions in a compact representation, which poses a great
challenge to traditional tools that can only enumerate the
solutions one by one.

REFERENCES

[1] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A
constraint store based on multivalued decision diagrams. In Proc. of
the 13th Internation Conference on Principles and Practice of Constraint
Programming, pages 118–132. Springer, 2007.

[2] D. Bergman, A. A. Cire, W. J. van Hoeve, and J. Hooker. MDD-Based
Constraint Programming, pages 157–181. Springer, 2016.

[3] F. Boussemart, C. Lecoutre, and C. Piette. XCSP3: an integrated
format for benchmarking combinatorial constrained problems. CoRR,
abs/1611.03398, 2016.

[4] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, 1986.

[5] G. Ciardo, R. Marmorstein, and R. Siminiceanu. The saturation algorithm
for symbolic state-space exploration. International Journal on Software
Tools for Technology Transfer, 8(1):4–25, 2006.

[6] R. Mateescu and R. Dechter. Compiling constraint networks into
AND/OR multi-valued decision diagrams (AOMDDs). In Proc. of the
12th Int. Conf. on Principles and Practice of Constraint Programming,
pages 329–343, 2006.

[7] D. M. Miller and R. Drechsler. Implementing a multiple-valued decision
diagram package. In Proc. of the 28th IEEE Int. Symp. on Multiple-Valued
Logic, pages 52–57, 1998.

[8] V. Molnár, A. Vörös, D. Darvas, T. Bartha, and I. Majzik. Component-
wise incremental LTL model checking. Formal Aspects of Computing,
28(3):345–379, 2016.

[9] F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Program-
ming (Foundations of Artificial Intelligence). Elsevier, 2006.

1http://xcsp.org/competition

57

	Proceedings_of_the_24th_PhD_Mini-Symposium

